Cosmic Rays in Galaxy Clusters: Simulations and Perspectives

Christoph Pfrommer

Canadian Institute for Theoretical Astrophysics, Canada

May, 9-13 2007 / CIfAR Cosmology and Gravity Programme Meeting, Whistler

Collaborators

Cosmic ray pressure in galaxy clusters Modified X-ray emission and SZ effect Cosmological implications of cosmic rays

- Torsten A. Enßlin, Volker Springel (MPA, Germany)
- Nick Battaglia, Dick Bond, Jon Sievers (CITA)
- Subha Majumdar (TIFR, India)

Thought provoking impulses Exploring complementary windows to cluster cosmology

- Is high-precision cosmology possible using clusters?
 - Non-equilibrium processes such as cosmic ray pressure and turbulence possibly modify thermal X-ray emission and Sunyaev-Zel'dovich effect.
 - Improving cluster self-calibration with a hybrid approach: combining (non-)thermal properties in observation space with Bayesian prior on the functional scaling properties derived from hydrodynamical simulations.

What can we learn from non-thermal cluster emission?

- Estimating the cosmic ray pressure contribution.
- Constructing a 'gold sample' for cosmology using orthogonal information on the dynamical cluster activity.
- Fundamental physics: diffusive shock acceleration, large scale magnetic fields, and turbulence.

イロト 不得 とくほ とくほう

Thought provoking impulses Exploring complementary windows to cluster cosmology

- Is high-precision cosmology possible using clusters?
 - Non-equilibrium processes such as cosmic ray pressure and turbulence possibly modify thermal X-ray emission and Sunyaev-Zel'dovich effect.
 - Improving cluster self-calibration with a hybrid approach: combining (non-)thermal properties in observation space with Bayesian prior on the functional scaling properties derived from hydrodynamical simulations.

What can we learn from non-thermal cluster emission?

- Estimating the cosmic ray pressure contribution.
- Constructing a 'gold sample' for cosmology using orthogonal information on the dynamical cluster activity.
- Fundamental physics: diffusive shock acceleration, large scale magnetic fields, and turbulence.

イロト イポト イヨト イヨト

Radiative simulations – flowchart

イロト イポト イヨト イヨト

Radiative simulations with cosmic ray (CR) physics

CITA-ICAT

Radiative simulations with extended CR physics

Cosmic ray pressure in galaxy clusters Modified X-ray emission and SZ effect Cosmological implications of cosmic rays

Radiative cool core cluster simulation: gas density

Cosmic ray pressure in galaxy clusters Modified X-ray emission and SZ effect Cosmological implications of cosmic rays

Mass weighted temperature

Cosmic ray pressure in galaxy clusters Modified X-ray emission and SZ effect Cosmological implications of cosmic rays

Mach number distribution weighted by ε_{diss}

Cosmic ray pressure in galaxy clusters Modified X-ray emission and SZ effect Cosmological implications of cosmic rays

Mach number distribution weighted by *creation*

Cosmic ray pressure in galaxy clusters Modified X-ray emission and SZ effect Cosmological implications of cosmic rays

Mach number distribution weighted by $\varepsilon_{CR,inj}(q > 30)$

Cosmic ray pressure in galaxy clusters Modified X-ray emission and SZ effect Cosmological implications of cosmic rays

CITA-ICAT

CR pressure P_{CR}

Cosmic ray pressure in galaxy clusters Modified X-ray emission and SZ effect Cosmological implications of cosmic rays

Relative CR pressure P_{CR}/P_{total}

Cosmic ray pressure in galaxy clusters Modified X-ray emission and SZ effect Cosmological implications of cosmic rays

Relative CR pressure P_{CR}/P_{total}

Cosmic ray pressure in galaxy clusters Modified X-ray emission and SZ effect Cosmological implications of cosmic rays

CR electron versus CR proton pressure

Relative pressure of primary CR electrons.

Relative pressure of CR protons.

→ Ξ →

Cosmic ray pressure in galaxy clusters Modified X-ray emission and SZ effect Cosmological implications of cosmic rays

Primary versus secondary CR electrons

Relative pressure of primary CR electrons.

Rel. pressure of *secondary* CR electrons.

Cosmic ray pressure in galaxy clusters Modified X-ray emission and SZ effect Cosmological implications of cosmic rays

Thermal X-ray emission

Cosmic ray pressure in galaxy clusters Modified X-ray emission and SZ effect Cosmological implications of cosmic rays

Difference map of S_X : $S_{X,CR} - S_{X,th}$

scaling relation

Christoph Pfrommer Cosmic Rays in Galaxy Clusters

for cool core clusters

CITA-ICAT

Softer effective adiabatic index of composite gas

Cosmic ray pressure in galaxy clusters Modified X-ray emission and SZ effect Cosmological implications of cosmic rays

ヘロト ヘヨト ヘヨト

Compton y parameter in radiative cluster simulation

Cosmic ray pressure in galaxy clusters Modified X-ray emission and SZ effect Cosmological implications of cosmic rays

Compton y difference map: y_{CR} - y_{th}

large merging cluster, $M_{\rm vir} \simeq 10^{15} M_{\odot}/h$

イロト 不得 トイヨト イヨ

CITA-ICAT

Cosmic ray pressure in galaxy clusters Modified X-ray emission and SZ effect Cosmological implications of cosmic rays

Pressure profiles with and without CRs

Cosmic ray pressure in galaxy clusters Modified X-ray emission and SZ effect Cosmological implications of cosmic rays

CITA-ICA

Modified X-ray scaling relations (with Subha Majumdar)

Degeneracies of the cluster redshift distribution (1)

- The number density of massive clusters is exponentially sensitive to the amplitude of the initial Gaussian fluctuations, whose normalization we usually describe using σ_8 , the *rms* fluctuations of overdensity within spheres of 8 h^{-1} Mpc.
- The cluster redshift distribution dn/dz is increased by a lower effective mass threshold M_{lim} in a survey or by increasing σ₈ respectively Ω_m → degeneracies of cosmological parameters with respect to cluster physics.

イロト イポト イヨト イヨト

Degeneracies of the cluster redshift distribution (2)

Christoph Pfrommer Cosm

Cosmic Rays in Galaxy Clusters

CITA-ICAT

Fisher matrix analysis

Assumed survey details:

- survey area $A = 10^4$ square degrees (1/4 of the sky)
- redshift range: 0 < z < 2
- bolometric X-ray flux limit $F_X = 2.5 \times 10^{-13} \text{ erg s}^{-1} \text{ cm}^{-2}$
- sample size: 25000 clusters

Fisher matrix preliminaries:

- free parameters: 2 parameters of the scaling relations: slope and normalization, Ω_m, Ω_b, n_s, h, σ₈
- priors: flat Universe, WMAP prior on $h = 72 \pm 5$

イロト イポト イヨト イヨト

0.2 44

44.05

44.1

Degeneracy of σ_8 with cosmic ray physics (preliminary)

Christoph Pfrommer Cosmic Rays in Galaxy Clusters

44.2

44.25

44.3

44.15

Log (L)

Hydrostatic mass profiles Influence of turbulence and CR pressure

Relative mass difference $(M_{\text{hydrostatic}} - M_{\text{true}})/M_{\text{true}}$:

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Non-thermal emission from clusters Exploring the memory of structure formation

So far, we were asking how the CR pressure modifies thermal cluster observables such as the X-ray emission and the Sunyaev-Zel'dovich effect of clusters. These processes tell us only very indirectly (if at all) about the history of structure formation. In contrast, non-thermal processes retain their cosmic memory since their particle population is not in equilibrium.

How can we read out this information about non-thermal populations?

- \rightarrow new era of multi-frequency experiments, e.g.:
 - LOFAR, GMRT: interferometric array of radio telescopes at low frequencies ($\nu \simeq (15 240)$ MHz)
 - Astrosat: Indian satellite that images soft and hard X-rays $(E \simeq (0.3 100) \text{ keV})$
 - Glast: international high-energy γ -ray space mission ($E \simeq (0.02 - 300)$ GeV)

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Hadronic cosmic ray proton interaction

Christoph Pfrommer

Cosmic Rays in Galaxy Clusters

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Cosmic rays and radiative processes

Relativistic populations and radiative processes in clusters:

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Abell 2256: giant radio relic & small halo

X-ray (red) & radio (blue, contours)

fractional polarization in color

Clarke & Enßlin (2006)

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Cosmic web: Mach number

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Radio web: primary CRe (1.4 GHz)

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Radio web: primary CRe (150 MHz)

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Radio web: primary CRe (15 MHz)

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Radio web: primary CRe (15 MHz), slower magnetic decline

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Exploring the magnetized radio web (with Battaglia, Sievers, Bond)

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Simulated LOFAR observation (merging cluster at z = 0.02)

Reconstructed 'dirty' LOFAR core map.

Reconstructed 'cleaned' LOFAR map.

→ E → < E →</p>

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Radio relic luminosity function

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Radio halos: secondary CRe

Relativistic populations and radiative processes in clusters:

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Radio halos: secondary CRe (150 MHz)

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Radio relics + halos 150 MHz

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Radio relics + halos: spectral index

Low-frequency radio emission from clusters Window into current and past structure formation

Observational properties of radio synchrotron emission:

- Radio relics: inhomogeneous morphology, peripheral cluster regions, polarized synchrotron emission, flat radio spectrum ($\alpha_{\nu} \simeq 1.1$)
- Radio (mini-) halos: homogeneous spherical morphology (similar to X-ray emission), Faraday depolarized synchrotron emission, steeper radio spectrum ($\alpha_{\nu} \simeq 1.3$)

What this tells us:

- Radio relics: produced by primary accelerated CR electrons at formation shocks → probes current dynamical, non-equilibrium activity of forming structures (shocks and magnetic fields)
- Radio halos: produced by secondary CR electrons in hadronic CR proton interactions → tracing time-integrated non-equilibrium activity, modulated by recent dynamical activities

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Thermal X-ray emission

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

CITA-ICAT

Hadronic γ -ray emission, $E_{\gamma} > 100 \text{ MeV}$

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

CITA-ICAT

Inverse Compton emission, $E_{IC} > 100 \text{ MeV}$

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Inverse Compton emission, $E_{IC} > 10 \text{ keV}$

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

イロト イポト イヨト イヨト

Summary

CR physics modifies the intracluster medium in merging clusters and cooling core regions:

- Galaxy cluster X-ray emission is enhanced up to 40%, systematic effect in cooling core clusters.
- Integrated Sunyaev-Zel'dovich effect remains largely unchanged while the Compton-y profile is more peaked.
- LOFAR/GMRT are expected to see the radio web emission: origin of cosmic magnetic fields.
- Glast should see hadronic γ-ray emission from clusters: measurement of CR protons and origin of radio halos.

 \rightarrow exciting experiments allow a complementary view on structure formation and teach us fundamental physics!

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

イロト イポト イヨト イヨト

Thermal cluster observables (1)

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

→ Ξ → → Ξ

Optical and radio synchrotron cluster observables (1)

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Thermal cluster observables (2)

cool core cluster, $M_{
m vir}\simeq 10^{14}M_{\odot}/h$

cool core cluster, $M_{\rm vir} \simeq 10^{14} M_{\odot}/h$

★ E → ★ E →

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Optical and radio synchrotron cluster observables (2)

cool core cluster, $M_{
m vir}\simeq 10^{14}M_{\odot}/h$

cool core cluster, $M_{\rm vir} \simeq 10^{14} M_{\odot}/h$

2 ×

