Cosmic ray feedback in hydrodynamical simulations of galaxy and structure formation

Christoph Pfrommer

Canadian Institute for Theoretical Astrophysics, Toronto

April, 13 2006 / Workshop 'Dark halos', UBC Vancouver

Outline

Motivation

- Cosmic rays in galaxies
- Violent structure formation
- Gravitational heating by shocks
- 2 Cosmic rays and structure formation shocks
 - Cosmic rays in GADGET
 - Mach number finder
 - Cosmological simulations
- Cosmic rays in galaxy clusters
 - Cluster radio halos
 - CR pressure influences Sunyaev-Zel'dovic effect
 - Generic CR pressure profile

Cosmic rays in galaxies Violent structure formation Gravitational heating by shocks

M51: cosmic ray electron population

Fletcher, Beck, Berkhuijsen und Horellou, in prep.

Cosmic rays in galaxies Violent structure formation Gravitational heating by shocks

Observations of cluster shock waves

1E 0657-56 ("Bullet cluster")

(NASA/SAO/CXC/M.Markevitch et al.)

Abell 3667

(Radio: Austr.TC Array. X-ray: ROSAT/PSPC.)

Cosmic rays in galaxies Violent structure formation Gravitational heating by shocks

Gravitational heating by shocks

The "cosmic web" today. *Left:* the projected gas density in a cosmological simulation. *Right:* gravitationally heated intracluster medium through cosmological shock waves.

イロト イポト イヨト イヨト

Cosmic rays in GADGET Mach number finder Cosmological simulations

Cosmic rays in GADGET- collaboration

The talk is based on the following papers:

- Detecting shock waves in cosmological smoothed particle hydrodynamics simulations,
 Pfrommer, Springel, Enßlin, & Jubelgas
 2006, MNRAS, 367, 113, astro-ph/0603483
- Cosmic ray physics in calculations of cosmological structure formation Enßlin, Pfrommer, Springel, & Jubelgas astro-ph/0603484
- Cosmic ray feedback in hydrodynamical simulations of galaxy formation Jubelgas, Springel, Enßlin, & Pfrommer astro-ph/0603485

イロト イポト イヨト イヨト

Cosmic rays in GADGET Mach number finder Cosmological simulations

Philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as possible

Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

3 1 4 3

Cosmic rays in GADGET Mach number finder Cosmological simulations

Philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as possible

Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

イロト イポト イヨト イヨト

Cosmic rays in GADGET Mach number finder Cosmological simulations

Philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as possible

Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

Cosmic rays in GADGET Mach number finder Cosmological simulations

Philosophy and description

- CRs are coupled to the thermal gas by magnetic fields.
- We assume a single power-law CR spectrum: momentum cutoff *q*, normalization *C*, spectral index α (constant).

 \rightarrow determines CR energy density and pressure uniquely

イロト イポト イヨト イヨト

The CR spectrum can be expressed by three adiabatic invariants, which scale only with the gas density. Non-adiabatic processes are mapped into changes of the adiabatic constants using mass, energy and momentum conservation.

Cosmic rays in GADGET Mach number finder Cosmological simulations

Cosmic rays in GADGET- flowchart

Cosmic rays in GADGET Mach number finder Cosmological simulations

Thermal & CR energy spectra

Kinetic energy per logarithmic momentum interval:

ъ

Cosmic rays in GADGET Mach number finder Cosmological simulations

Radiative cooling

Cooling of primordial gas:

Cooling of cosmic rays:

- 王

Cosmic rays in GADGET Mach number finder Cosmological simulations

Cosmic rays in GADGET- flowchart

Diffusive shock acceleration – Fermi 1 mechanism

Cosmic rays gain energy $\Delta E/E \propto v_1 - v_2$ through bouncing back and forth the shock front. Accounting for the loss probability $\propto v_2$ of particles leaving the shock downstream leads to power-law CR population.

Motivation for the Mach number finder

- cosmological shocks dissipate gravitational energy into thermal gas energy: where and when is the gas heated, and which shocks are mainly responsible for it?
- shock waves are tracers of the large scale structure and contain information about its dynamical history (warm-hot intergalactic medium)
- shocks accelerate cosmic rays through diffusive shock acceleration at structure formation shocks: what are the cosmological implications of such a CR component, and does this influence the cosmic thermal history?
- simulating realistic CR distributions within galaxy clusters provides detailed predictions for the expected radio synchrotron and γ-ray emission

イロト イポト イヨト イヨト

Cosmic rays in GADGET Mach number finder Cosmological simulations

Shock tube (CRs & gas, $\mathcal{M} = 10$): thermodynamics

Cosmic rays in GADGET Mach number finder Cosmological simulations

Shock tube (CRs & gas): Mach number statistics

Cosmic rays in GADGET Mach number finder Cosmological simulations

Shock tube (th. gas): Mach number statistics

Christoph Pfrommer Cosmic ray feedback in hydrodynamical simulations

CITA-ICAT

Cosmic rays in GADGET Mach number finder Cosmological simulations

Cosmological Mach numbers: weighted by ε_{diss}

Cosmic rays in GADGET Mach number finder Cosmological simulations

Cosmological Mach numbers: weighted by ε_{CR}

Cosmic rays in GADGET Mach number finder Cosmological simulations

Cosmological Mach number statistics

- more energy is dissipated in weak shocks internal to collapsed structures than in external strong shocks
- more energy is dissipated at later times
- mean Mach number decreases with time

Cosmic rays in GADGET Mach number finder Cosmological simulations

Cosmological statistics: influence of reionization

- reionization epoch at z_{reion} = 10 suppresses efficiently strong shocks at z < z_{reion} due to jump in sound velocity
- cosmological constant causes structure formation to cease

Cluster radio halos CR pressure influences SZ effect Generic CR pressure profile

Radio halos as window for non-equilibrium processes Exploring complementary methods for studying cluster formation

Each frequency window is sensitive to different processes and cluster properties:

- optical: gravitational lensing of background galaxies, galaxy velocity dispersion measure gravitational mass
- X-ray: thermal plasma emission, $F_X \propto n_{th}^2 \sqrt{T_{th}} \rightarrow$ thermal gas with abundances, cluster potential, substructure
- Sunyaev-Zel'dovich effect: IC upscattering of CMB photons by thermal electrons, F_{SZ} ∝ p_{th} → cluster velocity, turbulence, high-z clusters
- radio synchrotron halos: F_{sy} ∝ ε_Bε_{CRe} → magnetic fields, CR electrons, shock waves
- diffuse γ -ray emission: $F_{\gamma} \propto n_{\text{th}} n_{\text{CRp}} \rightarrow \text{CR protons}$

イロト イポト イヨト イヨト

Cluster radio halos CR pressure influences SZ effect Generic CR pressure profile

Adiabatic cluster simulation: gas density

Cluster radio halos CR pressure influences SZ effect Generic CR pressure profile

Mass weighted temperature

Cluster radio halos CR pressure influences SZ effect Generic CR pressure profile

Mach number distribution weighted by ε_{diss}

Cluster radio halos CR pressure influences SZ effect Generic CR pressure profile

Relative CR pressure P_{CR}/P_{total}

Cluster radio halos CR pressure influences SZ effect Generic CR pressure profile

Radio halos as window for non-equilibrium processes

Coma radio halo, $\nu =$ 1.4 GHz, largest emission diameter \sim 3 Mpc

(2.5 $^\circ$ $\,\times$ 2.0 $^\circ$, credit: Deiss/Effelsberg)

Coma thermal X-ray emission, $(2.7^{\circ} \times 2.5^{\circ}, \text{ credit: ROSAT/MPE/Snowden})$

イロト イポト イヨト イヨト

Models for radio synchrotron halos in clusters

Halo characteristics: smooth unpolarized radio emission at scales of 3 Mpc.

Different CR electron populations:

- Primary accelerated CR electrons: synchrotron/IC cooling times too short to account for extended diffuse emission
- Re-accelerated CR electrons through resonant interaction with turbulent Alfvén waves: possibly too inefficient, no first principle calculations (Jaffe 1977, Schlickeiser 1987, Brunetti 2001)
- Hadronically produced CR electrons in inelastic collisions of CR protons with the ambient gas (Dennison 1980, Vestrad 1982, Miniati 2001, Pfrommer 2004)

Image: A matrix

ヨトイヨト

Cluster radio halos CR pressure influences SZ effect Generic CR pressure profile

Hadronic cosmic ray proton interaction

Christoph Pfrommer

Cosmic ray feedback in hydrodynamical simulations

Cluster radio halos CR pressure influences SZ effect Generic CR pressure profile

Energetically preferred CR pressure profiles

Cluster radio halos CR pressure influences SZ effect Generic CR pressure profile

Compton y parameter in radiative cluster simulation

Cluster radio halos CR pressure influences SZ effect Generic CR pressure profile

Compton y difference map: y_{CR} - y_{th}

Cluster radio halos CR pressure influences SZ effect Generic CR pressure profile

Simulated CBI observation of $y_{CR} - y_{th}$ (with Sievers & Bond)

Cluster radio halos CR pressure influences SZ effect Generic CR pressure profile

Pressure profiles with and without CRs

Cluster radio halos CR pressure influences SZ effect Generic CR pressure profile

Phase-space diagram of radiative cluster simulation

Cluster radio halos CR pressure influences SZ effect Generic CR pressure profile

Preliminary emerging picture

Importance of central CR pressure relative to the gas pressure seems to depend on subtle interplay of the following effects:

- Presence of well developed cool core region
- Violent merger history of the cluster → resulting flat effective spectral index of CRs
- Cluster mass: ratio of CR-to-thermal cooling times changes with the cluster's virial temperature

.

Cluster radio halos CR pressure influences SZ effect Generic CR pressure profile

Non-radiative simulation: entropy profile

CITA-ICAT

Cluster radio halos CR pressure influences SZ effect Generic CR pressure profile

Radiative simulation: entropy profile

Cluster radio halos CR pressure influences SZ effect Generic CR pressure profile

Radiative simulation: Schwazschild criterion

Cluster radio halos CR pressure influences SZ effect Generic CR pressure profile

Generic CR pressure profile

Motivation Cluster radio halos Cosmic rays and structure formation shocks CR pressure influences SZ effect Cosmic rays in galaxy clusters Generic CR pressure profile

Summary

- Understanding non-thermal processes is crucial for using clusters as cosmological probes (high-z scaling relations).
- Radio halos might be of hadronic origin as our simulations suggests → tracer of structure formation
- Dynamical CR feedback influences Sunyaev-Zel'dovic effect
- Outlook
 - Galaxy evolution: CRs might influence energetic feedback, galactic winds, and disk galaxy formation
 - Huge potential and predictive power of cosmological CR simulations/Mach number finder → provides detailed γ-ray/radio emission maps

イロト イポト イヨト イヨト