Cosmic Rays and Cluster Cosmology: A Critical Review

Christoph Pfrommer¹

in collaboration with

Subha Majumdar¹, Volker Springel², Torsten Enßlin²

¹Canadian Institute for Theoretical Astrophysics, Canada

²Max-Planck Institute for Astrophysics, Germany

November, 10 2006 / Great Lakes Cosmology Meeting

Outline

Introduction to galaxy clusters

- Properties of galaxy clusters
- Physical processes in simulations
- Cosmic ray physics
- 2 Cosmic rays in cosmological simulations
 - Cosmic ray acceleration
 - Radiative high-resolution cluster simulations
 - Modified X-ray emission and Sunyaev-Zel'dovich effect
- Osmological implications of cosmic rays
 - Modified X-ray scaling relations
 - Fisher matrix analysis
 - Degeneracies of cosmological parameters

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Observational properties of galaxy clusters Exploring complementary methods for studying cluster formation

Each frequency window is sensitive to different processes and cluster properties:

- optical: gravitational lensing of background galaxies, galaxy velocity dispersion measure gravitational mass
- X-ray: thermal plasma emission, $F_X \propto n_{th}^2 \sqrt{T_{th}} \rightarrow$ thermal gas with abundances, cluster potential, substructure
- Sunyaev-Zel'dovich effect: IC up-scattering of CMB photons by thermal electrons, F_{sz} ∝ p_{th} → cluster velocity, turbulence, high-z clusters
- radio synchrotron halos: F_{sy} ∝ ε_Bε_{CRe} → magnetic fields, CR electrons, shock waves
- diffuse γ -ray emission: $F_{\gamma} \propto n_{\text{th}} n_{\text{CRp}} \rightarrow \text{CR}$ protons

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Observational properties of galaxy clusters Exploring complementary methods for studying cluster formation

Each frequency window is sensitive to different processes and cluster properties:

- optical: gravitational lensing of background galaxies, galaxy velocity dispersion measure gravitational mass
- X-ray: thermal plasma emission, $F_X \propto n_{th}^2 \sqrt{T_{th}} \rightarrow$ thermal gas with abundances, cluster potential, substructure
- Sunyaev-Zel'dovich effect: IC up-scattering of CMB photons by thermal electrons, F_{sz} ∝ p_{th} → cluster velocity, turbulence, high-z clusters
- radio synchrotron halos: F_{sy} ∝ ε_Bε_{CRe} → magnetic fields, CR electrons, shock waves
- diffuse γ -ray emission: $F_{\gamma} \propto n_{\text{th}} n_{\text{CRp}} \rightarrow \text{CR}$ protons

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Observational properties of galaxy clusters Exploring complementary methods for studying cluster formation

Each frequency window is sensitive to different processes and cluster properties:

- optical: gravitational lensing of background galaxies, galaxy velocity dispersion measure gravitational mass
- X-ray: thermal plasma emission, $F_X \propto n_{th}^2 \sqrt{T_{th}} \rightarrow$ thermal gas with abundances, cluster potential, substructure
- Sunyaev-Zel'dovich effect: IC up-scattering of CMB photons by thermal electrons, F_{SZ} ∝ p_{th} → cluster velocity, turbulence, high-z clusters
- radio synchrotron halos: F_{sy} ∝ ε_Bε_{CRe} → magnetic fields, CR electrons, shock waves
- diffuse γ -ray emission: $F_{\gamma} \propto n_{\text{th}} n_{\text{CRp}} \rightarrow \text{CR}$ protons

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Observational properties of galaxy clusters Exploring complementary methods for studying cluster formation

Each frequency window is sensitive to different processes and cluster properties:

- optical: gravitational lensing of background galaxies, galaxy velocity dispersion measure gravitational mass
- X-ray: thermal plasma emission, $F_X \propto n_{th}^2 \sqrt{T_{th}} \rightarrow$ thermal gas with abundances, cluster potential, substructure
- Sunyaev-Zel'dovich effect: IC up-scattering of CMB photons by thermal electrons, F_{SZ} ∝ p_{th} → cluster velocity, turbulence, high-z clusters
- radio synchrotron halos: F_{sy} ∝ ε_Bε_{CRe} → magnetic fields, CR electrons, shock waves
- diffuse γ -ray emission: $F_{\gamma} \propto n_{\text{th}} n_{\text{CRp}} \rightarrow \text{CR protons}$

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Coma cluster: member galaxies

optical emission,

infra-red emission,

(credit: ISO)

(credit: Kitt Peak)

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Coma cluster: (non-)thermal plasma

thermal X-ray emission,

(credit: S.L. Snowden/MPE/ROSAT)

radio synchrotron emission,

(credit: B.Deiss/Effelsberg)

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Dynamical picture of cluster formation

- structure formation in the ACDM universe predicts the hierarchical build-up of dark matter halos from small scales to successively larger scales
- clusters of galaxies currently sit atop this hierarchy as the largest objects that have had time to collapse under the influence of their own gravity
- cluster are dynamically evolving systems that have not finished forming and equilibrating, $\tau_{\rm dyn} \sim 1~{\rm Gyr}$

 \rightarrow two extreme dynamical states of galaxy clusters: **merging clusters** and **cool core clusters**, which are relaxed systems where the central gas develops a dense cooling core due to the short thermal cooling times

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Radiative simulations – flowchart

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Radiative simulations with cosmic ray (CR) physics

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Radiative simulations with extended CR physics

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as necessary

Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as necessary

Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as necessary

Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

∃ → < ∃ →</p>

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

CR spectral description

イロト イポト イヨト イヨト

CITA-ICAT

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Thermal & CR energy spectra

Kinetic energy per logarithmic momentum interval:

▶ < ⊇ >

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Radiative cooling

Cooling of primordial gas:

Cooling of cosmic rays:

CITA-ICAT

코 🕨 🖈 프

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Cosmic rays in clusters – flowchart

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Observations of cluster shock waves

1E 0657-56 ("Bullet cluster")

(NASA/SAO/CXC/M.Markevitch et al.)

Abell 3667

(radio: Austr.TC Array. X-ray: ROSAT/PSPC.)

ヘロト 人間 ト 人 ヨ ト 人

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Diffusive shock acceleration – Fermi 1 mechanism (1)

conditions:

- a collisionless shock wave
- magnetic fields to confine energetic particles
- $\bullet\,$ plasma waves to scatter energetic particles \rightarrow particle diffusion
- supra-thermal particles

mechanism:

- supra-thermal particles diffuse upstream across shock wave
- each shock crossing energizes particles through momentum transfer from recoil-free scattering off the macroscopic scattering agents
- momentum increases exponential with number of shock crossings
- number of particles decreases exponential with number of crossings
- → power-law CR distribution

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Diffusive shock acceleration – Fermi 1 mechanism (1)

conditions:

- a collisionless shock wave
- magnetic fields to confine energetic particles
- plasma waves to scatter energetic particles \rightarrow particle diffusion
- supra-thermal particles

mechanism:

- supra-thermal particles diffuse upstream across shock wave
- each shock crossing energizes particles through momentum transfer from recoil-free scattering off the macroscopic scattering agents
- momentum increases exponential with number of shock crossings
- number of particles decreases exponential with number of crossings
- \rightarrow power-law CR distribution

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Diffusive shock acceleration – Fermi 1 mechanism (2)

Spectral index depends on the Mach number of the shock, $\mathcal{M} = v_{shock}/c_s$:

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Cosmological Mach numbers: weighted by *e*diss

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Cosmological Mach numbers: weighted by ε_{CR}

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Cosmological Mach number statistics

- more energy is dissipated at later times
- mean Mach number decreases with time

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Cosmological statistics: CR acceleration

- more energy is dissipated in weak shocks internal to collapsed structures than in external strong shocks
- non-radiative simulations: injected CR energy inside cluster makes up only a small fraction of the total dissipated energy

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Radiative simulations with extended CR physics

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Radiative cool core cluster simulation: gas density

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Mass weighted temperature

Christoph Pfrommer Cosr

Cosmic Rays and Cluster Cosmology: A Critical Review

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Mach number distribution weighted by ε_{diss}

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Relative CR pressure P_{CR}/P_{total}

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Relative CR pressure P_{CR}/P_{total}

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Thermal X-ray emission

Christoph Pfrommer Cosmic Rays

Cosmic Rays and Cluster Cosmology: A Critical Review

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Difference map of S_X : $S_{X,CR} - S_{X,th}$

Christoph Pfrommer C

Cosmic Rays and Cluster Cosmology: A Critical Review

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Softer effective adiabatic index of composite gas

CITA-ICAT

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Compton y parameter in radiative cluster simulation

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Compton y difference map: $y_{CR} - y_{th}$

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Pressure profiles with and without CRs

Modified X-ray scaling relations Fisher matrix analysis Degeneracies of cosmological parameters

Modified X-ray scaling relations

CITA-ICAT

Degeneracies of the cluster redshift distribution (1)

- The number density of massive clusters is exponentially sensitive to the amplitude of the initial Gaussian fluctuations, whose normalization we usually describe using σ_8 , the *rms* fluctuations of overdensity within spheres of 8 h^{-1} Mpc.
- The cluster redshift distribution dn/dz is increased by a lower effective mass threshold M_{lim} in a survey or by increasing σ₈ respectively Ω_m → degeneracies of cosmological parameters with respect to cluster physics.

Modified X-ray scaling relations Fisher matrix analysis Degeneracies of cosmological parameters

Degeneracies of the cluster redshift distribution (2)

Christoph Pfrommer Cosm

Cosmic Rays and Cluster Cosmology: A Critical Review

Modified X-ray scaling relations Fisher matrix analysis Degeneracies of cosmological parameters

Fisher matrix analysis (1)

Survey Fisher matrix information for a data set:

$$F_{ij} \equiv -\left\langle \frac{\partial^2 \ln \mathcal{L}}{\partial p_i \, \partial p_j} \right\rangle = \sum_n \frac{\partial N_n}{\partial p_i} \frac{\partial N_n}{\partial p_j} \frac{1}{N_n}$$

where \mathcal{L} is the likelihood for an observable (proportional to dN/dz for the redshift distribution), p_i describes our parameter set, the sum extends over the redshift bins, and N_n represents the number of surveyed clusters in each redshift bin n (statistically independent, Poisson distributed).

The inverse F_{ij}^{-1} describes the best attainable covariance matrix $[C_{ij}]$ (assuming Gaussianity) for measurement of the parameters considered. The diagonal terms of $[C_{ij}]$ then give the uncertainties of each of our parameters.

ヘロト ヘアト ヘヨト ヘ

Modified X-ray scaling relations Fisher matrix analysis Degeneracies of cosmological parameters

Fisher matrix analysis (2)

Assumed survey details:

- survey area $A = 10^4$ square degrees (1/4 of the sky)
- redshift range: 0 < z < 2
- bolometric X-ray flux limit $F_{\rm X} = 2.5 \times 10^{-13}$ erg s⁻¹ cm⁻²
- sample size: 25000 clusters

Fisher matrix preliminaries:

- free parameters: 2 parameters of the scaling relations: slope and normalization, Ω_m, Ω_b, n_s, h, σ₈
- priors: flat Universe, WMAP prior on $h = 72 \pm 5$

イロト イポト イヨト

Modified X-ray scaling relations Fisher matrix analysis Degeneracies of cosmological parameters

Degeneracy of σ_8 with cosmic ray physics (preliminary)

2→ < 2

Christoph Pfrommer Cosmic Rays and Cluster Cosmology: A Critical Review

 $\langle \Box \rangle \langle \Box \rangle$

Summary

Modified X-ray scaling relations Fisher matrix analysis Degeneracies of cosmological parameters

CR physics modifies the intracluster medium in merging clusters and cooling core regions:

- Galaxy cluster X-ray emission is enhanced up to 35%, systematic effect in low-mass cooling core clusters.
- Integrated Sunyaev-Zel'dovich effect remains largely unchanged while the Compton-y profile is more peaked.
- Cosmological parameters such as σ₈ and Ω_m as derived from clusters are degenerate with cluster parameters.
- Understanding non-thermal processes is crucial for using clusters as cosmological probes (high-z scaling relations).

▶ < ⊒ >