Galaxy Clusters as Laboratories for Astroparticle Physics

Christoph Pfrommer¹

in collaboration with

Anders Pinzke, Lars Bergstrom, Laura van den Aarssen, Torsten Bringmann

¹Heidelberg Institute for Theoretical Studies, Germany

Mar 24, 2013 / SnowCLUSTER 2013

Outline

Dark matter searches

- Models
- Sources
- Boost factors
- 2 DM constraints from γ rays
 - Spectra
 - Constraints
 - Conclusions

3 ACDM small-scale problems

- Problems
- Solutions
- Our Model

Models Sources Boost factors

Outline

Dark matter searches

- Models
- Sources
- Boost factors
- 2) DM constraints from γ rays
 - Spectra
 - Constraints
 - Conclusions
- 3 ACDM small-scale problems
 - Problems
 - Solutions
 - Our Model

Models Sources Boost factors

Searching for dark matter (DM)

correct relic density \rightarrow DM annihilation in the Early Universe

 $\begin{array}{c} \label{eq:Dark matter searches} \\ \mbox{DM constraints from } \gamma \mbox{ rays} \\ \mbox{ACDM small-scale problems} \end{array}$

Models Sources Boost factor

1. "Standard" supersymmetric DM

consider benchmark models of supersymmetric DM

Models Sources Boost factor

2. DM with Yukawa-type interactions

- heavy DM interacts through light force carrier ϕ
- repeated exchange of ϕ \rightarrow Sommerfeld effect
- multiply cross-section by enhancement factor S

Models Sources Boost factor

2. DM with Yukawa-type interactions

- heavy DM interacts through light force carrier ϕ
- repeated exchange of ϕ \rightarrow Sommerfeld effect
- multiply cross-section by enhancement factor S
- near bound state resonances expected:
 - off resonance: ${m S} \propto v^{-1}$
 - on resonance: ${m S} \propto v^{-2}$

Models Sources Boost factor

2. DM with Yukawa-type interactions

- heavy DM interacts through light force carrier ϕ
- repeated exchange of ϕ \rightarrow Sommerfeld effect
- multiply cross-section by enhancement factor S
- near bound state resonances expected:
 - off resonance: ${\it S} \propto v^{-1}$
 - on resonance: ${\it S} \propto v^{-2}$
- for m_φ ≤ 100 MeV, φ can only decay into leptons (e, μ)
 → leptophilic DM

Models Sources Boost factors

Diagrams of DM with Yukawa-type interactions

annihilation

self-scattering

scattering

Models Sources Boost factors

Thermal history of WIMPs

chemical decoupling:

- annihilations cease at $x = m_{\chi}/T \sim 25$ (rate $\propto n_{\chi}n_{\chi}$)
- "freeze out" of comoving number density
- sets relic abundance

3

Models Sources Boost factors

Thermal history of WIMPs

chemical decoupling:

- annihilations cease at $x = m_{\chi}/T \sim 25$ (rate $\propto n_{\chi}n_{\chi}$)
- "freeze out" of comoving number density
- sets relic abundance

kinetic decoupling:

- scattering off standard model particles in thermal heat bath
- ceases at $x \gg$ 25 (rate $\propto n_{\chi} n_{\rm SM}$)
- WIMPs cool down faster
- sets cutoff mass for smallest subhalos, M_{min}

Models Sources Boost factors

Indirect DM searches: sources

Christoph Pfrommer Astroparticle Physics in Galaxy Clusters

イロト イポト イヨト イヨト

Models Sources Boost factors

DM searches in clusters vs. dwarfs

Galaxy clusters:

Dwarf galaxies:

- combined limits for dwarf galaxies ~ 20 times more constraining
- is this really true? → consider substructure!

Models Sources Boost factors

Enhancement from DM substructures

Constant offset in the luminosity from substructures between different mass resolutions in the simulation (M_{res}).

Norm $\propto M_{res}^{-0.226}$

Extrapolate to the minimal mass of dark matter halos (M_{min}) that can form.

The cold dark matter scenario suggests $M_{min} \sim 10^6 M_{\odot}$.

Hofmann, Schwarz and Stöcker, 2008 Green, Hofmann and Schwarz, 2005

 $L_{\rm sub}(<\mathbf{r}) \propto (M_{200} / M_{\rm res})^{0.226}$

イロト イポト イヨト イヨト

Models Sources Boost factors

Galaxy clusters vs. dwarf galaxies

• DM annihilation flux of smooth (unresolved) halo:

$$F \propto \int \mathrm{d} \, V rac{
ho^2}{D^2} \sim f(c) \, rac{M}{D^2}$$

Models Sources Boost factors

Galaxy clusters vs. dwarf galaxies

• DM annihilation flux of smooth (unresolved) halo:

$$F \propto \int \mathrm{d} \, V rac{
ho^2}{D^2} \sim f(c) \, rac{M}{D^2}$$

 \rightarrow smooth component of best dwarf and cluster targets are equally bright!

 $\begin{array}{c} \mbox{Dark matter searches}\\ \mbox{DM constraints from } \gamma \mbox{ rays}\\ \mbox{ACDM small-scale problems} \end{array}$

Models Sources Boost factors

Galaxy clusters vs. dwarf galaxies

• DM annihilation flux of smooth (unresolved) halo:

$${\sf F} \propto \int {\sf d} \, {\sf V} rac{
ho^2}{D^2} \sim f({m c}) \, rac{M}{D^2}$$

 \rightarrow smooth component of best dwarf and cluster targets are equally bright!

- DM substructure is less concentrated compared to the smooth halo (dynamical friction, tidal heating and disruption): the DM luminosity is dominated by substructure at the virial radius, *if* present!
 - \rightarrow these regions are tidally stripped in dwarf galaxies
 - \rightarrow in cluster, subhalos enhance DM luminosity by up to 1000

(e.g., Pinzke, C.P., Bergström 2011; Gao et al. 2011)

→ Ξ → → Ξ

Models Sources Boost factors

Spatial DM distribution

- form of smooth density profile only important for central region, majority of smooth flux accumulates around r ~ r_s/3
- emission from substructures dominated by outer regions
 → spatially extended
- large boost in clusters (~ 1000); smaller boost in dwarf satellites (~ 20) → much smaller if outskirts are tidally stripped

Models Sources Boost factors

DM searches in clusters vs. dwarfs

Clusters with substructures:

Dwarf galaxies:

Huang et al. 2011 (see also Ando & Nagai 2012)

Ackermann et al. (Fermi-LAT) 2011

 galaxy clusters ~ 10 times more constraining than dwarf satellites when accounting for substructures!

Spectra Constraints Conclusions

Outline

- Dark matter searches
 - Models
 - Sources
 - Boost factors
- 2 DM constraints from γ rays
 - Spectra
 - Constraints
 - Conclusions
- 3 ACDM small-scale problems
 - Problems
 - Solutions
 - Our Model

< 🗇 ▶

Spectra Constraints Conclusions

DM-induced gamma rays: leptophilic models

Annihilation rate in these models enhanced by **Sommerfeld effect** as well as **DM substructures**.

Gamma-ray emission components:

Final state radiation

• IC on background radiation fields (CMB, starlight and dust)

Spectra Constraints Conclusions

DM-induced gamma rays: SUSY benchmark models

Representation of high mass (~1 TeV) DM models with high gamma-ray emission.

Luminosity **boosted by substructures** in the smooth DM halo.

Gamma-ray emission components:

- Annihilating neutralinos emitting continuum emission
- Final state radiation
- IC on background radiation fields (CMB, starlight and dust)

★ E → ★ E →

Spectra Constraints Conclusions

Gamma-ray spectrum: benchmark DM model vs. CRs

Spectra Constraints Conclusions

Comparing clusters and emission processes

Pinzke, C.P., Bergström 2011

- Fornax: comparably high DM-induced gamma-ray flux and low CR-induced emission → tight limits on DM properties
- Coma: CR-induced emission soon in reach for Fermi

Spectra Constraints Conclusions

DM flux predictions vs. observations

Emission from leptophilic models in most clusters detectable with Fermi-LAT after 18 months of operation.

Supersymmetric DM models will start being probed in coming years. Brightest clusters: Fornax, Ophiuchus, M49, Centaurus (and Virgo).

Spectra Constraints Conclusions

Constraining boost factors (leptophilic models)

Spectra Constraints Conclusions

Constraining boost factors (leptophilic models)

 Fornax and M49 constrain the saturated boost from Sommerfeld enhancement (SFE) to < 5

Spectra Constraints Conclusions

Constraining boost factors (leptophilic models)

• Alternatively, if SFE is realized in Nature, this would limit the substructure mass to $M_{\text{lim}} > 10^4 M_{\odot}$ – a challenge for structure formation and most particle physics models (van den Aarssen et al. 2012)

Conclusions on dark matter searches in clusters

Galaxy clusters are competitive sources for constraining dark matter:

- cluster luminosity boosted by ~ 1000 (for $M_{min} \simeq 10^{-6}\,M_{\odot})$
- flat brightness profiles and spatially extended \rightarrow challenging for IACTs, better probed by Fermi-LAT

Conclusions on dark matter searches in clusters

Galaxy clusters are competitive sources for constraining dark matter:

- cluster luminosity boosted by ~ 1000 (for $\textit{M}_{min} \simeq 10^{-6}\, M_{\odot})$
- flat brightness profiles and spatially extended \rightarrow challenging for IACTs, better probed by Fermi-LAT
- Leptophilic DM models:
 - Fermi-LAT data constrains the Sommerfeld enhancement to < 5
 - if DM interpretation of lepton excess seen by PAMELA/Fermi is correct, then smallest subhalos have M > 10⁴ M_☉

Conclusions on dark matter searches in clusters

Galaxy clusters are competitive sources for constraining dark matter:

- cluster luminosity boosted by ~ 1000 (for $\textit{M}_{min} \simeq 10^{-6}\, M_{\odot})$
- flat brightness profiles and spatially extended \rightarrow challenging for IACTs, better probed by Fermi-LAT

Leptophilic DM models:

- Fermi-LAT data constrains the Sommerfeld enhancement to < 5
- if DM interpretation of lepton excess seen by PAMELA/Fermi is correct, then smallest subhalos have $M > 10^4 M_{\odot}$

SUSY benchmark models:

• accounting for substructure boost allows to constrain interesting DM parameter space ($\langle \sigma v \rangle \lesssim 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$, $m_{\chi} \gtrsim 100 \text{ GeV}$)

(4回) (1日) (日)

 $\begin{array}{c|c} \text{Dark matter searches} & \text{Pro} \\ \text{DM constraints from } \gamma \text{ rays} & \text{Soli} \\ \text{ACDM small-scale problems} & \text{Our} \end{array}$

Problems Solutions Our Model

Outline

- Dark matter searches
 - Models
 - Sources
 - Boost factors
- 2 DM constraints from γ rays
 - Spectra
 - Constraints
 - Conclusions

ACDM small-scale problems

- Problems
- Solutions
- Our Model

★ Ξ > ★ Ξ >

Problems Solutions Our Model

∧CDM small-scale problems

1. Missing satellites?

Moore et al. 1999

→ many more satellites in simulations of MWsized galaxies than observed

Problems Solutions Our Model

∧CDM small-scale problems

1. Missing satellites?

2. Cusps or cores?

Problems

∧CDM small-scale problems

1. Missing satellites?

2. Cusps or cores?

Moore et al. 1999

 \rightarrow many more satellites in simulations of MWsized galaxies than observed

 \rightarrow cuspy inner density profiles predicted by simulations not found in observations

3. Too big to fail?

HITS

→ most massive subhalos in simulations too dense to host observed brightest dwarf satellites

< 🗇 >

Blok et al. 2001

Problems Solutions Our Model

Solutions?

many possibilities, no consensus reached yet:

astrophysical solutions:

increased gas entropy, suppress cooling efficiency, SN feedback, large velocity anisotropy, other baryonic feedback, increased stochasticity of galaxy formation, small MW mass,...

• dark matter solutions:

warm DM, interacting DM, DM from late decays, large annihilation rates, condensates, ...

• all have shortcomings and/or solve at most 2 problems at the time!

・ 同 ト ・ ヨ ト ・ ヨ ト

Problems Solutions Our Model

Solutions?

velocity-dependent self-interacting dark matter:

- scattering cross-section for Yukawa potential Khrapak et al. (2003) $\sigma_{\chi\bar{\chi}} = \text{const.}$ unnatural from particle physics viewpoint!
- elastic DM self-scattering is completely analogous to screened Coulomb scattering in a plasma

Problems Solutions Our Model

Solutions?

velocity-dependent self-interacting dark matter:

- scattering cross-section for Yukawa potential Khrapak et al. (2003) $\sigma_{\chi\bar{\chi}} = \text{const.}$ unnatural from particle physics viewpoint!
- elastic DM self-scattering is completely analogous to screened Coulomb scattering in a plasma
- cored profiles possible without violating astrophysical constraints
 Feng et al. (2010), Loeb & Weiner (2011)
- N-body simulations: "too big to fail" problem avoided
 Vogelsberger et al. (2012)
- what about missing satellites?

Our model

van den Aarssen, Bringmann, C.P. (2012)

 assume light vector mediator coupling to dark matter and neutrinos:

$$\mathcal{L}_{\mathrm{int}} \supset -g_{\chi} \bar{\chi} \not\!\!\!/ \chi - g_{\nu} \bar{\nu} \not\!\!/
u$$

annihilation

→ relic density → indirect 4ν detection signal from galactic center(?) self-scattering → changes inner density and velocity profiles of dwarf galaxies scattering \rightarrow large M_{\min}

Problems Solutions Our Model

"Cusp vs. core" and "too big to fail" problems

demand correct relic density

 → unique relation between (v_{max}, σ_{max}) and (m_x, m_V)

Christoph Pfrommer Astroparticle Physics in Galaxy Clusters

Problems Solutions Our Model

DM scattering off standard model particles

- free-streaming of WIMPs after kinetic decoupling creates cutoff in power spectrum
- acoustic oscillations leads to similar cutoff
- cutoff scale is set by size of horizon at KD: late KD \rightarrow high M_{min}
- $M_{\min} = \max(M_{fs}, M_{ao})$: only objects with $M \ge M_{\min}$ form

Problems Solutions Our Model

DM scattering off standard model particles

- free-streaming of WIMPs after kinetic decoupling creates cutoff in power spectrum
- acoustic oscillations leads to similar cutoff
- cutoff scale is set by size of horizon at KD: late KD \rightarrow high M_{min}
- $M_{\min} = \max(M_{fs}, M_{ao})$: only objects with $M \ge M_{\min}$ form

Problems Solutions Our Model

"Missing satellites" problem

• now compute *M*_{min} from kinetic decoupling temperature ...

 in this simple phenomenological model, it is possible to simultaneously solve all small-scale problems of ACDM!

Problems Solutions Our Model

Cored central density profiles of clusters

 velocity-dependent DM self-scattering cores out central density slopes in clusters with rate

$$\Gamma \sim \frac{\rho}{m_{\chi}} \left< \sigma_{\chi \bar{\chi}} \upsilon \right> \sim H$$

• ellipticals/clusters, $f_s = 10 - 100$:

$$\Gamma \sim \frac{f_{s}\rho}{m_{\chi}} \, \frac{\langle \sigma_{\chi\bar{\chi}} \upsilon \rangle|_{\max}}{f_{s}}$$

Problems Solutions Our Model

Cored central density profiles of clusters

 velocity-dependent DM self-scattering cores out central density slopes in clusters with rate

• need simulations to understand interplay of hierarchical evolution and determination of cluster- r_{core} : merging history \rightarrow scatter

Problems Solutions Our Model

Conclusions on small-scale problems of ACDM

small-scale problems of ACDM can be solved by a DM model with:

velocity-dependent self-interactions mediated by (sub-)MeV vector:

 \rightarrow transforms cusps to cores and solves "too big to fail" problem

- much later kinetic decoupling than in standard case follows naturally for vector mediator coupling to neutrinos:

 — potentially solves "missing satellites" problem
- predicts cores in clusters on scales O(1 10 kpc)
- \rightarrow need further model building and simulations to confirm

→ E → < E →</p>

Problems Solutions Our Model

Literature for the talk

Dark matter constraints from clusters:

- Pinzke, Pfrommer, Bergström, Prospects of detecting gamma-ray emission from galaxy clusters: cosmic rays and dark matter annihilations, 2011, Phys. Rev. D 84, 123509.
- Pinzke, Pfrommer, Bergström, Gamma-rays from dark matter annihilations strongly constrain the substructure in halos, 2009, Phys. Rev. Lett., 103, 181302.

Small-scale problems of ACDM:

 van den Aarssen, Bringmann, Pfrommer, Dark matter with long-range interactions as a solution to all small-scale problems of ΛCDM cosmology? 2012, Phys. Rev. Lett. 109, 231301.

Problems Solutions Our Model

Additional slides

 Dark matter searches
 Pro

 DM constraints from γ rays
 Sol

 ACDM small-scale problems
 Out

Solutions

Interplay between chemical and kinetic decoupling

