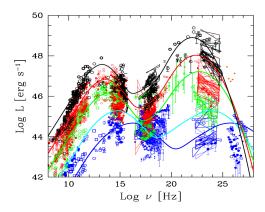
The Physics and Cosmology of TeV Blazars

Christoph Pfrommer¹

in collaboration with

Avery E. Broderick², Phil Chang³, Ewald Puchwein¹, Volker Springel¹


¹Heidelberg Institute for Theoretical Studies, Germany ²Perimeter Institute/University of Waterloo, Canada ³University of Wisconsin-Milwaukee, USA

Jul 12, 2012 / Gamma2012 Heidelberg

TeV emission from blazars Cascade emission Plasma instabilities

The blazar sequence

Ghisellini (2011), arXiv:1104.0006

- continuous sequence from LBL–IBL–HBL
- TeV blazars are dim (very sub-Eddington)
- TeV blazars have rising spectra in the Fermi band (α < 2)
- define TeV blazar = hard IBL + HBL

TeV emission from blazars Cascade emission Plasma instabilities

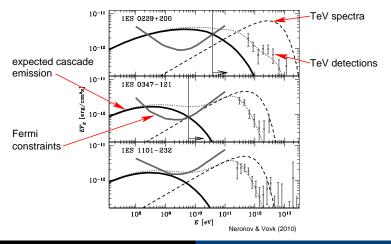
Propagation of TeV photons

• 1 TeV photons can pair produce with 1 eV EBL photons:

$$\gamma_{\rm TeV} + \gamma_{\rm eV}
ightarrow {m e}^+ + {m e}^-$$

- mean free path for this depends on the density of 1 eV photons: $\rightarrow \lambda_{\gamma\gamma} \sim (35...700)$ Mpc for z = 1...0
 - \rightarrow pairs produced with energy of 0.5 TeV ($\gamma = 10^6$)
- these pairs inverse Compton scatter off the CMB photons:
 - ightarrow mean free path is $\lambda_{\text{IC}} \sim \lambda_{\gamma\gamma}/1000$
 - \rightarrow producing gamma-rays of \sim 1 GeV

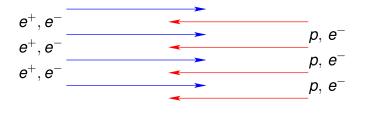
$$E\sim \gamma^2 E_{
m CMB}\sim 1~
m GeV$$


each TeV point source should also be a GeV point source

Physics of blazar heating Cosmological implications Conclusions Plasma instabilities

What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray halo – not seen! \rightarrow limits on extragalactic magnetic fields?

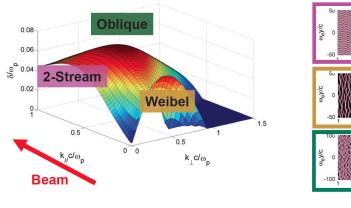

Christoph Pfrommer The Physics and Cosmology of TeV Blazars

TeV emission from blazars Cascade emission Plasma instabilities

Missing plasma physics?

How do beams of e^+/e^- propagate through the IGM?

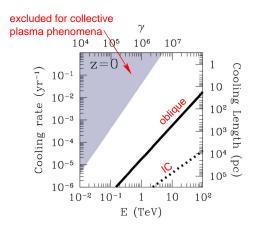
- plasma processes are important
- interpenetrating beams of charged particles are unstable


TeV emission from blazars Cascade emission Plasma instabilities

Beam flow

100 ω_e x/c

Oblique instability


 $\textbf{\textit{k}}$ oblique to $\textbf{\textit{v}}_{\text{beam}}$: real word perturbations don't choose "easy" alignment = \sum all orientations

Bret (2009), Bret+ (2010)

TeV emission from blazars Cascade emission Plasma instabilities

Beam physics – growth rates

- consider a light beam penetrating into relatively dense plasma
- maximum growth rate

$$\sim {\sf 0.4}\,\gamma\,rac{{\it n_{beam}}}{{\it n_{IGM}}}\,\omega_{
m p}$$

- oblique instability beats IC by factor 10-100
- assume that instability grows at linear rate up to saturation

Broderick, Chang, C.P. (2012)

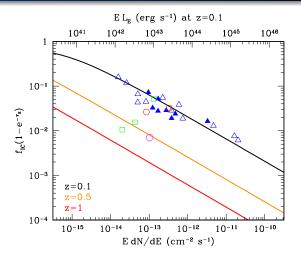
TeV emission from blazars Cascade emission Plasma instabilities

TeV emission from blazars – a new paradigm

$$\gamma_{\text{TeV}} + \gamma_{\text{eV}} \rightarrow e^+ + e^- \rightarrow \begin{cases} \text{IC off CMB} \rightarrow \gamma_{\text{GeV}} \\ \text{plasma instabilities} \rightarrow \text{heating IGM} \end{cases}$$

absence of $\gamma_{\rm GeV}{\rm 's}$ has significant implications for . . .

- intergalactic *B*-field estimates
- γ-ray emission from blazars: spectra, background


additional IGM heating has significant implications for ...

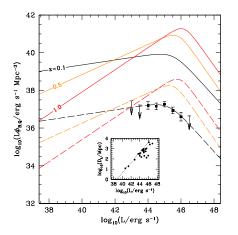
- thermal history of the IGM: Lyman- α forest
- late time structure formation: dwarfs, galaxy clusters

Magnetic field limits from blazars Blazar evolution and *Fermi* counts Extragalactic gamma-ray background

Implications for *B*-field measurements Fraction of the pair energy lost to inverse-Compton on the CMB: $f_{IC} = \Gamma_{IC}/(\Gamma_{IC} + \Gamma_{oblique})$

Broderick, Chang, C.P. (2012)

Magnetic field limits from blazars Blazar evolution and *Fermi* counts Extragalactic gamma-ray background

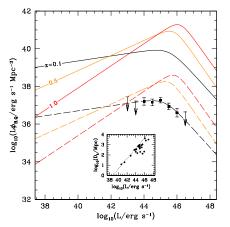

Conclusions on B-field constraints from blazar spectra

- it is thought that TeV blazar spectra might constrain IGM B-fields
- this assumes that cooling mechanism is IC off the CMB + deflection from magnetic fields
- beam instabilities may allow high-energy e⁺/e⁻ pairs to self scatter and/or lose energy
- isotropizes the beam no need for B-field
- \lesssim 1–10% of beam energy to IC CMB photons

 \rightarrow TeV blazar spectra are not suitable to measure IGM *B*-fields (if plasma instabilities saturate at linear rate)!

Magnetic field limits from blazars Blazar evolution and *Fermi* counts Extragalactic gamma-ray background

TeV blazar luminosity density: today

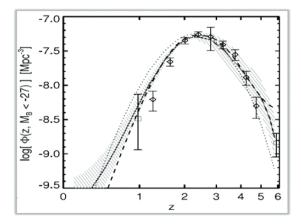

- collect luminosity of all 23 TeV blazars with good spectral measurements
- account for the selection effects (sky coverage, duty cycle, galactic occultation, TeV flux limit)
- TeV blazar luminosity density is a scaled version ($\eta_B \sim 0.2\%$) of that of quasars!

Broderick, Chang, C.P. (2012)

Magnetic field limits from blazars Blazar evolution and *Fermi* counts Extragalactic gamma-ray background

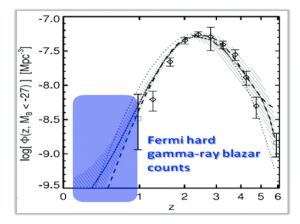
Unified TeV blazar-quasar model

Quasars and TeV blazars are:

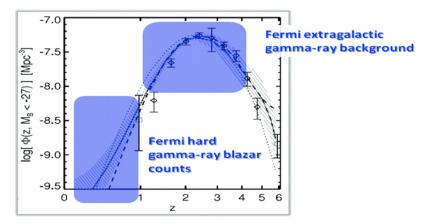

- regulated by the same mechanism
- contemporaneous elements of a single AGN population: TeV-blazar activity does not lag quasar activity
- \rightarrow assume that they trace each other for all redshifts!

Broderick, Chang, C.P. (2012)

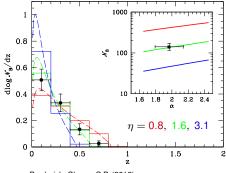
Magnetic field limits from blazars Blazar evolution and *Fermi* counts Extragalactic gamma-ray background


How many TeV blazars are there?

Magnetic field limits from blazars Blazar evolution and *Fermi* counts Extragalactic gamma-ray background


How many TeV blazars are there?

Magnetic field limits from blazars Blazar evolution and *Fermi* counts Extragalactic gamma-ray background

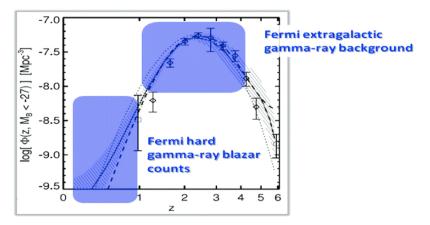

How many TeV blazars are there?

Magnetic field limits from blazars Blazar evolution and *Fermi* counts Extragalactic gamma-ray background

Fermi number count of "TeV blazars"

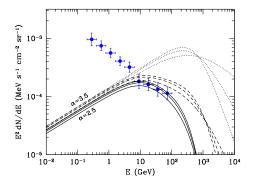
- TeV blazar evolution: model vs. *Fermi* number counts
- colors: different flux (luminosity) limits connecting the *Fermi* and the TeV band:

$$L_{\text{TeV},\min}(z) = \eta L_{\text{Fermi},\min}(z)$$


Broderick, Chang, C.P. (2012)

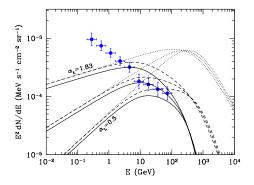
\rightarrow evolving (increasing) blazar population consistent with observed declining evolution (*Fermi* flux limit)!

Magnetic field limits from blazars Blazar evolution and *Fermi* counts Extragalactic gamma-ray background


How many TeV blazars are there at high-z?

Magnetic field limits from blazars Blazar evolution and *Fermi* counts Extragalactic gamma-ray background

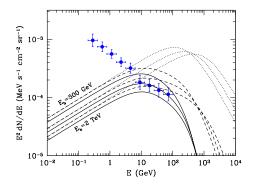
Extragalactic gamma-ray background: varying α


Broderick, Chang, C.P. (2012)

- dotted: unabsorbed EGRB due to TeV blazars
- dashed: absorbed EGRB due to TeV blazars
- solid: absorbed EGRB, after subtracting the resolved TeV blazars (z < 0.25)

Magnetic field limits from blazars Blazar evolution and *Fermi* counts Extragalactic gamma-ray background

Extragalactic gamma-ray background: varying α_L


Broderick, Chang, C.P. (2012)

- dotted: unabsorbed EGRB due to TeV blazars
- dashed: absorbed EGRB due to TeV blazars
- solid: absorbed EGRB, after subtracting the resolved TeV blazars (z < 0.25)

Magnetic field limits from blazars Blazar evolution and *Fermi* counts Extragalactic gamma-ray background

Extragalactic gamma-ray background: varying E_b

Broderick, Chang, C.P. (2012)

- dotted: unabsorbed EGRB due to TeV blazars
- dashed: absorbed EGRB due to TeV blazars
- solid: absorbed EGRB, after subtracting the resolved TeV blazars (z < 0.25)

Conclusions on blazar heating

- explains puzzles in high-energy astrophysics:
 - lack of GeV bumps in blazar spectra without IGM B-fields
 - *unified TeV blazar-quasar model* explains Fermi source counts and extragalactic gamma-ray background

• novel mechanism; dramatically alters thermal history of the IGM:

- uniform and z-dependent preheating
- rate independent of density \rightarrow inverted $T-\rho$ relation
- quantitative self-consistent picture of high-z Lyman- α forest
- significantly modifies late-time structure formation:
 - suppresses late dwarf formation (in accordance with SFHs): "missing satellites", void phenomenon, H I-mass function
 - group/cluster bimodality of core entropy values

Lorentz boosting the pair distribution function

• the beam temperature *T* is defined by the distribution function:

$$f \sim \exp[-(E - v p_{\parallel})/kT]$$
 (1)

(3

E, p_{\parallel} , and *v* are the IGM-frame energy, parallel momentum component, and average beam velocity (*c* = 1)

• the pair-frame pair energies (*E'*) are related to that in the IGM frame (*E*) by the standard Lorentz transformation:

$$E' = \gamma (E - vp) \rightarrow E - vp = E'/\gamma$$
 (2)

where $\gamma = 1/\sqrt{1-\nu^2} \sim 10^6$ (for pairs with $\textit{E} \sim \text{TeV})$

• since the distribution function is a Lorentz scalar (due to the invariance of the phase space volume element), eq. (1) implies that in the pair frame the distribution function is given by

$$f \sim \exp(-E'/\gamma kT) \equiv \exp(-E'/kT') \rightarrow kT \sim kT'/\gamma \sim eV,$$

where $T' = \gamma T$ is the pair temperature in the pair frame