Deciphering an enigma – Non-thermal emission from galaxy clusters

Christoph Pfrommer¹

in collaboration with

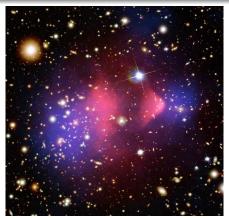
Torsten Enßlin², Volker Springel², Anders Pinzke³, Nick Battaglia¹, Jon Sievers¹, Dick Bond¹

¹Canadian Institute for Theoretical Astrophysics, Canada ²Max-Planck Institute for Astrophysics, Germany ³Stockholm University, Sweden

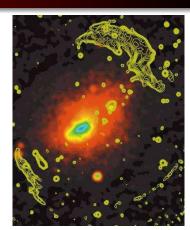
Nov 21, 2008 / Princeton University Cosmology Lunch

Outline

- Cosmological structure formation shocks
 - Cosmological galaxy cluster simulations
 - Mach numbers and shock acceleration
 - Cosmic ray transport and pressure distribution
- Diffuse radio emission in clusters
 - General picture of non-thermal processes in clusters
 - Shock related emission
 - Hadronically induced emission
- lacksquare High-energy γ -ray emission
 - Morphology and spectra
 - Predictions for Fermi
 - Minimum γ -ray flux


Outline

- Cosmological structure formation shocks
 - Cosmological galaxy cluster simulations
 - Mach numbers and shock acceleration
 - Cosmic ray transport and pressure distribution
- Diffuse radio emission in clusters
 - General picture of non-thermal processes in clusters
 - Shock related emission
 - Hadronically induced emission
- \bigcirc High-energy γ -ray emission
 - Morphology and spectra
 - Predictions for Fermi
 - Minimum γ -ray flux



Shocks in galaxy clusters

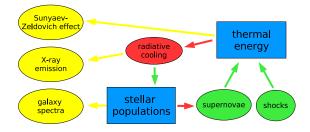
1E 0657-56 ("Bullet cluster")

(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl; Magellan/U.Arizona/D.Clowe et al.; Lensing: NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)

Abell 3667

(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)

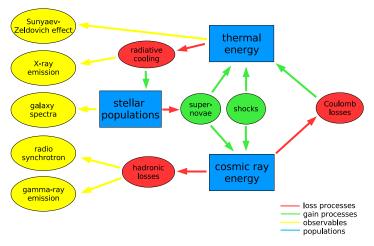
Topics of interest


- consistent picture of non-thermal processes in galaxy clusters (radio, soft/hard X-ray, γ -ray emission)
 - \rightarrow illuminating the process of structure formation
 - → history of individual clusters: cluster archeology
- understanding the non-thermal pressure distribution to address biases of thermal cluster observables
- nature of dark matter: annihilation signal vs. cosmic ray (CR) induced γ -rays
- gold sample of clusters for precision cosmology: using non-thermal observables to gauge hidden parameters
- fundamental plasma physics:
 - diffusive shock acceleration in high- β plasmas
 - origin and evolution of large scale magnetic fields
 - nature of turbulent models

Radiative simulations – flowchart

Cluster observables:

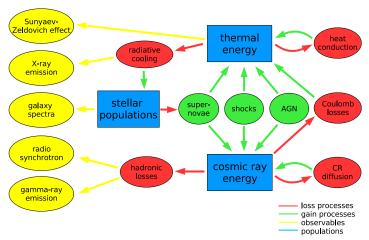
Physical processes in clusters:



Radiative simulations with cosmic ray (CR) physics

Cluster observables:

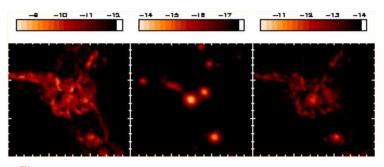
Physical processes in clusters:

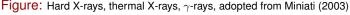


Radiative simulations with extended CR physics

Cluster observables:

Physical processes in clusters:





Previous numerical work on cosmic rays in clusters

COSMOCR: A numerical code for cosmic ray studies in computational cosmology (Miniati, 2001):

- advantages: good resolution in momentum space
- drawbacks: CR pressure not accounted for in EoM, insufficient spatial resolution (grid code), non-radiative gas physics

4 中 × 4 伊 × 4 连 × 4 连)

Our philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as necessary

Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

Our philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as necessary

Assumptions:

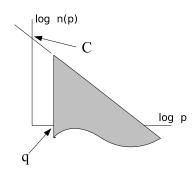
- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

Our philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as necessary


Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

CR spectral description

$$p = P_{\rm p}/m_{\rm p}\,c$$

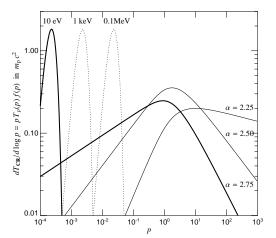
$$f(p) = \frac{dN}{dp\,dV} = C\,p^{-\alpha}\theta(p-q)$$

$$egin{aligned} q(
ho) &= \left(rac{
ho}{
ho_0}
ight)^{rac{1}{3}} q_0 \ C(
ho) &= \left(rac{
ho}{
ho_0}
ight)^{rac{lpha+2}{3}} C_0 \end{aligned}$$

$$C(\rho) = \left(\frac{\rho}{\rho_0}\right)^{\frac{\alpha}{3}} C_0$$

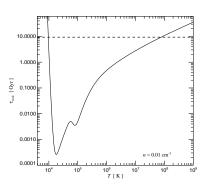
$$n_{\rm CR} = \int_0^\infty {\rm d}p \, f(p) = \frac{C \, q^{1-\alpha}}{\alpha-1}$$

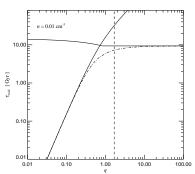
$$P_{\mathsf{CR}} = \frac{m_{\mathsf{p}}c^2}{3} \int_0^\infty \mathsf{d}p \, f(p) \, \beta(p) \, p$$


$$= \frac{C m_{\rm p} c^2}{6} \mathcal{B}_{\frac{1}{1+c^2}} \left(\frac{\alpha-2}{2}, \frac{3-\alpha}{2}\right)$$

Thermal & CR energy spectra

Kinetic energy per logarithmic momentum interval:



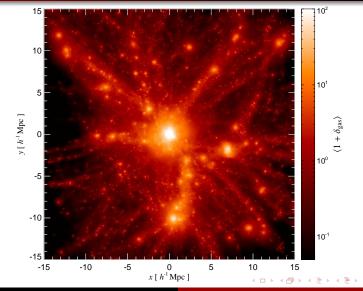


Cooling time scales of CR protons

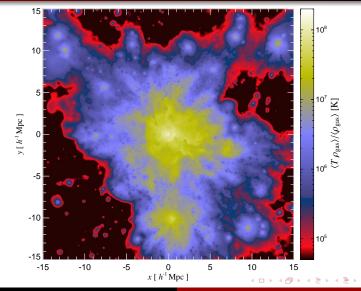
Cooling of primordial gas:

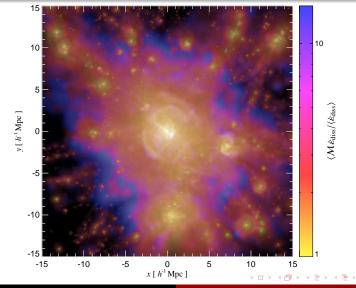
Cooling of cosmic rays:

CR protons in clusters


relativistic proton populations can often be expected, since

- acceleration mechanisms work for protons . . .
 - ... as efficient as for electrons (adiabatic compression) or
 - ... more efficient than for electrons (DSA, stochastic acc.)
- galactic CR protons are observed to have 100 times higher energy density than electrons
- CR protons are very inert against radiative losses and therefore long-lived (~ Hubble time in galaxy clusters, longer outside)
- → an energetic CR proton population should exist in clusters


Radiative cool core cluster simulation: gas density


Cosmological galaxy cluster simulations Mach numbers and shock acceleration Cosmic ray transport and pressure distribution

Mass weighted temperature

Mach number distribution weighted by $\varepsilon_{\text{diss}}$

Diffusive shock acceleration – Fermi 1 mechanism (1)

conditions:

- a collisionless shock wave
- magnetic fields to confine energetic particles
- plasma waves to scatter energetic particles → particle diffusion
- supra-thermal particles

mechanism:

- supra-thermal particles diffuse upstream across shock wave
- each shock crossing energizes particles through momentum transfer from recoil-free scattering off macroscopic scattering agents
- momentum increases exponentially with number of shock crossings
- particle number decreases exponentially with number of crossings

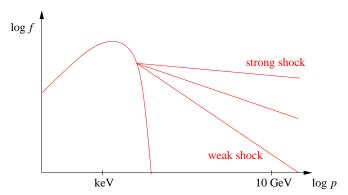
Diffusive shock acceleration – Fermi 1 mechanism (1)

conditions:

- a collisionless shock wave
- magnetic fields to confine energetic particles
- plasma waves to scatter energetic particles → particle diffusion
- supra-thermal particles

mechanism:

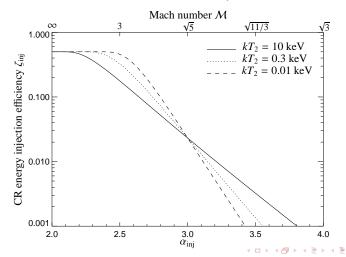
- supra-thermal particles diffuse upstream across shock wave
- each shock crossing energizes particles through momentum transfer from recoil-free scattering off macroscopic scattering agents
- momentum increases exponentially with number of shock crossings
- particle number decreases exponentially with number of crossings

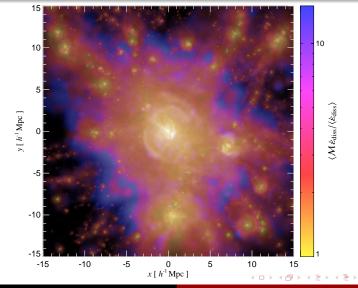


Diffusive shock acceleration – Fermi 1 mechanism (2)

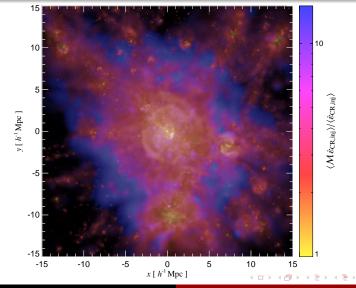
Spectral index depends on the Mach number of the shock,

$$\mathcal{M} = v_{\sf shock}/c_{\sf s}$$
:

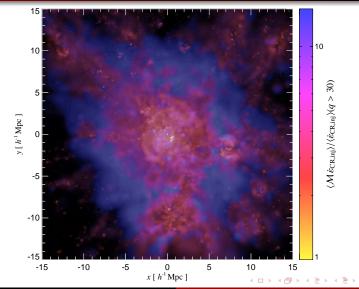



Diffusive shock acceleration – efficiency (3)

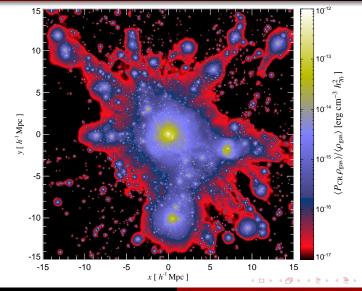
CR proton energy injection efficiency, $\zeta_{\text{inj}} = \varepsilon_{\text{CR}}/\varepsilon_{\text{diss}}$:



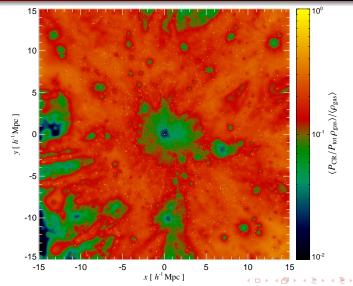
Mach number distribution weighted by $\varepsilon_{\text{diss}}$



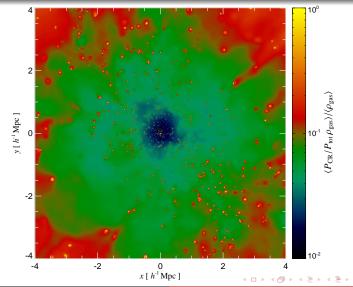
Mach number distribution weighted by $\varepsilon_{\text{CR,inj}}$



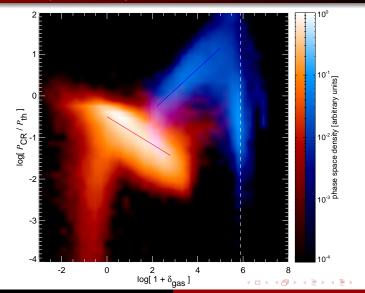
Mach number distribution weighted by $\varepsilon_{\text{CR,inj}}(q > 30)$



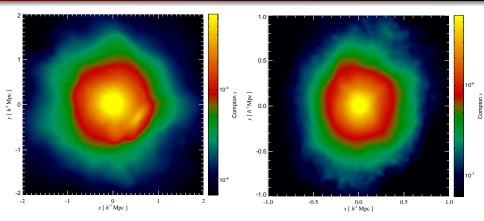
CR pressure P_{CR}



Relative CR pressure P_{CR}/P_{total}

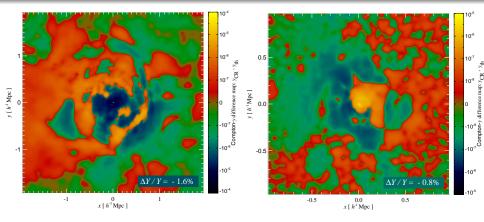


Relative CR pressure P_{CR}/P_{total}



CR phase-space diagram: final distribution @ z = 0

CR impact on SZ effect: Compton y parameter


large merging cluster, $M_{\rm vir} \simeq 10^{15} M_{\odot}/h$

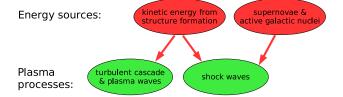
small cool core cluster, $M_{\rm vir} \simeq 10^{14} M_{\odot}/h$

Compton y difference map: $y_{CR} - y_{th}$

large merging cluster, $M_{\rm vir} \simeq 10^{15} M_{\odot}/h$

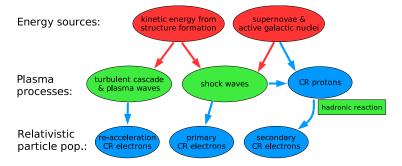
small cool core cluster, $M_{\rm vir} \simeq 10^{14} M_{\odot}/h$

Outline


- Cosmological structure formation shocks
 - Cosmological galaxy cluster simulations
 - Mach numbers and shock acceleration
 - Cosmic ray transport and pressure distribution
- Diffuse radio emission in clusters
 - General picture of non-thermal processes in clusters
 - Shock related emission
 - Hadronically induced emission
- \bigcirc High-energy γ -ray emission
 - Morphology and spectra
 - Predictions for Fermi
 - Minimum γ -ray flux

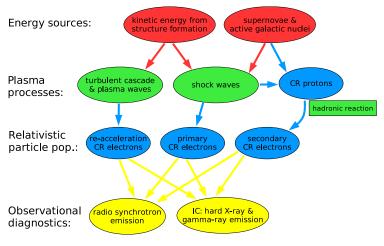
Multi messenger approach for non-thermal processes

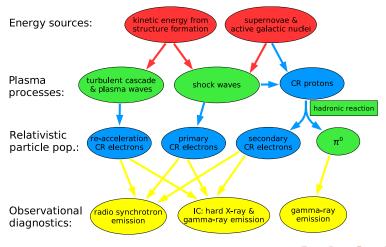
Relativistic populations and radiative processes in clusters:



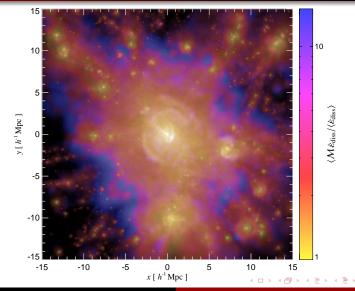
Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:



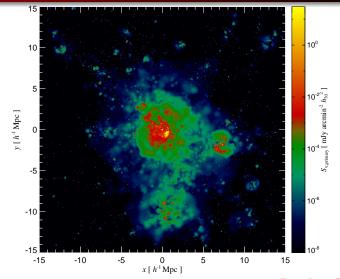

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

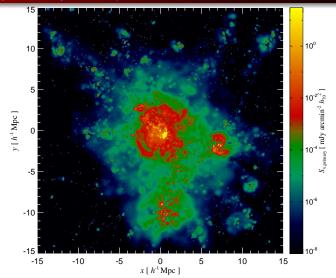


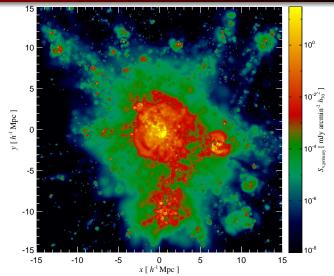
Multi messenger approach for non-thermal processes

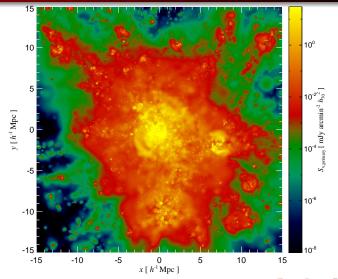
Relativistic populations and radiative processes in clusters:

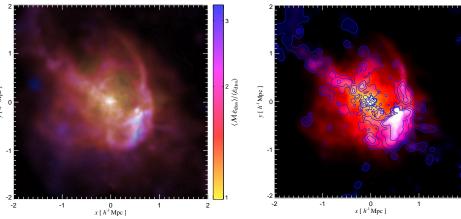


Cosmic web: Mach number


Radio gischt (relics): primary CRe (1.4 GHz)


Radio gischt: primary CRe (150 MHz)


Radio gischt: primary CRe (15 MHz)


Radio gischt: primary CRe (15 MHz), slower magnetic decline

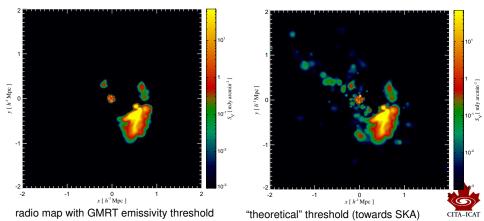
Radio gischt illuminates cosmic magnetic fields

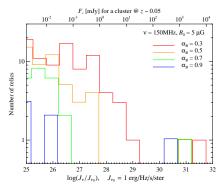
Structure formation shocks triggered by a recent merger of a large galaxy cluster. red/yellow: shock-dissipated energy, blue/contours: 150 MHz radio gischt emission from shock-accelerated CRe

Diffuse cluster radio emission – an inverse problem Exploring the magnetized cosmic web

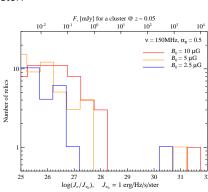
Battaglia, Pfrommer, Sievers, Bond, Enßlin (2008):

By suitably combining the observables associated with diffuse polarized radio emission at low frequencies ($\nu \sim$ 150 MHz, GMRT/LOFAR/MWA/LWA), we can probe


- the strength and coherence scale of magnetic fields on scales of galaxy clusters,
- the process of diffusive shock acceleration of electrons,
- the existence and properties of the WHIM,
- the exploration of observables beyond the thermal cluster emission which are sensitive to the dynamical state of the cluster.


Probing the large scale magnetic fields Probing the large scale magnetic fields

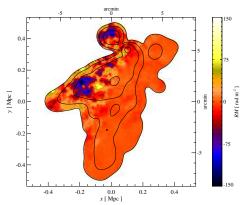
Finding radio relics in 3D cluster simulations using a friends-of-friends finder with an emission threshold \rightarrow relic luminosity function



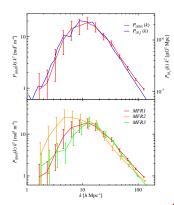
Relic luminosity function – theory

Relic luminosity function is very sensitive to large scale behavior of the magnetic field and dynamical state of cluster:

varying magnetic decline with radius

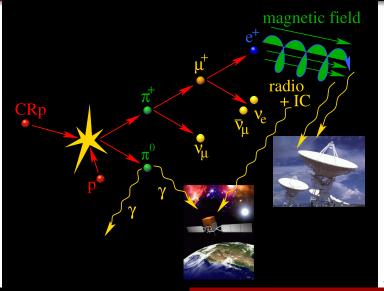


varying overall normalization of the magnetic field

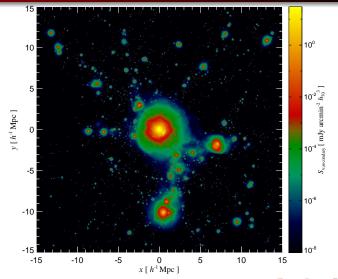


Rotation measure (RM)

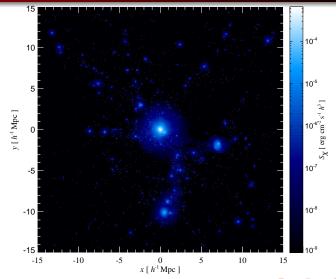
RM maps and power spectra have the potential to infer the magnetic pressure support and discriminate the nature of MHD turbulence in clusters:

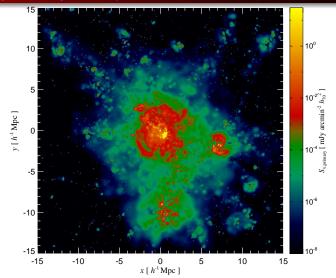

Kolmogorow and Burgers turbulence models.

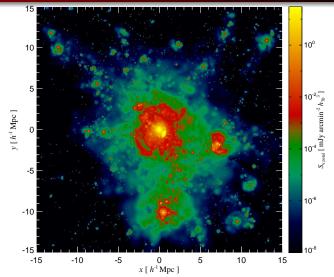
Left: RM map of the largest relic, right: Magnetic and RM power spectrum comparing

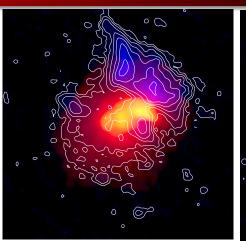


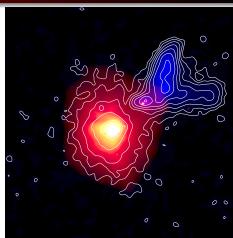
Hadronic cosmic ray proton interaction


Cluster radio emission by hadronically produced CRe

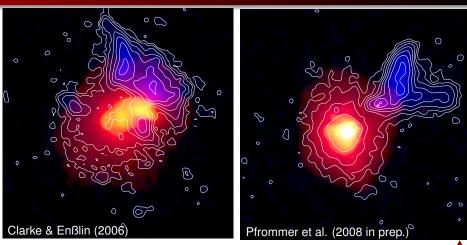

Thermal X-ray emission


Radio gischt: primary CRe (150 MHz)


Radio gischt + central hadronic halo = giant radio halo



Which one is the simulation/observation of A2256?



red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic

Observation – simulation of A2256

red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic

Unified model of radio halos and relics

Cluster radio emission varies with dynamical stage of a cluster:

- Cluster relaxes and develops cool core: radio mini-halo develops due to hadronically produced CR electrons, magnetic fields are adiabatically compressed (cooling gas triggers radio mode feedback of AGN that outshines mini-halo → selection effect).
- Cluster experiences major merger: two leading shock waves are produced that become stronger as they break at the shallow peripheral cluster potential → shock-acceleration of primary electrons and development of radio relics.
- Generation of morphologically complex network of virializing shock waves. Lower sound speed in the cluster outskirts lead to strong shocks
 → irregular distribution of primary electrons, MHD turbulence amplifies magnetic fields.
- Giant radio halo develops due to (1) boost of the hadronically generated radio emission in the center (2) irregular radio 'gischt' emission in the cluster outskirts.

Non-thermal emission from clusters

Exploring the memory of structure formation

- primary, shock-accelerated CR electrons resemble current accretion and merging shock waves
- CR protons/hadronically produced CR electrons trace the time integrated non-equilibrium activities of clusters that is modulated by the recent dynamical activities

How can we read out this information about non-thermal populations? \rightarrow new era of multi-frequency experiments, e.g.:

- GMRT, LOFAR, MWA, LWA, SKA: interferometric array of radio telescopes at low frequencies ($\nu \simeq (15-240)~\text{MHz})$
- Simbol-X/NuSTAR: future hard X-ray satellites ($E \simeq (1 100) \text{ keV}$)
- Fermi γ -ray space telescope ($E \simeq (0.1-300)$ GeV)
- Imaging air Čerenkov telescopes ($E \simeq (0.1 100)$ TeV)

Non-thermal emission from clusters

Exploring the memory of structure formation

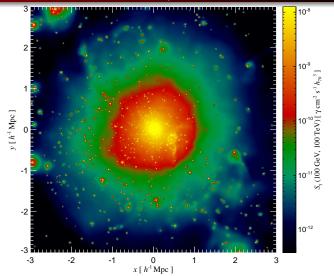
- primary, shock-accelerated CR electrons resemble current accretion and merging shock waves
- CR protons/hadronically produced CR electrons trace the time integrated non-equilibrium activities of clusters that is modulated by the recent dynamical activities

How can we read out this information about non-thermal populations? → new era of multi-frequency experiments, e.g.:

- GMRT, LOFAR, MWA, LWA, SKA: interferometric array of radio telescopes at low frequencies ($\nu \simeq (15-240) \, \text{MHz}$)
- Simbol-X/NuSTAR: future hard X-ray satellites ($E \simeq (1 100) \text{ keV}$)
- Fermi γ -ray space telescope ($E \simeq (0.1 300)$ GeV)
- Imaging air Čerenkov telescopes ($E \simeq (0.1 100)$ TeV)

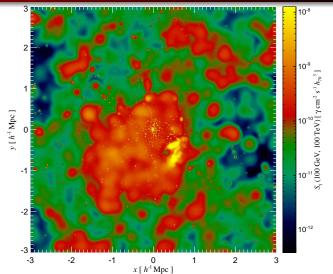
Outline

- Cosmological structure formation shocks
 - Cosmological galaxy cluster simulations
 - Mach numbers and shock acceleration
 - Cosmic ray transport and pressure distribution
- Diffuse radio emission in clusters
 - General picture of non-thermal processes in clusters
 - Shock related emission
 - Hadronically induced emission
- lacksquare High-energy γ -ray emission
 - Morphology and spectra
 - Predictions for Fermi
 - Minimum γ -ray flux

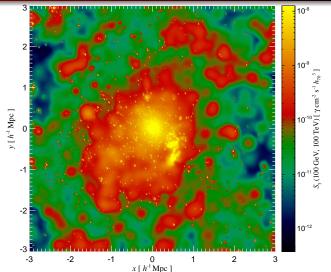

The quest for high-energy γ -ray emission from clusters Multi-messenger approach towards fundamental astrophysics

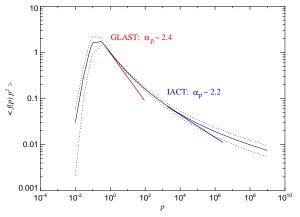
- complements current non-thermal observations of galaxy clusters in radio and hard X-rays:
 - identifying the nature of emission processes
 - unveiling the contribution of cosmic ray protons
- elucidates the nature of dark matter:
 - ullet disentangling annihilation signal vs. CR induced γ -rays
 - spectral and morphological γ-ray signatures → DM properties
- probes plasma astrophysics such as macroscopic parameters for diffusive shock acceleration

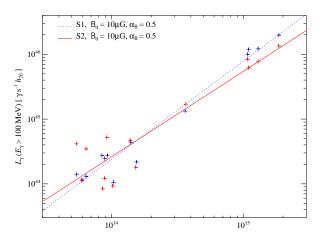
Hadronic γ -ray emission, $E_{\gamma} > 100 \text{ GeV}$



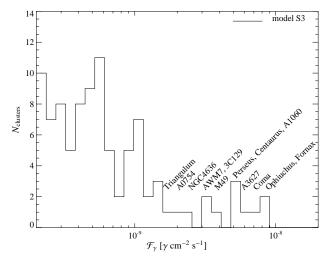
Morphology and spectra Predictions for *Fermi* Minimum ~-ray flux


Inverse Compton emission, $E_{IC} > 100 \text{ GeV}$

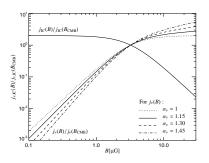

Total γ -ray emission, $E_{\gamma} > 100 \text{ GeV}$


Universal CR spectrum in clusters

Normalized CR spectrum shows universal concave shape → governed mainly by hierarchical structure formation and adiabatic CR transport processes. (Pinzke & Pfrommer, in prep.)


Gamma-ray scaling relations

Scaling relation + complete sample of the brightest X-ray clusters (extended HIFLUCGS) → predictions for *Fermi*


Predicted cluster sample for Fermi

Minimum γ -ray flux in the hadronic model (1)

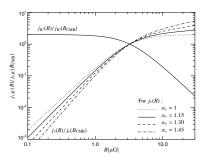
Synchrotron emissivity of highenergy, steady state electron distribution is independent of the magnetic field for $B \gg B_{\text{CMB}}!$

Synchrotron luminosity:

$$egin{array}{lll} L_{
u} & = & A_{
u} \int \mathrm{d}\,V\, n_{\mathrm{CR}} n_{\mathrm{gas}} rac{arepsilon_{B}^{(lpha_{
u}+1)/2}}{arepsilon_{\mathrm{CMB}} + arepsilon_{B}} \ &
ightarrow & A_{
u} \int \mathrm{d}\,V\, n_{\mathrm{CR}} n_{\mathrm{gas}} & (arepsilon_{B} \gg arepsilon_{\mathrm{CMB}} \end{array}$$

γ -ray luminosity

$$L_{\gamma} = A_{\gamma} \int {
m d} V \, n_{
m CR} n_{
m gas}$$


ightarrow minimum γ -ray flux:

$$\mathcal{F}_{\gamma, \min} = \frac{A_{\gamma}}{A_{\nu}} \frac{L_{\nu}}{4\pi D^2}$$

Minimum γ -ray flux in the hadronic model (1)

Synchrotron emissivity of highenergy, steady state electron distribution is independent of the magnetic field for $B \gg B_{CMB}$!

Synchrotron luminosity:

$$\begin{array}{rcl} \textit{L}_{\nu} & = & \textit{A}_{\nu} \int \textrm{d}\textit{V} \, \textit{n}_{\text{CR}} \textit{n}_{\text{gas}} \frac{\varepsilon_{\textit{B}}^{(\alpha_{\nu}+1)/2}}{\varepsilon_{\text{CMB}} + \varepsilon_{\textit{B}}} \\ & \rightarrow & \textit{A}_{\nu} \int \textrm{d}\textit{V} \, \textit{n}_{\text{CR}} \textit{n}_{\text{gas}} \quad (\varepsilon_{\textit{B}} \gg \varepsilon_{\text{CMB}}) \end{array}$$

 γ -ray luminosity:

$$L_{\gamma} = A_{\gamma} \int \mathrm{d}V \, n_{\mathrm{CR}} n_{\mathrm{gas}}$$

 \rightarrow minimum γ -ray flux:

$$\mathcal{F}_{\gamma, \text{min}} = \frac{A_{\gamma}}{A_{\nu}} \frac{L_{\nu}}{4\pi D^2}$$

Minimum γ -ray flux in the hadronic model (2)

Minimum γ -ray flux ($E_{\gamma} > 100$ MeV) for the Coma cluster:

CR spectral index	2.0	2.3	2.6	2.9
$\mathcal{F}_{\gamma} \ [10^{-10} \gamma \ cm^{-2} s^{-1}]$	0.8	1.6	3.4	7.1

• These limits can be made even tighter when considering energy constraints, $P_B < P_{\rm gas}/20$ and B-fields derived from Faraday rotation studies, $B_0 = 3 \,\mu{\rm G}$:

$$\mathcal{F}_{\gamma, extsf{COMA}} \gtrsim 2 imes 10^{-9} \gamma \, extsf{cm}^{-2} extsf{s}^{-1} = \mathcal{F}_{ extsf{Fermi, 2yr}}$$

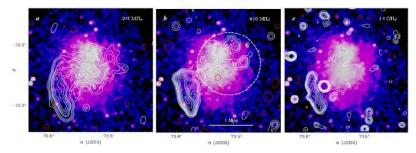
- Non-detection by Fermi seriously challenges the hadronic model.
- Potential of measuring the CR acceleration efficiency for diffusive shock acceleration.

Conclusions

In contrast to the thermal plasma, the non-equilibrium distributions of CRs preserve the information about their injection and transport processes and provide thus a unique window of current and past structure formation processes and fundamental plasma astrophysics!

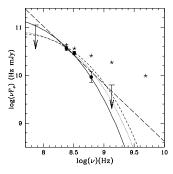
- Cosmological hydrodynamical simulations are indispensable for understanding non-thermal processes in galaxy clusters
 → illuminating the process of structure formation
- Unified model for the generation of giant radio halos, radio mini-halos, and relics: interplay of primary and secondary synchrotron emission.
- We predict Fermi to detect \sim ten γ -ray clusters: test of the presented scenario

Literature for the talk


- Battaglia, Pfrommer, Sievers, Bond, Enßlin, 2008, MNRAS, in print, arXiv:0806.3272, Exploring the magnetized cosmic web through low frequency radio emission
- Pfrommer, 2008, MNRAS, 385, 1242 Simulating cosmic rays in clusters of galaxies – III. Non-thermal scaling relations and comparison to observations
- ullet Pfrommer, Enßlin, Springel, 2008, MNRAS, 385, 1211, Simulating cosmic rays in clusters of galaxies II. A unified scheme for radio halos and relics with predictions of the γ -ray emission
- Pfrommer, Enßlin, Springel, Jubelgas, Dolag, 2007, MNRAS, 378, 385, Simulating cosmic rays in clusters of galaxies – I. Effects on the Sunyaev-Zel'dovich effect and the X-ray emission
- Pfrommer, Springel, Enßlin, Jubelgas, 2006, MNRAS, 367, 113,
 Detecting shock waves in cosmological smoothed particle hydrodynamics simulations
- Enßlin, Pfrommer, Springel, Jubelgas, 2007, A&A, 473, 41,
 Cosmic ray physics in calculations of cosmological structure formation
- Jubelgas, Springel, Enßlin, Pfrommer, A&A, , 481, 33,
 Cosmic ray feedback in hydrodynamical simulations of galaxy formation

Diffuse low-frequency radio emission in Abell 521

Brunetti et al. 2008, Nature, 455, 944:


colors: thermal X-ray emission, contours: diffuse radio emission,

→ presence of radio structure at 610 MHz and their absence at three
times higher/lower frequency is incompatible with synchrotron theory!

Radio spectrum of "radio halo" in Abell 521

Brunetti et al. 2008, Nature, 455, 944:

- asterisks denote spectrum of the radio relic with $\alpha_{\nu} \sim$ 1.5
- filled circles that of "radio halo" with $\alpha_{\nu} \sim$ 2.1

"radio halo" interpretation:

- re-acceleration of relativistic electrons (Brunetti et al.)
- hadronic model inconsistent with spectra and morphology

"radio relic" interpretations:

- aged population of shock-accelerated electrons
- populations of several shock-compressed radio ghosts (aged radio lobes)
- \rightarrow polarization is key to differentiate

