Cosmic rays in clusters of galaxies Exploring a different window to clusters

C. Pfrommer¹ T.A. Enßlin²

¹Canadian Institute for Theoretical Astrophysics, Toronto

²Max-Planck-Institute for Astrophysics, Garching

Feb. 6 2006 / South Ontario Cluster Meeting

< 🗇 🕨

< ∃⇒

Outline

Introduction and motivation

- Cosmic rays in galaxies and clusters
- Cosmological implications
- Hadronic cosmic ray proton interaction

2 Cosmic rays in nearby clusters of galaxies

- γ-ray emission
- Cluster radio halos
- Minimum energy condition

< ∃⇒

Outline

Introduction and motivation

- Cosmic rays in galaxies and clusters
- Cosmological implications
- Hadronic cosmic ray proton interaction

Cosmic rays in nearby clusters of galaxies

- γ-ray emission
- Cluster radio halos
- Minimum energy condition

Cosmic rays in galaxies and clusters Cosmological implications Hadronic cosmic ray proton interaction

Galactic cosmic rays

Galactic cosmic rays are dynamically important:

- the pressure contained in cosmic ray protons and magnetic fields each contributes at least as much pressure as the thermal gas
- escape time of cosmic rays from the galactic disc $\sim 10^7$ years (radioactive clocks)
- energy losses:

CRe: synchrotron, inverse Compton, Coulomb CRp: inelastic collisions, Coulomb

Cosmic rays in galaxies and clusters Cosmological implications Hadronic cosmic ray proton interaction

Cosmic rays in clusters of galaxies

- predictions for the CR pressure span between 10% and 50% of the cluster's pressure budget
- escape of cosmic ray protons only possible for energies $E_{\rm CRp} > 2 \times 10^{16} \, {\rm eV}$
- energy losses (for particles with $E \sim 10 \text{ GeV}$): CRe: synchrotron, inverse Compton: $\tau \sim 10^8 \text{ yr}$ CRp: inelastic collisions, Coulomb losses: $\tau \sim 10^{10} \text{ yr} \sim \text{Hubble time}$

Coma cluster: radio halo,

u = 1.4 GHz, 2.5 $^{\circ}$ imes 2.0 $^{\circ}$

イロト イポト イヨト イヨト

(Credit: Deiss/Effelsberg)

Cosmic rays in galaxies and clusters Cosmological implications Hadronic cosmic ray proton interaction

Cosmological implications

- cosmic ray related observables: complementary information of the clusters dynamical state
- cosmic rays provide an additional pressure component:
 → modifications of the hydrostatic mass estimates
- the equation of state of cosmic rays is 'softer' than the thermal component ($\gamma_{CRp} \sim \frac{4}{3}$):
 - \rightarrow effects on the baryonic halo profile
 - \rightarrow modification of the ICM evolution (entropy distribution)
- the cosmic ray energy reservoir is cooling differently than the thermal:
 - \rightarrow influence on energetic feedback and star formation

Cosmic rays in galaxies and clusters Cosmological implications Hadronic cosmic ray proton interaction

Hadronic cosmic ray proton interaction

Cosmic rays in galaxies and clusters Cosmological implications Hadronic cosmic ray proton interaction

Gamma-ray source function

- CRp population: $f_{\rm CRp} \propto p^{-\alpha}$
- π⁰-decay induced γ-ray source function q_γ:

$$q_{\gamma} \propto \left[\left(\frac{2 E_{\gamma}}{m_{\pi} c^2} \right)^{\delta} + \left(\frac{2 E_{\gamma}}{m_{\pi} c^2} \right)^{-\delta} \right]^{-\alpha/\delta}$$

 below: relative deviation of our analytic approach to simulated γ-ray spectra

< ∃⇒

γ-ray emission Cluster radio halos Minimum energy condition

Cooling core clusters are efficient CRp detectors

ROSAT observation: Perseus galaxy cluster /

イロト イポト イヨト イヨト

Chandra observation: central region of Perseus

C. Pfrommer

Credit: ROSAT/PSPC

Cosmic rays in clusters of galaxies

C. Pfrommer Cosmic rays in clusters of galaxies

γ-ray emission Cluster radio halos Minimum energy condition

Gamma-ray flux of the Perseus galaxy cluster IC emission of secondary CRes (B = 0), π^0 -decay induced γ -ray emission:

 γ -ray emission Cluster radio halos Minimum energy condition

Upper limits on X_{CRp} using EGRET limits

э

 γ -ray emission Cluster radio halos Minimum energy condition

Expected limits on X_{CRp} using Čerenkov telescopes

Sensitivity: $\mathcal{F}_{\gamma, \exp}(E > E_{thr}) = 10^{-12} \, \gamma \, cm^{-2} \, s^{-1} \, (E_{thr}/100 \, GeV)^{1-\alpha}$

 γ -ray emission Cluster radio halos Minimum energy condition

HEGRA detection of γ -rays from M 87

HEGRA - M87: TeV CoG position

Image courtesy of NRAO/AUI and Owen et al.

What is the origin of the M 87 γ -ray emission?

- processed radiation of the relativistic outflow (jet):
 e.g. IC up-scattering of CMB photons by CRes (jet), SSC scenario (Bai & Lee 2001)
- dark matter annihilation or decay processes

(Baltz et al. 2000)

• Hadronically originating γ -rays:

assuming a CRp power law distribution and a model for the CRp spatial distribution

 \rightarrow measurement of the CRp population of the ICM/ISM of M87! (Pfrommer & Enßlin 2003)

・ロト ・回ト ・ヨト ・ヨト

γ-ray emission Cluster radio halos Minimum energy condition

Gamma-ray flux profile of M 87 (Virgo)

top:

- modeled γ-ray surface flux profile
- normalized to the HEGRA flux (> 730 GeV) within the two innermost data points

bottom:

 comparison of detected to simulated γ-ray flux profiles which are convolved with two different widths of the PSF

 γ -ray emission Cluster radio halos Minimum energy condition

Radio halos: Coma and Perseus

Coma radio halo, $\nu = 1.4$ GHz, largest emission diameter ~ 3 Mpc (Credit: Deiss/Effelsberg) Perseus mini-halo, $\nu = 1.4$ GHz, largest emission size ~ 0.5 Mpc (Credit: Pedlar/VLA)

イロン イロン イヨン イヨン

Models for radio synchrotron halos in clusters

Halo characteristics: smooth unpolarized radio emission at scales of 3 Mpc.

Different CR electron populations:

- Primary accelerated CR electrons: synchrotron/IC cooling times too short to account for extended diffuse emission
- Re-accelerated CR electrons through resonant interaction with turbulent Alfvén waves: possibly too inefficient, no first principle calculations (Jaffe 1977, Schlickeiser 1987, Brunetti 2001)
- Hadronically produced CR electrons in inelastic collisions of CR protons with the ambient gas (Dennison 1980, Vestrad 1982, Miniati 2001, Pfrommer 2004)

(< ∃) < ∃)</p>

 γ -ray emission Cluster radio halos Minimum energy condition

Minimum energy criterion (MEC): the idea

•
$$\varepsilon_{\text{NT}} = \varepsilon_B + \varepsilon_{\text{CRp}} + \varepsilon_{\text{CRe}}$$

 \rightarrow minimum energy criterion: $\frac{\partial \varepsilon_{\text{NT}}}{\partial \varepsilon_B}\Big|_{j_{\nu}} \stackrel{!}{=} 0$
• classical MEC: $\varepsilon_{\text{CRp}} = k_p \varepsilon_{\text{CRe}}$
• hadronic MEC: $\varepsilon_{\text{CRp}} \propto (\varepsilon_B + \varepsilon_{\text{CMB}}) \varepsilon_B^{-(\alpha_{\nu}+1)/2}$

Introduction and motivation Cosmic rays in nearby clusters of galaxies Summary Minimum energy condition

Classical minimum energy criterion

э

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction and motivation Cosmic rays in nearby clusters of galaxies Summary Minimum energy condition

Hadronic minimum energy criterion

 $B_{\rm Coma}(0) = 2.4^{+1.7}_{-1.0} \mu {\rm G}$

 $B_{
m Perseus}(0) = 8.8^{+13.8}_{-5.4} \mu
m G$

・ロン ・雪 と ・ ヨ と

Summary

- Understanding non-thermal processes is crucial for using clusters as cosmological probes (high-z scaling relations).
- 2 Cosmic rays in nearby clusters of galaxies:
 - limits on CRps from γ -rays (EGRET):
 - $K_{\rm CRp} = rac{\epsilon_{\rm CRp}}{\epsilon_{\rm th}} < 20\%$
 - M 87 γ -ray emission is consistent with hadronic scenario
 - radio (mini)-halos seem to be of hadronic origin

Outlook: numerical simulations with GADGET

- huge potential and predictive power of cosmological simulations → provides detailed γ-ray emission maps
- Galaxy evolution: influence on energetic feedback, star formation, and galactic winds

Summary

- Understanding non-thermal processes is crucial for using clusters as cosmological probes (high-z scaling relations).
- Osmic rays in nearby clusters of galaxies:
 - limits on CRps from γ -rays (EGRET):
 - $X_{\rm CRp} = rac{arepsilon_{\rm CRp}}{arepsilon_{\rm th}} < 20\%$
 - M 87 γ-ray emission is consistent with hadronic scenario
 - radio (mini)-halos seem to be of hadronic origin

Outlook: numerical simulations with GADGET

- huge potential and predictive power of cosmological simulations → provides detailed γ-ray emission maps
- Galaxy evolution: influence on energetic feedback, star formation, and galactic winds

Summary

- Understanding non-thermal processes is crucial for using clusters as cosmological probes (high-z scaling relations).
- Osmic rays in nearby clusters of galaxies:
 - limits on CRps from γ -rays (EGRET):
 - $X_{
 m CRp} = rac{arepsilon_{
 m CRp}}{arepsilon_{
 m th}} < 20\%$
 - M 87 γ-ray emission is consistent with hadronic scenario
 - radio (mini)-halos seem to be of hadronic origin

Outlook: numerical simulations with GADGET

- huge potential and predictive power of cosmological simulations → provides detailed γ-ray emission maps
- Galaxy evolution: influence on energetic feedback, star formation, and galactic winds

