Cosmic rays in galaxy clusters and cosmological shock waves Going beyond gas physics

Christoph Pfrommer

Canadian Institute for Theoretical Astrophysics, Toronto

Mar. 13 2006 / Colloquium UBC, Vancouver

Outline

- Non-equilibrium processes in clusters
 - Introduction
 - Cluster radio halos
 - Minimum energy condition
- Cosmic rays in GADGET
 - Importance of cosmic ray feedback
 - Philosophy and description
- 3 Cosmological shock waves
 - Observations of cluster shocks
 - Mach number finder
 - Cosmological simulations
 - Cluster simulations

→ Ξ → < Ξ →</p>

Outline

- Non-equilibrium processes in clusters
 - Introduction
 - Cluster radio halos
 - Minimum energy condition
- 2 Cosmic rays in GADGET
 - Importance of cosmic ray feedback
 - Philosophy and description
 - Cosmological shock waves
 - Observations of cluster shocks
 - Mach number finder
 - Cosmological simulations
 - Cluster simulations

→ Ξ → < Ξ →</p>

Outline

- Non-equilibrium processes in clusters
 - Introduction
 - Cluster radio halos
 - Minimum energy condition
- Cosmic rays in GADGET
 - Importance of cosmic ray feedback
 - Philosophy and description
- Osmological shock waves
 - Observations of cluster shocks
 - Mach number finder
 - Cosmological simulations
 - Cluster simulations

Introduction Cluster radio halos Minimum energy condition

Galaxy clusters

Galaxy clusters are dynamically evolving dark matter potential wells:

Introduction Cluster radio halos Minimum energy condition

Radio halos as window for non-equilibrium processes Exploring complementary methods for studying cluster formation

Each frequency window is sensitive to different processes and cluster properties:

- optical: gravitational lensing of background galaxies, galaxy velocity dispersion measure gravitational mass
- X-ray: thermal plasma emission, $F_X \propto n_{th}^2 \sqrt{T_{th}} \rightarrow$ thermal gas with abundances, cluster potential, substructure
- Sunyaev-Zel'dovich effect: IC upscattering of CMB photons by thermal electrons, F_{SZ} ∝ p_{th} → cluster velocity, turbulence, high-z clusters
- radio synchrotron halos: F_{sy} ∝ ε_Bε_{CRe} → magnetic fields, CR electrons, shock waves
- diffuse γ -ray emission: $F_{\gamma} \propto n_{\text{th}} n_{\text{CRp}} \rightarrow \text{CR}$ protons

Introduction Cluster radio halos Minimum energy condition

Radio halos as window for non-equilibrium processes Exploring complementary methods for studying cluster formation

Each frequency window is sensitive to different processes and cluster properties:

- optical: gravitational lensing of background galaxies, galaxy velocity dispersion measure gravitational mass
- X-ray: thermal plasma emission, $F_X \propto n_{th}^2 \sqrt{T_{th}} \rightarrow$ thermal gas with abundances, cluster potential, substructure
- Sunyaev-Zel'dovich effect: IC upscattering of CMB photons by thermal electrons, F_{SZ} ∝ p_{th} → cluster velocity, turbulence, high-z clusters
- radio synchrotron halos: $F_{sy} \propto \varepsilon_B \varepsilon_{CRe} \rightarrow$ magnetic fields, CR electrons, shock waves
- diffuse γ -ray emission: $F_{\gamma} \propto n_{\text{th}} n_{\text{CRp}} \rightarrow \text{CR}$ protons

Introduction Cluster radio halos Minimum energy condition

Radio halos as window for non-equilibrium processes Exploring complementary methods for studying cluster formation

Each frequency window is sensitive to different processes and cluster properties:

- optical: gravitational lensing of background galaxies, galaxy velocity dispersion measure gravitational mass
- X-ray: thermal plasma emission, $F_X \propto n_{th}^2 \sqrt{T_{th}} \rightarrow$ thermal gas with abundances, cluster potential, substructure
- Sunyaev-Zel'dovich effect: IC upscattering of CMB photons by thermal electrons, F_{SZ} ∝ p_{th} → cluster velocity, turbulence, high-z clusters
- radio synchrotron halos: $F_{sy} \propto \varepsilon_B \varepsilon_{CRe} \rightarrow$ magnetic fields, CR electrons, shock waves
- diffuse γ -ray emission: $F_{\gamma} \propto n_{\rm th} n_{\rm CRp} \rightarrow {\rm CR}$ protons

Introduction Cluster radio halos Minimum energy condition

Radio halos as window for non-equilibrium processes Exploring complementary methods for studying cluster formation

Each frequency window is sensitive to different processes and cluster properties:

- optical: gravitational lensing of background galaxies, galaxy velocity dispersion measure gravitational mass
- X-ray: thermal plasma emission, $F_X \propto n_{th}^2 \sqrt{T_{th}} \rightarrow$ thermal gas with abundances, cluster potential, substructure
- Sunyaev-Zel'dovich effect: IC upscattering of CMB photons by thermal electrons, F_{SZ} ∝ p_{th} → cluster velocity, turbulence, high-z clusters
- radio synchrotron halos: F_{sy} ∝ ε_Bε_{CRe} → magnetic fields, CR electrons, shock waves
- diffuse γ -ray emission: $F_{\gamma} \propto n_{\text{th}} n_{\text{CRp}} \rightarrow \text{CR protons}$

Introduction Cluster radio halos Minimum energy condition

Coma cluster: optical emission

C. Pfrommer

Cosmic rays and cosmological shock waves

Introduction Cluster radio halos Minimum energy condition

Coma cluster: infra-red emission

Introduction Cluster radio halos Minimum energy condition

Coma cluster: X-ray emission

Introduction Cluster radio halos Minimum energy condition

Coma cluster: radio synchrotron emission

C. Pfrommer

Cosmic rays and cosmological shock waves

Introduction Cluster radio halos Minimum energy condition

Models for radio synchrotron halos in clusters

Halo characteristics: smooth unpolarized radio emission at scales of 3 Mpc.

Different CR electron populations:

- Primary accelerated CR electrons: synchrotron/IC cooling times too short to account for extended diffuse emission
- Re-accelerated CR electrons through resonant interaction with turbulent Alfvén waves: possibly too inefficient, no first principle calculations (Jaffe 1977, Schlickeiser 1987, Brunetti 2001)
- Hadronically produced CR electrons in inelastic collisions of CR protons with the ambient gas (Dennison 1980, Vestrad 1982, Miniati 2001, Pfrommer 2004)

Introduction Cluster radio halos Minimum energy condition

Hadronic cosmic ray proton interaction

Introduction Cluster radio halos Minimum energy condition

Cosmic rays in clusters of galaxies What do we know about CRs?

- predictions for the CR pressure span between 10% and 50% of the cluster's pressure budget
- escape of cosmic ray protons only possible for energies $E_{\rm CRp} > 2 \times 10^{16} {\rm eV}$
- energy losses (for particles with $E \sim 10 \text{ GeV}$): CRe: synchrotron, inverse Compton: $\tau \sim 10^8 \text{ yr}$ CRp: inelastic collisions, Coulomb losses: $\tau \sim 10^{10} \text{ yr} \sim \text{Hubble time}$

Coma cluster: radio halo, $\nu = 1.4 \text{ GHz}, 2.5^{\circ} \times 2.0^{\circ}$ (Credit: Deiss/Effelsberg)

Introduction Cluster radio halos Minimum energy condition

Cooling core clusters are efficient CRp detectors

ROSAT observation: Perseus galaxy cluster /

イロト イポト イヨト イヨト

Chandra observation: central region of Perseus

C. Pfrommer

Credit: ROSAT/PSPC

Cosmic rays and cosmological shock waves

C. Pfrommer

Cosmic rays and cosmological shock waves

CITA-ICAT

Introduction Cluster radio halos Minimum energy condition

Gamma-ray flux of the Perseus galaxy cluster

IC emission of secondary CRes (B = 0), π^0 -decay induced γ -ray emission:

Introduction Cluster radio halos Minimum energy condition

Upper limits on X_{CRp} using EGRET limits

C. Pfrommer Cosmic rays and cosmological shock waves

CITA-ICAT

Introduction Cluster radio halos Minimum energy condition

Radio halos: Coma and Perseus

Coma radio halo, $\nu = 1.4$ GHz, largest emission diameter ~ 3 Mpc (Credit: Deiss/Effelsberg) Perseus mini-halo, $\nu = 1.4$ GHz, largest emission size ~ 0.5 Mpc (Credit: Pedlar/VLA)

Introduction Cluster radio halos Minimum energy condition

Minimum energy criterion (MEC): the idea

• $\varepsilon_{\rm NT} = \varepsilon_B + \varepsilon_{\rm CRp} + \varepsilon_{\rm CRe}$

 \rightarrow minimum energy criterion: $\frac{\partial \varepsilon_{\text{NT}}}{\partial \varepsilon_{\text{P}}}$

$$\frac{\partial \varepsilon_{\rm NT}}{\partial \varepsilon_B}\Big|_{i\nu} \stackrel{!}{=} 0$$

- classical MEC: $\varepsilon_{CRp} = k_p \varepsilon_{CRe}$
- hadronic MEC: $\varepsilon_{CRp} \propto (\varepsilon_B + \varepsilon_{CMB}) \varepsilon_B^{-(\alpha_{\nu}+1)/2}$

Introduction Cluster radio halos Minimum energy condition

Classical minimum energy criterion

$$X_{CRp}(r) = rac{\varepsilon_{CRp}}{\varepsilon_{th}}(r), \quad X_B(r) = rac{\varepsilon_B}{\varepsilon_{th}}(r)$$

Introduction Cluster radio halos Minimum energy condition

Hadronic minimum energy criterion

$$X_{\text{CRp}}(r) = rac{\varepsilon_{\text{CRp}}}{\varepsilon_{\text{th}}}(r), \quad X_{B}(r) = rac{\varepsilon_{B}}{\varepsilon_{\text{th}}}(r)$$

Cosmic ray feedback Philosophy and description

Cosmic rays in GADGET (EnBlin, Jubelgas, Pfrommer, Springel)

A galactic outflow seen at high redshift. Left: the projected gas density around some of the first star forming galaxies. Right: generated bubbles of hot gas, as seen in the temperature map (Springel & Hernquist 2002).

イロト イヨト イヨト イ

Cosmic ray feedback Philosophy and description

Potential effects of cosmic ray feedback Mostly speculations so far

• Feedback on galactic scales:

- Regulation of star formation efficiency due to extra CR pressure.
- Driving Galactic outflows due to buoyant rise of CRs in star forming regions.
- radiative cooling losses of galaxies altered by different CR cooling times → gas flow in halos might be affected.

• Feedback on larger scales:

- Changing the total baryonic fraction that ends up in collapsed structures due to effects of different CR cooling times and equation of state.
- CRs might change the absorption properties at high redshift.

Cosmic ray feedback Philosophy and description

Potential effects of cosmic ray feedback Mostly speculations so far

- Feedback on galactic scales:
 - Regulation of star formation efficiency due to extra CR pressure.
 - Driving Galactic outflows due to buoyant rise of CRs in star forming regions.
 - radiative cooling losses of galaxies altered by different CR cooling times → gas flow in halos might be affected.
- Feedback on larger scales:
 - Changing the total baryonic fraction that ends up in collapsed structures due to effects of different CR cooling times and equation of state.
 - CRs might change the absorption properties at high redshift.

Cosmic ray feedback Philosophy and description

Philosophy and description

Our model describes the CR physics by three adiabatic invariants

- CRs are coupled to the thermal gas by magnetic fields.
- We assume a single power-law CR spectrum: momentum cutoff *q*, normalization *C*, spectral index α (constant).

 \rightarrow determines CR energy density and

pressure

イロト イポト イヨト イヨト

In adiabatic processes, q and C scale only with the density. Non-adiabatic processes are mapped into changes of the adiabatic constants q_0 and C_0 .

Cosmic ray feedback Philosophy and description

Cosmic rays in GADGET- flowchart

Diffusive shock acceleration – Fermi 1 mechanism

Cosmic rays gain energy $\Delta E/E \propto v_1 - v_2$ through bouncing back and forth the shock front. Accounting for the loss probability $\propto v_2$ of particles leaving the shock downstream leads to power-law CR population.

Observations Mach number finder Cosmological simulations Cluster simulations

Observations of cluster shock waves

1E 0657-56 ("Bullet cluster")

(NASA/SAO/CXC/M.Markevitch et al.)

Abell 3667

(Radio: Austr.TC Array. X-ray: ROSAT/PSPC.)

Observations Mach number finder Cosmological simulations Cluster simulations

Applications for a shock finder in SPH simulations

- cosmological shocks dissipate gravitational energy into thermal gas energy
- shock waves are tracers of the large scale structure and contain information about its dynamical history (warm-hot intergalactic medium)
- shocks accelerate energetic particles (cosmic rays) through diffusive shock acceleration at structure formation shocks
- cosmic ray injection by supernova remnants (when combined with radiative dissipation and star formation)
- shock-induced star formation in the interstellar medium

Observations Mach number finder Cosmological simulations Cluster simulations

Idea of the Mach number finder

- SPH shock is broadened to a scale of the order of the smoothing length *h*, i.e. *f_hh*, and *f_h* ~ 2
- approximate instantaneous particle velocity by pre-shock velocity (denoted by v₁ = M₁c₁)

Using the entropy conserving formalism of Springel & Hernquist 2002 ($A(s) = P\rho^{-\gamma}$ is the entropic function):

$$\frac{A_2}{A_1} = \frac{A_1 + dA_1}{A_1} = 1 + \frac{f_h h}{\mathcal{M}_1 c_1 A_1} \frac{dA_1}{dt} = \frac{P_2}{P_1} \left(\frac{\rho_1}{\rho_2}\right)^{\gamma}$$

$$\frac{\rho_2}{\rho_1} = \frac{(\gamma + 1)\mathcal{M}_1^2}{(\gamma - 1)\mathcal{M}_1^2 + 2}$$

$$\frac{P_2}{P_1} = \frac{2\gamma \mathcal{M}_1^2 - (\gamma - 1)}{\gamma + 1}$$

Observations Mach number finder Cosmological simulations Cluster simulations

Complications of the numerical implementation

- Broad Mach number distributions $f(\mathcal{M}) = \frac{du_{th}}{dt d \log \mathcal{M}}$ because particle quantities within the (broadened) shock front do not correspond to those of the pre-shock regime. Solution: introduce decay time $\Delta t_{dec} = f_h h/(\mathcal{M}_1 c)$, meanwhile the Mach number is set to the maximum (only allowing for its rise in the presence of multiple shocks).
- Weak shocks imply large values of Δt_{dec}: Solution: Δt_{dec} = min[t_hh/(M₁c), Δt_{max}]
- Strong shocks with M > 5 are slightly underestimated because there is no universal shock length.
 Solution: recalibrate strong shocks!

Observations Mach number finder Cosmological simulations Cluster simulations

Shock tube ($\mathcal{M} = 10$): thermodynamics

Observations Mach number finder Cosmological simulations Cluster simulations

Shock tube: Mach number statistics

Observations Mach number finder Cosmological simulations Cluster simulations

Shock tube (CRs & gas, $\mathcal{M} = 10$): thermodynamics

Observations Mach number finder Cosmological simulations Cluster simulations

Caninary

Shock tube (CRs & gas): Mach number statistics

Observations Mach number finder Cosmological simulations Cluster simulations

Summary

Cosmological Mach numbers: weighted by *E*diss

Observations Mach number finder Cosmological simulations Cluster simulations

Cosmological Mach numbers: weighted by ε_{CR}

Observations Mach number finder Cosmological simulations Cluster simulations

Cosmological statistics: resolution study

C. Pfrommer

Cosmic rays and cosmological shock waves

Observations Mach number finder Cosmological simulations Cluster simulations

Cosmological statistics: influence of reionization

C. Pfrommer

Cosmic rays and cosmological shock waves

Observations Mach number finder Cosmological simulations Cluster simulations

Adiabatic cluster simulation: gas density

Observations Mach number finder Cosmological simulations Cluster simulations

Mass weighted temperature

Observations Mach number finder Cosmological simulations Cluster simulations

Mach number distribution weighted by ε_{diss}

Observations Mach number finder Cosmological simulations Cluster simulations

Relative CR pressure P_{CR}/P_{total}

Observations Mach number finder Cosmological simulations Cluster simulations

Equation of state for CRs

C. Pfrommer Cos

Cosmic rays and cosmological shock waves

Summary

- Understanding non-thermal processes is crucial for using clusters as cosmological probes (high-*z* scaling relations).
- Radio halos might be of hadronic origin as our simulations suggests.
- Huge potential and predictive power of cosmological CR simulations/Mach number finder → provides detailed γ-ray/radio emission maps
- Outlook
 - Galaxy evolution: influence on energetic feedback, star formation, and galactic winds
 - Exploring the CR influence on the absorption properties at high redshift.

Summary

- Understanding non-thermal processes is crucial for using clusters as cosmological probes (high-*z* scaling relations).
- Radio halos might be of hadronic origin as our simulations suggests.
- Huge potential and predictive power of cosmological CR simulations/Mach number finder → provides detailed γ-ray/radio emission maps
- Outlook
 - Galaxy evolution: influence on energetic feedback, star formation, and galactic winds
 - Exploring the CR influence on the absorption properties at high redshift.

Summary

- Understanding non-thermal processes is crucial for using clusters as cosmological probes (high-*z* scaling relations).
- Radio halos might be of hadronic origin as our simulations suggests.
- Huge potential and predictive power of cosmological CR simulations/Mach number finder → provides detailed γ-ray/radio emission maps
- Outlook
 - Galaxy evolution: influence on energetic feedback, star formation, and galactic winds
 - Exploring the CR influence on the absorption properties at high redshift.

Summary

- Understanding non-thermal processes is crucial for using clusters as cosmological probes (high-*z* scaling relations).
- Radio halos might be of hadronic origin as our simulations suggests.
- Huge potential and predictive power of cosmological CR simulations/Mach number finder → provides detailed γ-ray/radio emission maps
- Outlook
 - Galaxy evolution: influence on energetic feedback, star formation, and galactic winds
 - Exploring the CR influence on the absorption properties at high redshift.

