Magnetic fields in galaxy clusters

Christoph Pfrommer

Heidelberg Institute for Theoretical Studies, Germany

Jul 30, 2014 / Inhomogeneities in the Intracluster Plasma, Stanford

≣ ► < ≣ →

Christoph Pfrommer

Outline

- Intracluster magnetic fields
 - Origin and evolution
 - Faraday rotation measures
 - Minimum field estimates
- Pields at cluster shocks
 - Radio relics
 - Radio and X-rays
 - Cooling lengths

3 Magnetic draping

- Mechanism
- Observations
- MHD Simulations

э

Drigin and evolution Faraday rotation measures Ainimum field estimates

Outline

- Intracluster magnetic fields
 - Origin and evolution
 - Faraday rotation measures
 - Minimum field estimates
- Fields at cluster shocks
 - Radio relics
 - Radio and X-rays
 - Cooling lengths
- 3 Magnetic draping
 - Mechanism
 - Observations
 - MHD Simulations

> < ≣

Origin and evolution Faraday rotation measures Minimum field estimates

Origin and evolution of cluster fields

possible origin:

- stellar winds or AGN jets
- plasma instabilities or battery effects in shock waves, in ionization fronts, or in neutral gas-plasma interactions
- primordial generation in early universe processes, such as phase transitions during the epoch of inflation

evolution:

- amplification in a (small-scale turbulent) dynamo
- expectation: saturation at a fraction of P_{kin}

Origin and evolution Faraday rotation measures Minimum field estimates

Origin of turbulence and magnetic fields

gas density, locations of shocks, vorticity = curl of flow velocity (Ryu et al. 2008)

model for the origin of intra-cluster magnetic fields:

- turbulent flow motions are induced via the cascade of the vorticity generated at cosmological formation shocks
- the turbulence amplifies weak seed magnetic fields of any origin

イロト イポト イヨト イヨト

Origin and evolution Faraday rotation measures Minimum field estimates

Volume rendered magnetic field strengths

distribution of the resulting inter-galactic magnetic fields around a cluster and a filament that includes a number of groups (Ryu et al. 2008)

イロト 不得 とくほ とくほう

Origin and evolution Faraday rotation measures Minimum field estimates

Faraday rotation measurements

magnetic birefringence causes rotation of plane of polarization

$$\chi(\boldsymbol{x}_{\perp},\lambda) = \chi_0 + \lambda^2 \frac{e^3}{2\pi m_e^2 c^4} \int_0^{z_s} \mathrm{d}z \, n_e(\boldsymbol{x}_{\perp},z) B_z(\boldsymbol{x}_{\perp},z)$$

- need to model n_e and window function \rightarrow statistics of $B_z(\mathbf{x}_{\perp})$
- assuming statistical isotropy \rightarrow deprojection and statistics of *B*

Origin and evolution Faraday rotation measures Minimum field estimates

Faraday rotation measurements: Hydra A

- inferred power spectrum compatible with Kolmogorov slope
- $B_0 = 36 \,\mu \text{G} (45^\circ)$ and coherence scale > 8 kpc

Origin and evolution Faraday rotation measures Minimum field estimates

Faraday rotation measurements: Coma

- forward modeling of 3D magnetic (Kolmogorov) power spectra
- varying B_0 and radial magnetic decline ($B \propto n_e^{\eta}$): $B_0 \simeq 5 \,\mu$ G, $\eta \simeq 0.5$

Christoph Pfrommer

Magnetic fields in galaxy clusters

Origin and evolution Faraday rotation measures Minimum field estimates

Radio (mini-)halos: Coma and Perseus

Coma radio halo:

Perseus mini-halo:

emission models: turbulent re-acceleration or hadronic cosmic ray interactions?

Christoph Pfrommer

Magnetic fields in galaxy clusters

Origin and evolution Faraday rotation measures Minimum field estimates

Minimum energy criterion (MEC): the idea

•
$$\varepsilon_{\text{NT}} = \varepsilon_B + \varepsilon_{\text{CRp}} + \varepsilon_{\text{CRe}}$$

 \rightarrow minimum energy criterion: $\frac{\partial \varepsilon_{\text{NT}}}{\partial \varepsilon_B}\Big|_{j_{\nu}} \stackrel{!}{=} 0$

• classical MEC:
$$\varepsilon_{CRp} = k_p \varepsilon_{CRe}$$

(

• hadronic MEC: $\varepsilon_{CRp} \propto (\varepsilon_B + \varepsilon_{CMB}) \varepsilon_{CRe} \propto (\varepsilon_B + \varepsilon_{CMB}) \varepsilon_B^{-(\alpha_{\nu}+1)/2} j_{\nu}$

Origin and evolution Faraday rotation measures Minimum field estimates

Classical minimum energy criterion

$$X_{\mathrm{CRp}}(r) = rac{arepsilon_{\mathrm{CRp}}}{arepsilon_{\mathrm{th}}}(r), \quad X_{B}(r) = rac{arepsilon_{B}}{arepsilon_{\mathrm{th}}}(r)$$

 $B_{\text{Coma}}(0) = 1.1^{+0.7}_{-0.4} \mu\text{G}$

⇒ + ≥

Origin and evolution Faraday rotation measures Minimum field estimates

Hadronic minimum energy criterion

$$X_{\mathrm{CRp}}(r) = rac{arepsilon_{\mathrm{CRp}}}{arepsilon_{\mathrm{th}}}(r), \quad X_{B}(r) = rac{arepsilon_{B}}{arepsilon_{\mathrm{th}}}(r)$$

$$B_{\rm Coma}(0) = 2.4^{+1.7}_{-1.0} \mu {\rm G}$$

ヨト・モラト

Radio relics Radio and X-rays Cooling lengths

Outline

- Intracluster magnetic fields
 - Origin and evolution
 - Faraday rotation measures
 - Minimum field estimates
- Pields at cluster shocks
 - Radio relics
 - Radio and X-rays
 - Cooling lengths
 - Magnetic draping
 - Mechanism
 - Observations
 - MHD Simulations

★ Ξ → < Ξ</p>

Radio relics Radio and X-rays Cooling lengths

Radio gischt illuminates cluster magnetic fields

Christoph Pfrommer Magnetic fields in galaxy clusters

Radio relics Radio and X-rays Cooling lengths

Synchrotron and inverse Compton emission

detection of hard X-ray emission at the northern relic of A3667:

$$\frac{\textit{F}_{\rm sync}}{\textit{F}_{\rm IC}} \propto \frac{\varepsilon_{\it B}^{(\alpha_{\it e}+1)/4}}{\varepsilon_{\rm CMB}} \, \left(\frac{\nu_{\rm sync}}{\nu_{\rm IC}}\right)^{(1-\alpha_{\it e})/2}$$

- if X-ray emission due to thermal bremsstrahlung: lower *B* limit
- if X-ray emission due to inverse Compton: estimate for *B* provided the radio emitting regions correlate with the volume occupied by *B*
- \rightarrow *B* > 3 μ G at the relic, i.e. at *R*₂₀₀!

Radio gischt probes acceleration and magnetic fields

double relic in CIZA J2242:

van Weeren+ (2010)

spectral index + E polarization:

Radio gischt probes acceleration and magnetic fields

 synchrotron cooling length of equilibrium electron distribution:

$$\mathit{I}_{
m sync} = \mathit{v}_{
m adv} au_{
m sync} \propto rac{\sqrt{B}}{B^2 + B_{
m CMB}^2}$$

- allows for 2 solutions:
 B ≥ 5 μG or B ≤ 1.2 μG accounting for projection effects
- van Weeren+ argue for B ≥ 5 μG solution based X-ray limits in A3667

Radio relics Radio and X-rays Cooling lengths

Radio gischt probes acceleration and magnetic fields

van Weeren+ (2010)

- how are these strong magnetic fields at the center out to R₂₀₀ generated?
- why is the magnetic field perpendicular to the shock normal?
- how can particle acceleration proceed at perpendicular shocks?

Mechanism Observations MHD Simulations

Outline

- Intracluster magnetic fields
 - Origin and evolution
 - Faraday rotation measures
 - Minimum field estimates
- Pields at cluster shocks
 - Radio relics
 - Radio and X-rays
 - Cooling lengths

3 Magnetic draping

- Mechanism
- Observations
- MHD Simulations

Mechanism Observations MHD Simulations

What is magnetic draping?

Mechanism Observations MHD Simulations

What is magnetic draping?

- is magnetic draping (MD) similar to ram pressure compression?
 - \rightarrow no density enhancement for MD
 - analytical solution of MD for incompressible flow
 - ideal MHD simulations (right)

Mechanism Observations MHD Simulations

What is magnetic draping?

- is magnetic draping (MD) similar to ram pressure compression?
 - \rightarrow no density enhancement for MD
 - analytical solution of MD for incompressible flow
 - ideal MHD simulations (right)
- is magnetic flux still frozen into the plasma?

yes, but plasma is pulled into the direction of the field lines while field lines get stuck at the obstacle

Mechanism Observations MHD Simulations

Draping of the interplanetary field over Venus

- Venus and Mars do not have a global magnetic field
- Venus Express: amplification of solar wind field by a factor ~ 6 at the side facing the Sun

 draping of solar wind magnetic field around Venus/Mars leads to the formation of magnetic pile-up region and the magneto tail
 → enhanced magnetic field strength in the planets' wake

Mechanism Observations MHD Simulations

Streamlines in the rest frame of the galaxy

- Stokes function p(s, θ) = √3sR sin θ
 → critical impact parameter for
 θ = π/2, s = I_{drape}: p_{cr} = R/(2M_A)
- only those streamlines initially in a narrow tube of radius $p_{\rm cr} \simeq R/20 \simeq 1$ kpc from the stagnation line become part of the magnetic draping layer (color coded) \rightarrow constraints on λ_B

Streamlines in the rest frame of the galaxy

- Stokes function p(s, θ) = √3sR sin θ
 → critical impact parameter for
 θ = π/2, s = l_{drape}: p_{cr} = R/(2M_A)
- only those streamlines initially in a narrow tube of radius
 p_{cr} ≃ R/20 ≃ 1 kpc from the stagnation line become part of the magnetic draping layer (color coded)
 → constraints on λ_B
- the streamlines that do not intersect the tube get deflected away from the galaxy, become never part of the drape and eventually get accelerated (Bernoulli effect)
- note the kink feature in some draping-layer field lines due to back reaction as the solution changes from the hydrodynamic potential flow solution to that in the draped layer

Mechanism Observations MHD Simulations

Conditions for magnetic draping

- ambient plasma sufficiently ionized such that flux freezing condition applies
- super-Alfvénic motion of a cloud through a weakly magnetized plasma: M²_A = βγM²/2 > 1
- magnetic coherence across the "cylinder of influence":

$$rac{\lambda_B}{R}\gtrsimrac{1}{\mathcal{M}_A}\sim 0.1 imes \left(rac{eta}{100}
ight)^{-1/2}$$
 for sonic motions,

Here R denotes the curvature radius of the working surface at the stagnation line.

• • • • • • • •

→ E > < E</p>

Mechanism Observations MHD Simulations

Polarized synchrotron emission in a field spiral: M51

MPIfR Bonn and Hubble Heritage Team

- grand design 'whirlpool galaxy' (M51): optical star light superposed on radio contours
- polarized radio intensity follows the spiral pattern and is strongest in between the spiral arms
- the polarization 'B-vectors' are aligned with the spiral structure

Mechanism Observations MHD Simulations

Ram-pressure stripping of cluster spirals

- 3D simulations show that the ram-pressure wind quickly strips the low-density gas in between spiral arms (Tonnesen & Bryan 2010)
- being flux-frozen into this dilute plasma, the large scale magnetic field will also be stripped

 \rightarrow resulting radio emission should be unpolarized

Mechanism Observations MHD Simulations

Polarized synchrotron ridges in Virgo spirals

Christoph Pfrommer

Magnetic fields in galaxy clusters

- asymmetric distributions of polarized intensity at the leading edge with extraplanar emission, sometimes also at the side
- coherent alignment of polarization vectors over \sim 30 kpc
- HI gas only moderately enhanced (factor \lesssim 2), localized 'HI hot spot' smaller than the polarized emission region: $n_{\rm compr} \simeq n_{\rm icm} v_{\rm cal}^2 / c_{\rm ism}^2 \simeq 1 \, {\rm cm}^{-3} \simeq \langle n_{\rm ism} \rangle$

- asymmetric distributions of polarized intensity at the leading edge with extraplanar emission, sometimes also at the side
- coherent alignment of polarization vectors over \sim 30 kpc
- HI gas only moderately enhanced (factor \lesssim 2), localized 'HI hot spot' smaller than the polarized emission region: $n_{\rm compr} \simeq n_{\rm icm} v_{\rm gal}^2 / c_{\rm ism}^2 \simeq 1 \,{\rm cm}^{-3} \simeq \langle n_{\rm ism} \rangle$
- stars lead polarized emission, polarized emission leads gas
- flat radio spectral index (similar to the Milky Way) that steepens towards the edges of the polarized ridge
- no or weak Kelvin-Helmholtz instabilities at interface detectable

< 回 > < 三 > < 三

- asymmetric distributions of polarized intensity at the leading edge with extraplanar emission, sometimes also at the side
- $\bullet\,$ coherent alignment of polarization vectors over \sim 30 kpc
- HI gas only moderately enhanced (factor $\lesssim 2$), localized 'HI hot spot' smaller than the polarized emission region: $n_{\rm compr} \simeq n_{\rm icm} v_{\rm gal}^2 / c_{\rm ism}^2 \simeq 1 \,{\rm cm}^{-3} \simeq \langle n_{\rm ism} \rangle$
- stars lead polarized emission, polarized emission leads gas
- flat radio spectral index (similar to the Milky Way) that steepens towards the edges of the polarized ridge
- no or weak Kelvin-Helmholtz instabilities at interface detectable
- \rightarrow previous models that use ram-pressure compressed galactic magnetic fields fail to explain most of these points!

イロト イポト イヨト イヨト

- asymmetric distributions of polarized intensity at the leading edge with extraplanar emission, sometimes also at the side
- $\bullet\,$ coherent alignment of polarization vectors over \sim 30 kpc
- HI gas only moderately enhanced (factor $\lesssim 2$), localized 'HI hot spot' smaller than the polarized emission region: $n_{\rm compr} \simeq n_{\rm icm} v_{\rm gal}^2 / c_{\rm ism}^2 \simeq 1 \,{\rm cm}^{-3} \simeq \langle n_{\rm ism} \rangle$
- stars lead polarized emission, polarized emission leads gas
- flat radio spectral index (similar to the Milky Way) that steepens towards the edges of the polarized ridge
- no or weak Kelvin-Helmholtz instabilities at interface detectable

 \rightarrow need to consider the full MHD of the interaction spiral galaxy and magnetized ICM !

< 🗇 🕨

Mechanism Observations MHD Simulations

Magnetic draping around a spiral galaxy

Athena simulations of spiral galaxies interacting with a uniform cluster magnetic field. There is a sheath of strong field draped around the leading edge (shown in red). C.P. & Dursi, 2010, Nature Phys.

・ロト ・ 同ト ・ ヨト ・ ヨト

Mechanism Observations MHD Simulations

Magnetic draping around a spiral galaxy – physics

- the galactic ISM is pushed back by the ram pressure wind $\sim \rho {\rm v}^2$
- the stars are largely unaffected and lead the gas
- the draping sheath is formed at the contact of galaxy/cluster wind
- as stars become SN, their remnants accelerate CRes that populate the field lines in the draping layer
- CRes are transported diffusively (along field lines) and advectively as field lines slip over the galaxy
- CRes emit radio synchrotron radiation in the draped region, tracing out the field lines there → coherent polarized emission at the galaxies' leading edges

Mechanism Observations MHD Simulations

Modeling the electron population

- typical SN rates imply a homogeneous CRe distribution (WMAP)
- FIR-radio correlation of Virgo spirals show comparable values to the solar circle → take CRe distribution of our Galaxy:

$$n_{
m cre} = C_0 \, e^{-(R-R_\odot)/h_R} e^{-|z|/h_z}$$

with normalization $C_0 \simeq 10^{-4} \text{ cm}^{-3}$, scale heights $h_B \simeq 8 \text{ kpc}$ and $h_z \simeq 1 \text{ kpc}$ at Solar position

• truncate at contact of ISM-ICM, attach exp. CRe distribution \perp to contact surface with $h_{\perp} \simeq 150$ pc (max. radius of Sedov phase)

イロト イポト イヨト イヨト

Mechanism Observations MHD Simulations

Magnetic draping and polarized synchrotron emission Synchrotron B-vectors reflect the upstream orientation of cluster magnetic fields

Mechanism Observations MHD Simulations

Simulated polarized synchrotron emission

Movie of the simulated polarized synchrotron radiation viewed from various angles and with two field orientations.

Mechanism Observations MHD Simulations

Magnetic draping of a helical B-field (Non-)observation of polarization twist constrains magnetic coherence length

Mechanism Observations MHD Simulations

Magnetic coherence scale estimate by radio ridges

- observed polarised draping emission

 → field coherence length λ_B is at least
 galaxy-sized
- if $\lambda_B \sim 2R_{gal}$, then the change of orientation of field vectors imprint as a change of the polarisation vectors along the vertical direction of the ridge showing a 'polarisation-twist'
- the reduced speed of the boundary flow means that a small L_{drape} corresponds to a larger length scale of the unperturbed magnetic field ahead of the galaxy NGC 4501

$$L_{coh} \simeq \eta L_{drape} v_{gal} / v_{drape} = \eta \tau_{syn} v_{gal} > 100 \, \text{kpc},$$

with $\tau_{syn} \simeq 5 \times 10^7$ yr, $v_{gal} \simeq 1000$ km/s, and a geometric factor $\eta \simeq 2$

Mechanism Observations MHD Simulations

Varying galaxy inclination and magnetic tilt

э

Mechanism Observations MHD Simulations

Observations versus simulations

Christoph Pfrommer

Magnetic fields in galaxy clusters

Mechanism Observations MHD Simulations

Mapping out the magnetic field in Virgo

Christoph Pfrommer

Magnetic fields in galaxy clusters

Mechanism Observations MHD Simulations

Discussion of radial field geometry

- The alignment of the field in the plane of the sky is significantly more radial than expected from random chance. Considering the sum of deviations from radial alignment gives a chance coincidence of less than 1.7% (~ 2.2 σ).
- For the three nearby galaxy pairs in the data set, all have very similar field orientations.
- \rightarrow Which effect causes this field geometry?

Magneto-thermal instability? (Parrish+2007) Radial infall? (Ruszkowski+2010)

Mechanism Observations MHD Simulations

Conclusions on magnetic draping around galaxies

 draping of cluster magnetic fields naturally explains polarization ridges at Virgo spirals

Mechanism Observations MHD Simulations

Conclusions on magnetic draping around galaxies

- draping of cluster magnetic fields naturally explains polarization ridges at Virgo spirals
- this represents a new tool for measuring the in situ 3D orientation and coherence scale of cluster magnetic fields

Mechanism Observations MHD Simulations

Conclusions on magnetic draping around galaxies

- draping of cluster magnetic fields naturally explains polarization ridges at Virgo spirals
- this represents a new tool for measuring the in situ 3D orientation and coherence scale of cluster magnetic fields
- application to the Virgo cluster shows that the magnetic field is preferentially aligned radially

Mechanism Observations MHD Simulations

Conclusions on magnetic draping around galaxies

- draping of cluster magnetic fields naturally explains polarization ridges at Virgo spirals
- this represents a new tool for measuring the in situ 3D orientation and coherence scale of cluster magnetic fields
- application to the Virgo cluster shows that the magnetic field is preferentially aligned radially
- this finding implies efficient thermal conduction across clusters
 → thermal cluster history & cluster cosmology
- prospects for studying microphysics of transport processes, issues: magnetic reconnection with ISM fields

Mechanism Observations MHD Simulations

Literature for the talk

- Pfrommer & Dursi, 2010, Nature Phys., 6, 5206, Detecting the orientation of magnetic fields in galaxy clusters
- Dursi & Pfrommer, 2008, ApJ, 677, 993, Draping of cluster magnetic fields over bullets and bubbles - morphology and dynamic effects

프 🖌 🖌 프

< 17 ▶

Mechanism Observations MHD Simulations

Additional slides

Mechanism Observations MHD Simulations

Biases in inferring the field orientation

- uncertainties in estimating the 3D velocity: v_r, ram-pressure stripped gas visible in HI morphology → ŷt
- direction-of-motion asymmetry: magnetic field components in the direction of motion bias the location of B_{max, drape} (figure to the right): draping is absent if **B** || **v**_{gal}

• geometric bias: polarized synchrotron emission only sensitive to traverse magnetic field B_t (\perp to LOS) \rightarrow maximum polarised intensity may bias the location of $B_{max, drape}$ towards the location in the drape with large B_t