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Galactic cosmic rays

Galactic cosmic rays are dynamically important:
the pressure contained in cosmic ray protons and magnetic
fields each contributes at least as much pressure as the
thermal gas
escape time of cosmic rays from the galactic disc
∼ 107 years (radioactive clocks)
energy losses:
CRe: synchrotron, inverse Compton, Coulomb
CRp: inelastic collisions, Coulomb
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Cosmic rays in clusters of galaxies

predictions for the CR pressure
span between 10% and 50% of the
cluster’s pressure budget
escape of cosmic ray protons only
possible for energies
ECRp > 2× 1016 eV
energy losses (for particles with
E ∼ 10 GeV):
CRe: synchrotron, inverse
Compton: τ ∼ 108 yr
CRp: inelastic collisions, Coulomb
losses: τ ∼ 1010 yr ∼ Hubble time

Coma cluster: radio halo,

ν = 1.4 GHz, 2.5◦ × 2.0◦

(Credit: Deiss/Effelsberg)
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Cosmological implications

cosmic ray related observables: complementary
information of the clusters dynamical state
cosmic rays provide an additional pressure component:
→ modifications of the hydrostatic mass estimates
the equation of state of cosmic rays is ‘softer’ than the
thermal component (γCRp ∼ 4

3 ):
→ effects on the baryonic halo profile
→ modification of the ICM evolution (entropy distribution)
the cosmic ray energy reservoir is cooling differently than
the thermal:
→ influence on energetic feedback and star formation
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Gamma-ray source function
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Cooling core clusters are efficient CRp detectors

Credit: NASA/IoA/A.Fabian et al.

Credit: ROSAT/PSPC

Chandra observation:
central region of Perseus

ROSAT observation:
Perseus galaxy cluster
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Cooling core cluster model of CRp detection

Chandra observation:
central region of Perseus

Perseus galaxy cluster CRp       CRp  th= Xε                  ε

CRp

γ

π0

γp
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Gamma-ray flux of the Perseus galaxy cluster
IC emission of secondary CRes (B = 0), π0-decay induced γ-ray emission:
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Upper limits on XCRp using EGRET limits
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Expected limits on XCRp using Čerenkov telescopes

Sensitivity: Fγ, exp(E > Ethr) = 10−12 γ cm−2 s−1 (Ethr/100 GeV)1−α
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HEGRA detection of γ-rays from M 87

Image courtesy of NRAO/AUI and Owen et al.

HEGRA − M87: TeV CoG position
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What is the origin of the M 87 γ-ray emission?

processed radiation of the relativistic outflow (jet):
e.g. IC up-scattering of CMB photons by CRes (jet), SSC
scenario (Bai & Lee 2001)

dark matter annihilation or decay processes
(Baltz et al. 2000)

Hadronically originating γ-rays:
assuming a CRp power law
distribution and a model for the CRp
spatial distribution

→ measurement of the CRp
population of the ICM/ISM of M87!
(Pfrommer & Enßlin 2003)
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Gamma-ray flux profile of M 87 (Virgo)
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HEGRA data
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isobaric profile
top:

modeled γ-ray surface flux
profile
normalized to the HEGRA
flux (> 730 GeV) within the
two innermost data points

bottom:
comparison of detected to
simulated γ-ray flux profiles
which are convolved with two
different widths of the PSF
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Radio halos: Coma and Perseus

Coma radio halo, ν = 1.4 GHz,

largest emission diameter ∼ 3 Mpc

(Credit: Deiss/Effelsberg)

Perseus mini-halo, ν = 1.4 GHz,

largest emission size ∼ 0.5 Mpc

(Credit: Pedlar/VLA)
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Models for radio synchrotron halos in clusters

Halo characteristics: smooth unpolarized radio emission at
scales of 3 Mpc.
Different CR electron populations:

Primary accelerated CR electrons: synchrotron/IC cooling
times too short to account for extended diffuse emission
Re-accelerated CR electrons through resonant interaction
with turbulent Alfvén waves: possibly too inefficient, no first
principle calculations (Jaffe 1977, Schlickeiser 1987, Brunetti 2001)

Hadronically produced CR electrons in inelastic collisions
of CR protons with the ambient gas (Dennison 1980, Vestrad
1982, Miniati 2001, Pfrommer 2004)
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Minimum energy criterion (MEC): the idea

εNT = εB + εCRp + εCRe

→ minimum energy criterion: ∂εNT
∂εB

∣∣∣
jν

!
= 0

classical MEC: εCRp = kpεCRe

hadronic MEC: εCRp ∝ (εB + εCMB) ε
−(αν+1)/2
B

ε ε

ε

minB B

NT defining tolerance
levels: deviation
from minimum by
one e-fold
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Classical minimum energy criterion

XCRp(r) =
εCRp
εth

(r), XB(r) = εB
εth

(r)
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Coma cluster: classical minimum energy criterion

BComa(0) = 1.1+0.7
−0.4µG
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Perseus cluster: classical minimum energy criterion

BPerseus(0) = 7.2+4.5
−2.8µG
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Hadronic minimum energy criterion
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Coma cluster: hadronic minimum energy condition
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Perseus cluster: hadronic minimum energy condition

BPerseus(0) = 8.8+13.8
−5.4 µG
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1 Understanding non-thermal processes is crucial for using
clusters as cosmological probes (high-z scaling relations).

2 Cosmic rays in nearby clusters of galaxies:
limits on CRps from γ-rays (EGRET):
XCRp =

εCRp
εth

< 20%

M 87 γ-ray emission is consistent with hadronic scenario
radio (mini)-halos seem to be of hadronic origin

3 Outlook: numerical simulations with GADGET

huge potential and predictive power of cosmological
simulations → provides detailed γ-ray emission maps
Galaxy evolution: influence on energetic feedback, star
formation, and galactic winds
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