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Exploring complementary methods for studying cluster formation

Each frequency window is sensitive to different processes and
cluster properties:

optical: gravitational lensing of background galaxies, galaxy velocity
dispersion measure gravitational mass

X-ray: thermal plasma emission, FX ∝ n2
th
√

Tth → thermal gas with
abundances, cluster potential, substructure

Sunyaev-Zel’dovich effect: IC up-scattering of CMB photons by thermal
electrons, FSZ ∝ pth → cluster velocity, turbulence, high-z clusters

radio synchrotron halos: Fsy ∝ εBεCRe → magnetic fields, CR electrons,
shock waves

diffuse γ-ray emission: Fγ ∝ nthnCRp → CR protons
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Coma cluster: member galaxies

optical emission,
(credit: Kitt Peak)

infra-red emission,
(credit: ISO)
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Coma cluster: (non-)thermal plasma

thermal X-ray emission,
(credit: S.L. Snowden/MPE/ROSAT)

radio synchrotron emission,
(credit: B.Deiss/Effelsberg)
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Dynamical picture of cluster formation

structure formation in the ΛCDM universe predicts the
hierarchical build-up of dark matter halos from small scales
to successively larger scales
clusters of galaxies currently sit atop this hierarchy as the
largest objects that have had time to collapse under the
influence of their own gravity
cluster are dynamically evolving systems that have not
finished forming and equilibrating, τdyn ∼ 1 Gyr

→ two extreme dynamical states of galaxy clusters:
merging clusters and cool core clusters, which are relaxed
systems where the central gas develops a dense cooling core
due to the short thermal cooling times
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Radiative simulations with cosmic ray (CR) physics
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Philosophy and description

An accurate description of CRs should follow the evolution of
the spectral energy distribution of CRs as a function of time and
space, and keep track of their dynamical, non-linear coupling
with the hydrodynamics.

We seek a compromise between
capturing as many physical properties as possible
requiring as little computational resources as necessary

Assumptions:
protons dominate the CR population
a momentum power-law is a typical spectrum
CR energy & particle number conservation
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CR spectral description
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Thermal & CR energy spectra

Kinetic energy per logarithmic momentum interval:
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Radiative cooling

Cooling of primordial gas:
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Cosmic rays in clusters – flowchart
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Observations of cluster shock waves

1E 0657-56 (“Bullet cluster”)
(NASA/SAO/CXC/M.Markevitch et al.)

Abell 3667
(radio: Austr.TC Array. X-ray: ROSAT/PSPC.)
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Diffusive shock acceleration – Fermi 1 mechanism (1)
conditions:

a collisionless shock wave

magnetic fields to confine energetic particles

plasma waves to scatter energetic particles→ particle diffusion

supra-thermal particles

mechanism:
supra-thermal particles diffuse upstream across shock wave

each shock crossing energizes particles through momentum transfer
from recoil-free scattering off the macroscopic scattering agents

momentum increases exponential with number of shock crossings

number of particles decreases exponential with number of crossings

→ power-law CR distribution

Christoph Pfrommer Cosmic Rays and Cluster Cosmology: A Critical Review



Introduction to galaxy clusters
Cosmic rays in cosmological simulations

Cosmological implications of cosmic rays

Cosmic ray acceleration
Radiative cluster simulations
Modified X-ray emission and SZ effect

Diffusive shock acceleration – Fermi 1 mechanism (1)
conditions:

a collisionless shock wave

magnetic fields to confine energetic particles

plasma waves to scatter energetic particles→ particle diffusion

supra-thermal particles

mechanism:
supra-thermal particles diffuse upstream across shock wave

each shock crossing energizes particles through momentum transfer
from recoil-free scattering off the macroscopic scattering agents

momentum increases exponential with number of shock crossings

number of particles decreases exponential with number of crossings

→ power-law CR distribution

Christoph Pfrommer Cosmic Rays and Cluster Cosmology: A Critical Review



Introduction to galaxy clusters
Cosmic rays in cosmological simulations

Cosmological implications of cosmic rays

Cosmic ray acceleration
Radiative cluster simulations
Modified X-ray emission and SZ effect

Diffusive shock acceleration – Fermi 1 mechanism (2)

Spectral index depends on the Mach number of the shock,
M = υshock/cs:

log p

strong shock

10 GeV

weak shock

keV

log f
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Cosmological Mach numbers: weighted by εdiss
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Cosmological Mach numbers: weighted by εCR
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Cosmological Mach number statistics
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more energy is dissipated at later times

mean Mach number decreases with time
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Cosmological statistics: CR acceleration
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all shocks
δgas > 10, internal
δgas < 10, external

more energy is dissipated in weak shocks internal to collapsed
structures than in external strong shocks

non-radiative simulations: injected CR energy inside cluster
makes up only a small fraction of the total dissipated energy
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Radiative cool core cluster simulation: gas density
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Mach number distribution weighted by εdiss
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Thermal X-ray emission
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Difference map of SX : SX,CR − SX,th

-10-2

-10-3

-10-4

-10-5

0

10-5

10-4

10-3

10-2

S X
 d

if
fe

re
nc

e 
m

ap
: S

X
,C

R
 -

 S
X

,th

∆LX / LX (r > 5 h-1 kpc ) = 26 %
-0.2 -0.1 0.0 0.1 0.2

-0.2

-0.1

0.0

0.1

0.2

-0.2 -0.1 0.0 0.1 0.2
x [ h-1 Mpc ]

-0.2

-0.1

0.0

0.1

0.2
y 

[ 
h-1

 M
pc

 ]

-0.2 -0.1 0.0 0.1 0.2

-0.2

-0.1

0.0

0.1

0.2

Christoph Pfrommer Cosmic Rays and Cluster Cosmology: A Critical Review



Introduction to galaxy clusters
Cosmic rays in cosmological simulations

Cosmological implications of cosmic rays

Cosmic ray acceleration
Radiative cluster simulations
Modified X-ray emission and SZ effect

Softer effective adiabatic index of composite gas
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Compton y parameter in radiative cluster simulation
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Compton y difference map: yCR − yth
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Pressure profiles with and without CRs
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Modified X-ray scaling relations

M limM lim total cluster mass M

Simulation with CRs

Simulation without CRs

X,minL

XL

CR feedback lowers the effective mass threshold for  
X−ray flux−limited cluster sample

X−ray luminosity
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Degeneracies of the cluster redshift distribution (1)

The number density of massive clusters is exponentially
sensitive to the amplitude of the initial Gaussian
fluctuations, whose normalization we usually describe
using σ8, the rms fluctuations of overdensity within spheres
of 8 h−1 Mpc.
The cluster redshift distribution dn/dz is increased by a
lower effective mass threshold Mlim in a survey or by
increasing σ8 respectively Ωm → degeneracies of
cosmological parameters with respect to cluster physics.
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Degeneracies of the cluster redshift distribution (2)

0 0.5 1 1.5 2
0

500

1000

1500

2000

2500

z

dN
 / 

dz
d

Ω
  (

10
4  d

eg
2 )

σ
8
 − Mass Limit degeneracy

 

 

N
clusters

 ~ 25000
σ

8
 = 0.77,  M

lim
 = 2e14 Msun

σ
8
 = 0.83, M

lim
 = 2e14 Msun

σ
8
 = 0.77, M

lim
 = 1.65e14 Msun

σ
8
 = 0.77, M

lim
 = 1.62e14 Msun

Christoph Pfrommer Cosmic Rays and Cluster Cosmology: A Critical Review



Introduction to galaxy clusters
Cosmic rays in cosmological simulations

Cosmological implications of cosmic rays

Modified X-ray scaling relations
Fisher matrix analysis
Degeneracies of cosmological parameters

Fisher matrix analysis (1)

Survey Fisher matrix information for a data set:

Fij ≡ −
〈

∂2 lnL
∂pi ∂pj

〉
=

∑
n

∂Nn

∂pi

∂Nn

∂pj

1
Nn

,

where L is the likelihood for an observable (proportional to
dN/dz for the redshift distribution), pi describes our parameter
set, the sum extends over the redshift bins, and Nn represents
the number of surveyed clusters in each redshift bin n
(statistically independent, Poisson distributed).

The inverse F−1
ij describes the best attainable covariance

matrix [Cij ] (assuming Gaussianity) for measurement of the
parameters considered. The diagonal terms of [Cij ] then give
the uncertainties of each of our parameters.
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Fisher matrix analysis (2)

Assumed survey details:
survey area A = 104 square degrees (1/4 of the sky)
redshift range: 0 < z < 2
bolometric X-ray flux limit FX = 2.5× 10−13 erg s−1 cm−2

sample size: 25000 clusters

Fisher matrix preliminaries:
free parameters: 2 parameters of the scaling relations:
slope and normalization, Ωm, Ωb, ns, h, σ8

priors: flat Universe, WMAP prior on h = 72± 5
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Degeneracy of σ8 with cosmic ray physics (preliminary)
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Summary

CR physics modifies the intracluster medium in merging
clusters and cooling core regions:

Galaxy cluster X-ray emission is enhanced up to 35%,
systematic effect in low-mass cooling core clusters.
Integrated Sunyaev-Zel’dovich effect remains largely
unchanged while the Compton-y profile is more peaked.
Cosmological parameters such as σ8 and Ωm as derived
from clusters are degenerate with cluster parameters.
Understanding non-thermal processes is crucial for using
clusters as cosmological probes (high-z scaling relations).
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