Cosmic rays and magnetic fields in galaxies

Christoph Pfrommer

in collaboration with

R. Pakmor, V. Springel Heidelberg Institute for Theoretical Studies, Germany

Jul 1, 2015 / Ringberg Castle: Cosmic Magnetic Fields

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

Introduction

- Puzzles
- Galactic winds
- Cosmic ray physics

2 Galactic winds

- Physics
- Simulations
- Open questions

3 Cooling flow problem

- Radio and γ -ray emission
- Cosmic-ray heating
- Conclusions

≣ ► < ≣ →

Puzzles Galactic winds Cosmic ray physics

Puzzles Galactic winds Cosmic ray physics

Puzzles Galactic winds Cosmic ray physics

Puzzles Galactic winds Cosmic ray physics

How are galactic winds driven?

super wind in M82

- thermal pressure provided by supernovae or AGNs?
- radiation pressure and photoionization by massive stars or QSOs?
- cosmic-ray (CR) pressure and Alfvén wave heating of CRs accelerated at supernova shocks?

Puzzles Galactic winds Cosmic ray physics

How are galactic winds driven?

super wind in M82

- thermal pressure provided by supernovae or AGNs?
- radiation pressure and photoionization by massive stars or QSOs?
- cosmic-ray (CR) pressure and Alfvén wave heating of CRs accelerated at supernova shocks?

observed energy equipartition between cosmic rays, thermal gas and magnetic fields

 \rightarrow suggests self-regulated feedback loop with CR driven winds

→ E → < E</p>

< 🗇 🕨

Puzzles Galactic winds Cosmic ray physics

Why are CRs important for wind formation? Radio halos in disks: CRs and magnetic fields exist at the disk-halo interface

- CR pressure drops less quickly than thermal pressure $(P \propto \rho^{\gamma})$
- CRs cool less efficiently than thermal gas
- CR pressure energizes the wind → "CR battery"
- poloidal ("open") field lines at wind launching site
 → CR-driven Parker instability

Puzzles Galactic winds Cosmic ray physics

Cosmic-ray driven winds – literature

Uhlig, C.P.+ (2012)

previous theoretical works:
Ipavich (1975), Breitschwerdt+
(1991), Zirakashvili+ (1996), Ptuskin+
(1997), Breitschwerdt+ (2002),
Socrates+ (2008), Everett+ (2008,
2010), Samui+ (2010), Dorfi &
Breitschwerdt (2012)

 previous 3D simulations: CR streaming: Uhlig, C.P.+ (2012) CR diffusion: Booth+ (2013), Hanasz+ (2013), Salem & Bryan (2014)

Puzzles Galactic winds Cosmic ray physics

Interactions of CRs and magnetic fields

- $\bullet~\mbox{CRs}$ scatter on magnetic fields \rightarrow isotropization of CR momenta
- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_A, CR current provides steady driving force, which amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_A
 - wave damping: transfer of CR energy and momentum to the thermal gas

3 1 4 3

Puzzles Galactic winds Cosmic ray physics

Interactions of CRs and magnetic fields

- $\bullet~\mbox{CRs}$ scatter on magnetic fields \rightarrow isotropization of CR momenta
- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_A, CR current provides steady driving force, which amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_A
 - wave damping: transfer of CR energy and momentum to the thermal gas

 \rightarrow CRs exert a pressure on the thermal gas by means of scattering off of Alfvén waves

Puzzles Galactic winds Cosmic ray physics

CR transport

- total CR velocity $\boldsymbol{v}_{cr} = \boldsymbol{v} + \boldsymbol{v}_{st} + \boldsymbol{v}_{di}$ (where $\boldsymbol{v} \equiv \boldsymbol{v}_{gas}$)
- CRs stream down their own pressure gradient relative to the gas, CRs diffuse in the wave frame due to pitch angle scattering by MHD waves (both transports are along the local direction of **B**):

$$oldsymbol{v}_{
m st} = -v_{
m A} \, rac{oldsymbol{
abla} P_{
m cr}}{|oldsymbol{
abla} P_{
m cr}|} ext{ with } v_{
m A} = \sqrt{rac{oldsymbol{B}^2}{4\pi
ho}}, \qquad oldsymbol{v}_{
m di} = -\kappa_{
m di} \, rac{oldsymbol{
abla} P_{
m cr}}{P_{
m cr}},$$

→ E → < E →</p>

Puzzles Galactic winds Cosmic ray physics

CR transport

- total CR velocity $\boldsymbol{v}_{cr} = \boldsymbol{v} + \boldsymbol{v}_{st} + \boldsymbol{v}_{di}$ (where $\boldsymbol{v} \equiv \boldsymbol{v}_{gas}$)
- CRs stream down their own pressure gradient relative to the gas, CRs diffuse in the wave frame due to pitch angle scattering by MHD waves (both transports are along the local direction of **B**):

$$\mathbf{v}_{st} = -v_{A} \frac{\nabla P_{cr}}{|\nabla P_{cr}|}$$
 with $v_{A} = \sqrt{\frac{\mathbf{B}^{2}}{4\pi\rho}}$, $\mathbf{v}_{di} = -\kappa_{di} \frac{\nabla P_{cr}}{P_{cr}}$,

• energy equations with $\varepsilon = \varepsilon_{th} + \rho v^2/2$ (neglecting CR diffusion):

$$\frac{\partial \varepsilon}{\partial t} + \boldsymbol{\nabla} \cdot \left[(\varepsilon + P_{\text{th}} + P_{\text{cr}}) \boldsymbol{v} \right] = P_{\text{cr}} \boldsymbol{\nabla} \cdot \boldsymbol{v} + |\boldsymbol{v}_{\text{st}} \cdot \boldsymbol{\nabla} P_{\text{cr}}|$$
$$\frac{\partial \varepsilon_{\text{cr}}}{\partial t} + \boldsymbol{\nabla} \cdot (\varepsilon_{\text{cr}} \boldsymbol{v}) + \boldsymbol{\nabla} \cdot \left[(\varepsilon_{\text{cr}} + P_{\text{cr}}) \boldsymbol{v}_{\text{st}} \right] = -P_{\text{cr}} \boldsymbol{\nabla} \cdot \boldsymbol{v} - |\boldsymbol{v}_{\text{st}} \cdot \boldsymbol{\nabla} P_{\text{cr}}|$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Puzzles Galactic winds Cosmic ray physics

CR transport

- total CR velocity $\boldsymbol{v}_{cr} = \boldsymbol{v} + \boldsymbol{v}_{st} + \boldsymbol{v}_{di}$ (where $\boldsymbol{v} \equiv \boldsymbol{v}_{gas}$)
- CRs stream down their own pressure gradient relative to the gas, CRs diffuse in the wave frame due to pitch angle scattering by MHD waves (both transports are along the local direction of **B**):

$$\mathbf{v}_{st} = -v_A \frac{\nabla P_{cr}}{|\nabla P_{cr}|}$$
 with $v_A = \sqrt{\frac{\mathbf{B}^2}{4\pi\rho}}$, $\mathbf{v}_{di} = -\kappa_{di} \frac{\nabla P_{cr}}{P_{cr}}$,

• energy equations with $\varepsilon = \varepsilon_{th} + \rho v^2/2$ (neglecting CR diffusion):

$$\frac{\partial \varepsilon}{\partial t} + \nabla \cdot \left[(\varepsilon + P_{th} + P_{cr}) \mathbf{v} \right] = P_{cr} \nabla \cdot \mathbf{v} + |\mathbf{v}_{st} \cdot \nabla P_{cr}|$$

$$\frac{\partial \varepsilon_{cr}}{\partial t} + \nabla \cdot (\varepsilon_{cr} \mathbf{v}) + \nabla \cdot \left[(\varepsilon_{cr} + P_{cr}) \mathbf{v}_{st} \right] = -P_{cr} \nabla \cdot \mathbf{v} - |\mathbf{v}_{st} \cdot \nabla P_{cr}|$$

$$\iff \frac{\partial \varepsilon_{cr}}{\partial t} + \nabla \cdot \left[\varepsilon_{cr} (\mathbf{v} + \mathbf{v}_{st}) \right] = -P_{cr} \nabla \cdot (\mathbf{v} + \mathbf{v}_{st})$$

Physics Simulations Open questions

Cosmological moving-mesh code AREPO (Springel 2010)

Physics Simulations Open questions

Simulations – flowchart

ISM observables:

Physical processes in the ISM:

Christoph Pfrommer Cosmic rays and magnetic fields in galaxies

Physics Simulations Open questions

Simulations with cosmic ray physics

ISM observables:

Physical processes in the ISM:

Physics Simulations Open questions

Simulations with cosmic ray physics

ISM observables:

Physical processes in the ISM:

Christoph Pfrommer Cosmic rays and magnetic fields in galaxies

Physics Simulations Open questions

Simulations with cosmic ray physics

ISM observables:

Physical processes in the ISM:

Physics Simulations Open questions

Simulation setup

Pfrommer, Pakmor, Springel, in prep. note: MHD + CR physics with isotropic CR diffusion

Christoph Pfrommer Cosmic rays and magnetic fields in galaxies

Physics Simulations Open questions

CR driven winds: density and vertical velocity

- CR pressure launches super wind that escapes from the halo
- forming disk collimates the wind into a biconical morphology with a time-varying opening angle

Physics Simulations Open questions

CR driven winds: density and vertical velocity

- CR pressure launches super wind that escapes from the halo
- forming disk collimates the wind into a biconical morphology with a time-varying opening angle

Physics Simulations Open questions

CR driven winds: density and vertical velocity

- CR pressure launches super wind that escapes from the halo
- forming disk collimates the wind into a biconical morphology with a time-varying opening angle

Physics Simulations Open questions

Cosmic ray driven wind: mechanism

CR streaming: Uhlig, C.P.+ (2012) CR diffusion: Booth+ (2013), Hanasz+ (2013), Salem & Bryan (2014)

Christoph Pfrommer Cosmic rays

Physics Simulations Open questions

CR driven winds: temperature and $X_{cr} = P_{cr}/P_{th}$

- CR pressure dominates over thermal one in halo ($\gamma = 4/3$ vs. 5/3)
- CR-induced Alfvén waves heat and energize the wind → acceleration through additional energy deposition

A ►

Physics Simulations Open questions

CR driven winds: temperature and $X_{cr} = P_{cr}/P_{th}$

- CR pressure dominates over thermal one in halo ($\gamma = 4/3$ vs. 5/3)
- CR-induced Alfvén waves heat and energize the wind → acceleration through additional energy deposition

Physics Simulations Open questions

CR driven winds: temperature and $X_{cr} = P_{cr}/P_{th}$

- CR pressure dominates over thermal one in halo (γ = 4/3 vs. 5/3)
- CR-induced Alfvén waves heat and energize the wind → acceleration through additional energy deposition

Physics Simulations Open questions

CR driven winds: **B** field, face and edge-on view

- disk: magnetic shear amplification aligns **B** with velocity field
- halo: X-shaped B morphology due to time varying collimation
- narrower wind \rightarrow faster outflow \rightarrow lower density channel

Physics Simulations Open questions

CR driven winds: **B** field, face and edge-on view

- disk: magnetic shear amplification aligns **B** with velocity field
- halo: X-shaped B morphology due to time varying collimation
- narrower wind \rightarrow faster outflow \rightarrow lower density channel

Physics Simulations Open questions

Halo **B** field: observations vs. simulations

Christoph Pfrommer Cosmic rays and magnetic fields in galaxies

Physics Simulations Open questions

CR streaming vs. diffusion: estimates

 CRs cannot be transported faster than the Alfvén speed over macroscopic distances:

$$m{v}_{\mathsf{diff}} \equiv \kappa rac{|m{
abla} P_{\mathsf{cr}}|}{arepsilon_{\mathsf{cr}} + m{P}_{\mathsf{cr}}} \stackrel{!}{<} m{v}_{\mathsf{A}}$$

 \Rightarrow limit on diffusion coefficient κ (varies spatially and temporarily)

Physics Simulations Open questions

CR driven winds: v_A and v_{diff}/v_A

• 3 Gyr: stationary outflow with thick CR disk $\rightarrow v_{\text{diff}}/v_{\text{A}} < 1$ (using a Galactic diffusion coefficient $\kappa \simeq 10^{28} \,\text{cm}^2 \,\text{s}^{-1}$)

프 🖌 🖌 프

Physics Simulations Open questions

CR driven winds: v_A and v_{diff}/v_A

- 3 Gyr: stationary outflow with thick CR disk $\rightarrow v_{\text{diff}}/v_{\text{A}} < 1$ (using a Galactic diffusion coefficient $\kappa \simeq 10^{28} \,\text{cm}^2 \,\text{s}^{-1}$)
- < 2 Gyr: small CR injection regions $\rightarrow v_{diff}/v_A \gg 1!$

Physics Simulations Open questions

CR streaming vs. diffusion: estimates

 CRs cannot be transported faster than the Alfvén speed over macroscopic distances:

$$m{v}_{\mathsf{diff}} \equiv \kappa rac{|m{
abla} P_{\mathsf{cr}}|}{arepsilon_{\mathsf{cr}} + m{P}_{\mathsf{cr}}} \stackrel{!}{<} m{v}_{\mathsf{A}}$$

 \Rightarrow limit on diffusion coefficient κ (varies spatially and temporarily)

Physics Simulations Open questions

CR streaming vs. diffusion: estimates

• CRs cannot be transported faster than the Alfvén speed over macroscopic distances:

$$\mathbf{v}_{\mathsf{diff}} \equiv \kappa rac{|\mathbf{\nabla} \mathbf{P}_{\mathsf{cr}}|}{arepsilon_{\mathsf{cr}} + \mathbf{P}_{\mathsf{cr}}} \stackrel{!}{<} \mathbf{v}_{\mathsf{A}}$$

 \Rightarrow limit on diffusion coefficient κ (varies spatially and temporarily)

what happens during CR injection at a supernova remnant?

$$v_{
m diff} \sim rac{\kappa}{4 L_{
m cr}} \sim 10^3 \ {
m km \ s^{-1}} \ \kappa_{28} L_{
m cr,10 \ pc}^{-1} \sim 100 v_{
m A}$$

Physics Simulations Open questions

CR streaming vs. diffusion: estimates

• CRs cannot be transported faster than the Alfvén speed over macroscopic distances:

$$\mathbf{v}_{\mathsf{diff}} \equiv \kappa rac{|\mathbf{\nabla} \mathbf{P}_{\mathsf{cr}}|}{arepsilon_{\mathsf{cr}} + \mathbf{P}_{\mathsf{cr}}} \stackrel{!}{<} \mathbf{v}_{\mathsf{A}}$$

 \Rightarrow limit on diffusion coefficient κ (varies spatially and temporarily)

what happens during CR injection at a supernova remnant?

$$v_{
m diff} \sim rac{\kappa}{4 L_{
m cr}} \sim 10^3 \ {
m km \ s^{-1}} \ \kappa_{28} L_{
m cr,10 \ pc}^{-1} \sim 100 v_{
m A}$$

 \Rightarrow flux-limited CR diffusion: prohibitively expensive because of von-Neumann-type time step constraint ($\Delta t \propto \Delta x^2/\kappa$), even for implicit solvers

 \Rightarrow simulate CR streaming!

3 1 4 3

Physics Simulations Open questions

Modeling CR streaming A challenging hyperbolic/parabolic problem

• streaming equation (no heating):

$$rac{\partial arepsilon_{
m cr}}{\partial t} + oldsymbol{
abla} \cdot \left[(arepsilon_{
m cr} + oldsymbol{\mathcal{P}}_{
m cr}) oldsymbol{
u}_{
m st}
ight] = 0$$

$$oldsymbol{v}_{ ext{st}} = - ext{sgn} (oldsymbol{B} oldsymbol{\cdot} oldsymbol{
abla} P_{ ext{cr}}) oldsymbol{v}_{ ext{A}}$$

- CR streaming ~ CR advection with the Alfvén speed
- at local extrema, CR energy can overshoot and develop unphysical oscillations
- idea: regularize equations, similar to adding artificial viscosity
 → diffusive at extrema, advective at gradients

AREPO MHD simulations of CR driven galactic winds

the good: CR diffusion successfully launches super winds that

- expel a large fraction of gas from the halo
- heat the halo gas and circumgalactic medium \rightarrow X-rays?
- enrich halo/circumgalactic medium with X-shaped **B** fields
- suppress subsequent star formation

Simulations Open questions

AREPO MHD simulations of CR driven galactic winds

the good: CR diffusion successfully launches super winds that

- expel a large fraction of gas from the halo
- $\bullet\,$ heat the halo gas and circumgalactic medium \rightarrow X-rays?
- enrich halo/circumgalactic medium with X-shaped **B** fields
- suppress subsequent star formation

the bad: constant (Galactic) diffusivity too simplified:

- adequate for stationary outflow with thick CR disk
- fails for non-equilibrium conditions during disk formation

★ E → ★ E →

Simulations Open questions

AREPO MHD simulations of CR driven galactic winds

the good: CR diffusion successfully launches super winds that

- expel a large fraction of gas from the halo
- $\bullet\,$ heat the halo gas and circumgalactic medium \rightarrow X-rays?
- enrich halo/circumgalactic medium with X-shaped **B** fields
- suppress subsequent star formation

the bad: constant (Galactic) diffusivity too simplified:

- adequate for stationary outflow with thick CR disk
- fails for non-equilibrium conditions during disk formation

the ugly: CR streaming is a challenging hyperbolic/parabolic problem,...

→ E → < E →</p>

< 🗇 🕨

Radio and γ-ray emission Cosmic-ray heating Conclusions

Radio and γ-ray emission Cosmic-ray heating Conclusions

Feedback heating: M87 at radio wavelengths

 $[\]nu =$ 1.4 GHz (Owen+ 2000)

 high-ν: freshly accelerated CR electrons low-ν: fossil CR electrons → time-integrated AGN feedback!

★ 문 ► ★ 문 ►

Radio and γ -ray emission Cosmic-ray heating Conclusions

Feedback heating: M87 at radio wavelengths

 $\nu =$ 1.4 GHz (Owen+ 2000)

 $\nu =$ 140 MHz (LOFAR/de Gasperin+ 2012)

- high-ν: freshly accelerated CR electrons low-ν: fossil CR electrons → time-integrated AGN feedback!
- LOFAR: same picture → puzzle of "missing fossil electrons"
- solution: electrons are fully mixed with the dense cluster gas and cooled through Coulomb interactions

Radio and γ-ray emission Cosmic-ray heating Conclusions

The gamma-ray picture of M87

- high state is time variable
 → jet emission
- low state:(1) steady flux
 - (2) γ -ray spectral index (2.2)
 - = CRp index
 - CRe injection index as probed by LOFAR
 - (3) spatial extension is under investigation (?)

Rieger & Aharonian (2012)

< ∃ > <

 \rightarrow confirming this triad would be smoking gun for first γ -ray signal from a galaxy cluster!

Radio and γ-ray emission Cosmic-ray heating Conclusions

AGN feedback = cosmic ray heating (?)

hypothesis: low state γ -ray emission traces π^0 decay within cluster

 cosmic rays excite Alfvén waves that dissipate the energy → heating rate

 $\mathcal{H}_{cr} = - \textit{v}_{st} \cdot \nabla \textit{P}_{cr}$

(Loewenstein, Zweibel, Begelman 1991, Guo & Oh 2008, Enßlin+ 2011)

 calibrate P_{cr} to γ-ray emission and |**v**_{st}| = |**v**_A| to radio/X-ray emission → spatial heating profile

< 回 > < 回 > < 回 >

Radio and γ -ray emission Cosmic-ray heating Conclusions

AGN feedback = cosmic ray heating (?)

hypothesis: low state γ -ray emission traces π^0 decay within cluster

 cosmic rays excite Alfvén waves that dissipate the energy → heating rate

 $\mathcal{H}_{cr} = -\textbf{\textit{v}}_{st} \boldsymbol{\cdot} \boldsymbol{\nabla} \textbf{\textit{P}}_{cr}$

(Loewenstein, Zweibel, Begelman 1991, Guo & Oh 2008, Enßlin+ 2011)

 calibrate P_{cr} to γ-ray emission and |v_{st}| = |v_A| to radio/X-ray emission
 → spatial heating profile

 \rightarrow cosmic-ray heating matches radiative cooling (observed in X-rays) and may solve the famous "cooling flow problem" in galaxy clusters!

Radio and γ -ray emission Cosmic-ray heating Conclusions

Local stability analysis (1)

• CRs are adiabatically trapped by perturbations

Radio and γ -ray emission Cosmic-ray heating Conclusions

Local stability analysis (1)

• CRs are adiabatically trapped by perturbations

Radio and γ -ray emission Cosmic-ray heating Conclusions

Local stability analysis (1)

isobaric perturbations to global thermal equilibrium

• CRs are adiabatically trapped by perturbations

Radio and γ -ray emission Cosmic-ray heating Conclusions

Local stability analysis (1)

- isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations

Radio and γ -ray emission Cosmic-ray heating Conclusions

Local stability analysis (2) Theory predicts observed temperature floor at $kT \simeq 1$ keV

Christoph Pfrommer Cosmic rays and magnetic fields in galaxies

IITS

Radio and γ -ray emission Cosmic-ray heating Conclusions

Virgo cluster cooling flow: temperature profile X-ray observations confirm temperature floor at $kT \simeq 1$ keV

Radio and γ -ray emission Cosmic-ray heating Conclusions

Emerging picture of CR feedback by AGNs

(1) during buoyant rise of bubbles: CRs diffuse and stream outward \rightarrow CR Alfvén-wave heating

< 🗇 🕨

(4) E > (4) E >

Radio and γ -ray emission Cosmic-ray heating Conclusions

Emerging picture of CR feedback by AGNs

(1) during buoyant rise of bubbles:
 CRs diffuse and stream outward
 → CR Alfvén-wave heating

(2) if bubbles are disrupted, CRs are injected into the ICM and caught in a turbulent downdraft that is excited by the rising bubbles

→ CR advection with flux-frozen field → adiabatic CR compression and energizing: $P_{\rm cr}/P_{\rm cr,0} = \delta^{4/3} \sim 20$ for compression factor $\delta = 10$

(3) CR escape and outward streaming \rightarrow CR Alfvén-wave heating

→ Ξ → → Ξ →

Radio and γ -ray emission Cosmic-ray heating Conclusions

Prediction: flattening of high- ν radio spectrum

Radio and γ -ray emission Cosmic-ray heating Conclusions

Conclusions on AGN feedback by cosmic-ray heating

- LOFAR puzzle of "missing fossil electrons" solved by mixing with dense cluster gas and Coulomb cooling
- predicted γ rays identified with low state of M87
 → estimate CR-to-thermal pressure of X_{cr} = 0.31
- CR Alfvén wave heating balances radiative cooling on all scales within the radio halo (r < 35 kpc)
- local thermal stability analysis predicts observed temperature floor at $kT \simeq 1 \text{ keV}$

outlook: simulate steaming CRs coupled to MHD, cosmological cluster simulations, improve γ -ray and radio observations ...

イロト イ理ト イヨト イヨト