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Shocks in galaxy clusters

1E 0657-56 (“Bullet cluster”)
(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical:
NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing:
NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)

Abell 3667
(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)
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Topics of interest

Multi-messenger approach of galaxy clusters:
consistent picture of non-thermal processes in galaxy
clusters (radio, soft/hard X-ray, γ-ray emission)
→ illuminating the process of structure formation
→ history of individual clusters: cluster archeology
nature of dark matter: annihilation signal vs. CR induced
γ-rays
gold sample of cluster for precision cosmology: gauging
non-thermal observables
fundamental plasma physics:

diffusive shock acceleration for high-β plasmas
origin and evolution of large scale magnetic fields
nature of turbulent models
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Radiative simulations with cosmic ray (CR) physics
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Radiative simulations with extended CR physics
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Our philosophy and description

An accurate description of CRs should follow the evolution of
the spectral energy distribution of CRs as a function of time and
space, and keep track of their dynamical, non-linear coupling
with the hydrodynamics.

We seek a compromise between
capturing as many physical properties as possible
requiring as little computational resources as necessary

Assumptions:
protons dominate the CR population
a momentum power-law is a typical spectrum
CR energy & particle number conservation
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CR spectral description
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Thermal & CR energy spectra

Kinetic energy per logarithmic momentum interval:
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Cooling time scales of CR protons

Cooling of primordial gas:
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Radiative cool core cluster simulation: gas density
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Mass weighted temperature
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Mach number distribution weighted by εdiss
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Previous numerical work on Mach number statistics

Miniati et al. (2000, 01, 02, 03): Eulerian approach, coarse resolution,
passive CR evolution, NT cluster emission

Ryu et al. (2003, 07, 08), Kang et al. 2005: Eulerian Mach number
statistics (post-proc.), vorticity and magnetic field generation

Pfrommer et al. (2006, 07, 08): Lagrangian approach, Mach number
statistics (on the fly), self-consistent CR evolution, NT cluster emission

Skillman et al. 2008: Eulerian AMR, Mach number statistics (post-proc.)

Hoeft et al. 2008: Lagrangian approach, Mach number statistics
(post-proc.)

Vazza et al. 2008: Eulerian approach, coarse resolution, Mach number
statistics (post-proc.)

→ increasing number of papers recently, with more expected to come that
focus on the non-thermal emission from clusters and topics related to
UHECRs (as we enter a new era of multi-frequency experiments).
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Cosmological shock statistics

more energy is dissipated at later times

mean Mach number decreases with time
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Cosmological shock statistics: influence of reionization

reionization epoch at zreion = 10 suppresses efficiently strong
shocks at z < zreion due to jump in sound velocity

cosmological constant causes structure formation to cease
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Cosmological shock statistics: CR injection

Mach number dependent injection efficiency of CRs favors
medium Mach number shocks (M & 3) for the injection, and
even stronger shocks when accounting for Coulomb interactions

more energy is dissipated in weak shocks internal to collapsed
structures than in external strong shocks
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Diffusive shock acceleration – Fermi 1 mechanism (1)
conditions:

a collisionless shock wave

magnetic fields to confine energetic particles

plasma waves to scatter energetic particles→ particle diffusion

supra-thermal particles

mechanism:
supra-thermal particles diffuse upstream across shock wave

each shock crossing energizes particles through momentum transfer
from recoil-free scattering off the macroscopic scattering agents

momentum increases exponential with number of shock crossings

number of particles decreases exponential with number of crossings

→ power-law CR distribution
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Diffusive shock acceleration – Fermi 1 mechanism (2)

Spectral index depends on the Mach number of the shock,
M = υshock/cs:

log p
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10 GeV

weak shock
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Diffusive shock acceleration – efficiency (3)

CR proton energy injection efficiency, ζinj = εCR/εdiss:
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Mach number distribution weighted by εdiss
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Mach number distribution weighted by εCR,inj
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Mach number distribution weighted by εCR,inj(q > 30)
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CR pressure PCR
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Relative CR pressure PCR/Ptotal
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CR phase-space diagram: final distribution @ z = 0
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CR electron versus CR proton pressure
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Primary versus secondary CR electrons
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Non-thermal emission from clusters
Exploring the memory of structure formation

primary, shock-accelerated CR electrons resemble current
accretion and merging shock waves

CR protons/hadronically produced CR electrons trace the time
integrated non-equilibrium activities of clusters that is modulated
by the recent dynamical activities

How can we read out this information about non-thermal populations?
→ new era of multi-frequency experiments, e.g.:

LOFAR, GMRT, MWA, LWA: interferometric array of radio
telescopes at low frequencies (ν ' (15− 240) MHz)

Simbol-X/NuSTAR: future hard X-ray satellites (E ' (1−100) keV)

Glast: high-energy γ-ray space mission (E ' (0.1− 300) GeV)

Imaging air Čerenkov telescopes (E ' (0.1− 100) TeV)
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General picture
Shock related emission
Hadronically induced emission

Multi messenger approach for non-thermal processes
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Cosmic web: Mach number
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Radio gischt (relics): primary CRe (1.4 GHz)
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General picture
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Radio gischt: primary CRe (150 MHz)
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General picture
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Radio gischt: primary CRe (15 MHz)
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General picture
Shock related emission
Hadronically induced emission

Radio gischt: primary CRe (15 MHz), slower magnetic decline
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General picture
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Particle reactions

relativistic proton populations can often be expected, since

acceleration mechanisms work for protons . . .

. . . as efficient as for electrons (adiabatic compression) or

. . . more efficient than for electrons (DSA, stochastic acc.)

galactic CR protons are observed to have 100 times higher
energy density than electrons

CR protons are very inert against radiative losses and therefore
long-lived (∼ Hubble time in galaxy clusters, longer outside)

→ an energetic CR proton population should exist in clusters
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Hadronic cosmic ray proton interaction

Christoph Pfrommer Illuminating cosmological formation shocks



Cosmological structure formation shocks
Non-thermal processes in clusters
Plasma and particle astrophysics

General picture
Shock related emission
Hadronically induced emission

Cluster radio emission by hadronically produced CRe
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Thermal X-ray emission

10-9

10-8

10-7

10-6

10-5

10-4

S X
 [

 e
rg

 c
m

-2
 s

-1
 h

3  ]

-15 -10 -5 0 5 10 15-15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15
x [ h-1 Mpc ]

-15

-10

-5

0

5

10

15

y 
[ 

h-1
 M

pc
 ]

-15 -10 -5 0 5 10 15-15

-10

-5

0

5

10

15

Christoph Pfrommer Illuminating cosmological formation shocks



Cosmological structure formation shocks
Non-thermal processes in clusters
Plasma and particle astrophysics

General picture
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Hadronically induced emission

Radio gischt: primary CRe (150 MHz)
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General picture
Shock related emission
Hadronically induced emission

Radio gischt + central hadronic halo = giant radio halo
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Which one is the simulation/observation of A2256?

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
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General picture
Shock related emission
Hadronically induced emission

Observation – simulation of A2256

Clarke & Enßlin (2006) Pfrommer et al. (2008 in prep.)

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
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Hadronically induced emission

Unified model of radio halos and relics

Cluster radio emission varies with dynamical stage of a cluster:

Cluster relaxes and develops cool core: radio mini-halo develops due to
hadronically produced CR electrons, magnetic fields are adiabatically
compressed (cooling gas triggers radio mode feedback of AGN that
outshines mini-halo→ selection effect).

Cluster experiences major merger: two leading shock waves are
produced that become stronger as they break at the shallow peripheral
cluster potential→ shock-acceleration of primary electrons and
development of radio relics.

Generation of morphologically complex network of virializing shock
waves. Lower sound speed in the cluster outskirts lead to strong shocks
→ irregular distribution of primary electrons, MHD turbulence amplifies
magnetic fields.

Giant radio halo develops due to (1) boost of the hadronically generated
radio emission in the center (2) irregular radio ‘gischt’ emission in the
cluster outskirts.
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Outline

1 Cosmological structure formation shocks
Cosmological galaxy cluster simulations
Mach numbers and shock acceleration
Cosmic ray transport and distribution

2 Non-thermal processes in clusters
General picture
Shock related emission
Hadronically induced emission

3 Plasma and particle astrophysics
The magnetized cosmic web
High-energy γ-ray emission
Conclusions
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Radio gischt illuminates cosmic magnetic fields
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Diffuse cluster radio emission – an inverse problem
Exploring the magnetized cosmic web

Battaglia, Pfrommer, Sievers, Bond, Enßlin (2008):
By suitably combining the observables associated with polarized low
frequency radio emission∗ from galaxy clusters, we can probe

the strength and coherence scale of magnetic fields on scales of
galaxy clusters,

the process of diffusive shock acceleration of electrons,

the existence and properties of the WHIM,

the observables beyond the thermal cluster emission which are
sensitive to the dynamical state of the cluster.

∗ future radio interferometers @ ν ∼ 150 MHz: GMRT, LOFAR, MWA, LWA
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Population of faint radio relics in merging clusters
Probing the large scale magnetic fields

Finding radio relics in 3D cluster simulations using a friends-of-friends finder
with an emission threshold→ relic luminosity function
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Relic luminosity function – theory
Relic luminosity function is very sensitive to large scale behavior of the
magnetic field and dynamical state of cluster:
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Rotation measure (RM)
RM maps and power spectra have the potential to infer the magnetic
pressure support and discriminate the nature of MHD turbulence in clusters:
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Left: RM map of the largest relic, right: Magnetic and RM power spectrum comparing

Kolmogorow and Burgers turbulence models.
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The quest for high-energy γ-ray emission from clusters
Multi-messenger approach towards fundamental astrophysics

1 complements current non-thermal observations of galaxy
clusters in radio and hard X-rays:

identifying the nature of emission processes
unveiling the contribution of cosmic ray protons

2 elucidates the nature of dark matter:

disentangling annihilation signal vs. CR induced γ-rays
spectral and morphological γ-ray signatures→ DM
properties

3 probes plasma astrophysics:

macroscopic parameters for diffusive shock acceleration
combination of inverse Compton and radio emission
sensitive to magnetic fields
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Universal CR spectrum in clusters

GLAST:       ~ 2.4

IACT:       ~ 2.2αp

pα
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Preliminary: normalized CR spectrum shows universal concave shape→
governed mainly by hierarchical structure formation and adiabatic CR
transport processes. (Pinzke & Pfrommer, in prep.)
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Hadronic γ-ray emission, Eγ > 100 GeV
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Inverse Compton emission, EIC > 100 GeV
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Total γ-ray emission, Eγ > 100 GeV
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Photon index Γ1 TeV
100 GeV
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α is the spectral index and Γ = α + 1 is the photon index.Christoph Pfrommer Illuminating cosmological formation shocks
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Profile of photon index Γ1 TeV
100 GeV
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Smooth variation of Γ: inner parts dominated by pion decay, transition to
primary IC from formation shocks at cluster periphery and WHIM
→ bright prospects for DM annihilation! (Pinzke & Pfrommer, in prep.)
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Gamma-ray scaling relations
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Scaling relation + complete sample of the brightest X-ray clusters
(HIFLUCGS)→ predictions for GLAST
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Predicted cluster sample for GLAST
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Minimum γ-ray flux in the hadronic model (1)
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Minimum γ-ray flux in the hadronic model (1)
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Minimum γ-ray flux in the hadronic model (2)

Minimum γ-ray flux (Eγ > 100 MeV) for the Coma cluster:

CR spectral index 2.0 2.3 2.6 2.9
Fγ [10−10γ cm−2s−1] 0.8 1.6 3.4 7.1

These limits can be made even tighter when considering
energy constraints, PB < Pgas/20 and B-fields derived
from Faraday rotation studies, B0 = 3 µG:
Fγ,COMA & 2× 10−9γ cm−2s−1 = FGLAST, 2yr

Non-detection by GLAST seriously challenges the
hadronic model.
Potential of measuring the CR acceleration efficiency for
diffusive shock acceleration.
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Conclusions

In contrast to the thermal plasma, the non-equilibrium distributions of
CRs preserve the information about their injection and transport
processes and provide thus a unique window of current and past
structure formation processes!

1 Cosmological hydrodynamical simulations are indispensable for
understanding non-thermal processes in galaxy clusters
→ illuminating the process of structure formation

2 Multi-messenger approach including radio synchrotron, hard
X-ray IC, and HE γ-ray emission:

fundamental plasma physics: diffusive shock acceleration,
large scale magnetic fields, and turbulence
nature of dark matter
gold sample of cluster for precision cosmology
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