Cosmic ray transport in galaxy clusters: implications for radio halos

Christoph Pfrommer¹

in collaboration with

Torsten Enßlin², Anders Pinzke³, Volker Springel¹, Francesco Miniati⁴, Kandaswamy Subramanian⁵

¹Heidelberg Intitute for Theoretical Studies, Germany
 ²Max Planck Institute for Astrophysics, Germany
 ³University of Santa Barbara, CA, USA
 ⁴ETH Zurich Institute of Astronomy, Switzerland
 ⁵Inter-University Centre for Astronomy & Astrophysics, India

Nov 17, 2010 / Non-thermal phenomena in clusters, Nice

Christoph Pfrommer

Outline

- Physical processes
- Gamma-ray emission
- Radio halos and relics

Cosmic ray transport

- Observations and models
- CR pumping, streaming, and diffusion
- Radio and gamma-ray bimodality

3 Conclusions

Physical processes Gamma-ray emission Radio halos and relics

Shocks in galaxy clusters

1E 0657-56 ("Bullet cluster")

(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl; Magellan/U.Arizona/D.Clowe et al.; Lensing: NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)

Abell 3667

(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)

Э

< 🗇

Christoph Pfrommer

Physical processes Gamma-ray emission Radio halos and relics

Radiative simulations – flowchart

Physical processes Gamma-ray emission Radio halos and relics

Radiative simulations with CR physics

Physical processes Gamma-ray emission Radio halos and relics

Radiative simulations with extended CR physics

Physical processes Gamma-ray emission Radio halos and relics

Radiative simulations with extended CR physics

Physical processes Gamma-ray emission Radio halos and relics

Hadronic cosmic ray proton interaction

Christoph Pfrommer

Christoph Pfrommer

Physical processes Gamma-ray emission Radio halos and relics

Universal CR spectrum in clusters (Pinzke & CP 2010)

Normalized CR spectrum shows universal concave shape \rightarrow governed by hierarchical structure formation and the implied distribution of Mach numbers that a fluid element had to pass through in cosmic history.

Physical processes Gamma-ray emission Radio halos and relics

CR proton and γ -ray spectrum (Pinzke & CP 2010)

Christoph Pfrommer

Physical processes Gamma-ray emission Radio halos and relics

Hadronic γ -ray emission, $E_{\gamma} > 100$ GeV

Christoph Pfrommer

Physical processes Gamma-ray emission Radio halos and relics

Inverse Compton emission, $E_{IC} > 100 \text{ GeV}$

Christoph Pfrommer

Physical processes Gamma-ray emission Radio halos and relics

Total γ -ray emission, $E_{\gamma} > 100 \text{ GeV}$

Christoph Pfrommer

Physical processes Gamma-ray emission Radio halos and relics

Gamma-ray scaling relations

Scaling relation + complete sample of the brightest X-ray clusters (HIFLUGCS) \rightarrow predictions for *Fermi* and *IACT's*

Physical processes Gamma-ray emission Radio halos and relics

γ -ray limits and hadronic predictions (Ackermann et al. 2010)

Christoph Pfrommer

red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic

Christoph Pfrommer

Cosmic ray transport

イロト イポト イヨト イヨ

Physical processes Gamma-ray emission Radio halos and relics

Observation – simulation of A2256

red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic

Christoph Pfrommer

Cosmic ray transport

ヘロト ヘアト ヘビト ヘビ

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio halo theory – (i) hadronic model

$$p_{\rm CR} + p
ightarrow \pi^{\pm}
ightarrow e^{\pm}$$

> < ≣

strength:

- all required ingredients available: shocks to inject CRp, gas protons as targets, magnetic fields
- predicted luminosities and morphologies as observed without tuning
- power-law spectra as observed

weakness:

- all clusters should have radio halos
- does not explain all reported spectral features

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio halo theory – (i) hadronic model

$$p_{\mathsf{CR}} + p
ightarrow \pi^{\pm}
ightarrow e^{\pm}$$

프 🖌 🖌 프

strength:

- all required ingredients available: shocks to inject CRp, gas protons as targets, magnetic fields
- predicted luminosities and morphologies as observed without tuning
- power-law spectra as observed

weakness:

- all clusters should have radio halos
- does not explain all reported spectral features

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio halo and spectrum in the Bullet cluster

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio luminosity - X-ray luminosity

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio luminosity - X-ray luminosity

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio luminosity - X-ray luminosity

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio luminosity - central entropy

Christoph Pfrommer C

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio luminosity - central entropy

Christoph Pfrommer C

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio luminosity - central entropy

Christoph Pfrommer C

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio luminosity - central entropy

Christoph Pfrommer Cos

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Proton cooling times

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Proton cooling times

Christoph Pfrommer Cosmic

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

프 🖌 🖌 프

Radio halo theory – (ii) re-acceleration model

strength:

- all required ingredients available: radio galaxies & relics to inject CRe, plasma waves to re-accelerate, ...
- reported complex radio spectra emerge naturally
- clusters without halos \leftarrow less turbulent

weakness:

- Fermi II acceleration is inefficient CRe cool rapidly
- observed power-law spectra require fine tuning

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

프 🖌 🖌 프

Radio halo theory – (ii) re-acceleration model

strength:

- all required ingredients available: radio galaxies & relics to inject CRe, plasma waves to re-accelerate, ...
- reported complex radio spectra emerge naturally
- clusters without halos \leftarrow less turbulent

weakness:

- Fermi II acceleration is inefficient CRe cool rapidly
- observed power-law spectra require fine tuning

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Electron cooling times

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Electron cooling times

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Electron cooling times

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

- ∃ → - < = →

Fermi II acceleration is inefficient

• diffusion equation for wave energy W_k (Brunetti & Lazarian 2007)

$$\frac{\partial \mathcal{W}_k}{\partial t} = \frac{\partial}{\partial k} \left[k^2 D_{kk} \frac{\partial}{\partial k} \left(\frac{\mathcal{W}_k}{k^2} \right) \right] - \sum_i \Gamma_i(k) \mathcal{W}_k + I(k)$$

• stationary turbulent spectrum (inertial range: $\Gamma_i \sim 0$):

 $\mathcal{W}_kig|_{ ext{closed box}} \propto k^{-3/2} o$ re-acceleration of CRs o radio halo

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Fermi II acceleration is inefficient

• diffusion equation for wave energy W_k (Brunetti & Lazarian 2007)

$$\frac{\partial \mathcal{W}_k}{\partial t} + \langle \boldsymbol{v}_{\mathsf{ph}} \rangle \boldsymbol{k} \mathcal{W}_k = \frac{\partial}{\partial k} \left[k^2 D_{kk} \frac{\partial}{\partial k} \left(\frac{\mathcal{W}_k}{k^2} \right) \right] - \sum_i \Gamma_i(k) \mathcal{W}_k + I(k)$$

• stationary turbulent spectrum (inertial range: $\Gamma_i \sim 0$):

 $\mathcal{W}_kig|_{ ext{closed box}} \propto k^{-3/2} o ext{re-acceleration of CRs} o ext{radio halo}$

• radio luminosity dominated by core & cores are leaky boxes:

 \rightarrow sound waves carry energy to cluster periphery, steepen to shocks and dissipate

 \rightarrow much less energy available for re-acceleration!

イロト イポト イヨト イヨ

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Cosmic ray transport - magnetic flux tube with CRs

Christoph Pfrommer

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Cosmic ray advection

Christoph Pfrommer

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Adiabatic expansion and compression

Christoph Pfrommer

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Cosmic ray streaming

Christoph Pfrommer

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Expanded CRs

HITS E 290

Christoph Pfrommer

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Turbulent pumping

Christoph Pfrommer

Cosmic ray transport

90

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Turbulent pumping

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

イロン イロン イヨン イヨン

Turbulent-to-streaming ratio

$$\gamma_{\rm tu} = \frac{\upsilon_{\rm tu}}{\upsilon_{\rm st}}$$

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Are CRs confined to magnetic flux tubes?

Christoph Pfrommer

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Escape via diffusion: energy dependence

HITS E 290

Christoph Pfrommer

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

CR transport theory

0

CR continuity equation in the absence of sources and sinks:

$$\frac{\partial \varrho}{\partial t} + \vec{\nabla} \cdot (\boldsymbol{v} \, \varrho) = \mathbf{0}$$
 $\boldsymbol{v} = \boldsymbol{v}_{\mathrm{ad}} + \boldsymbol{v}_{\mathrm{di}} + \boldsymbol{v}_{\mathrm{st}}$

$$\begin{aligned} \boldsymbol{v}_{\mathrm{st}} &= -\boldsymbol{v}_{\mathrm{st}} \, \frac{\vec{\nabla} \, \varrho}{|\vec{\nabla} \, \varrho|} \\ \boldsymbol{v}_{\mathrm{di}} &= -\kappa_{\mathrm{di}} \, \frac{1}{\varrho} \, \vec{\nabla} \varrho \\ \boldsymbol{v}_{\mathrm{ad}} &= -\kappa_{\mathrm{tu}} \, \frac{\eta}{\varrho} \, \vec{\nabla} \frac{\varrho}{\eta} \end{aligned}$$

 $\kappa_{\rm tu} = \frac{L_{\rm tu}\,\upsilon_{\rm tu}}{3}$

・ロト ・ 同ト ・ ヨト ・ ヨト

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

CR profile due to advection

Christoph Pfrommer

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

CR density profile

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

CR density at fixed particle energy

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Gamma-ray emission profile

$$p_{CR} + p \rightarrow \pi^0 \rightarrow 2\gamma$$

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Gamma-ray luminosity

$$p_{\rm CR} + p \rightarrow \pi^0 \rightarrow 2\gamma$$

Cosmic rays in cluster simulations Cosmic ray transport Conclusions Conclusions Conclusions Conclusions Cosmic ray transport

γ -ray limits and hadronic predictions (Ackermann et al. 2010)

Christoph Pfrommer

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio emission profile

$$p_{CR} + p \rightarrow \pi^{\pm} \rightarrow e^{\pm} \rightarrow radio$$

Observations and models CR pumping, streaming, and diffusion Radio and gamma-ray bimodality

Radio luminosity

$$p_{\mathsf{CR}} + p
ightarrow \pi^{\pm}
ightarrow e^{\pm}
ightarrow$$
 radio

Christoph Pfrommer

Conclusions

 cosmological simulations predict universal CR spectrum and distribution (ignoring active CR transport)

 \rightarrow Fermi limits consistent with simulations that use most optimistic assumptions of CR acceleration and transport

- streaming & diffusion produce spatially flat CR profiles advection produces centrally enhanced CR profiles
 → profile depends on advection-to-streaming-velocity ratio
- turbulent velocity ~ sound speed ← cluster merger CR streaming velocity ~ sound speed ← plasma physics → peaked/flat CR profiles in merging/relaxed clusters
- energy dependence of $v_{st}^{macro} \rightarrow CR$ & radio spectral variations \rightarrow outstreaming CR: dying halo \leftarrow decaying turbulence

ightarrow bimodality of cluster radio halos & gamma-ray emission

< (**1**) ► < (**2**) ►

Conclusions

 cosmological simulations predict universal CR spectrum and distribution (ignoring active CR transport)

 \rightarrow Fermi limits consistent with simulations that use most optimistic assumptions of CR acceleration and transport

- streaming & diffusion produce spatially flat CR profiles advection produces centrally enhanced CR profiles
 → profile depends on advection-to-streaming-velocity ratio
- turbulent velocity ~ sound speed ← cluster merger CR streaming velocity ~ sound speed ← plasma physics → peaked/flat CR profiles in merging/relaxed clusters
- energy dependence of $v_{st}^{macro} \rightarrow CR$ & radio spectral variations \rightarrow outstreaming CR: dying halo \leftarrow decaying turbulence

ightarrow bimodality of cluster radio halos & gamma-ray emission

< (**1**) ► < (**2**) ►

Conclusions

 cosmological simulations predict universal CR spectrum and distribution (ignoring active CR transport)

 \rightarrow Fermi limits consistent with simulations that use most optimistic assumptions of CR acceleration and transport

- streaming & diffusion produce spatially flat CR profiles advection produces centrally enhanced CR profiles
 → profile depends on advection-to-streaming-velocity ratio
- turbulent velocity ~ sound speed ← cluster merger CR streaming velocity ~ sound speed ← plasma physics → peaked/flat CR profiles in merging/relaxed clusters
- energy dependence of v^{macro}_{st} → CR & radio spectral variations
 → outstreaming CR: dying halo ← decaying turbulence

ightarrow bimodality of cluster radio halos & gamma-ray emission

< 🗇 > < 🖻

Conclusions

 cosmological simulations predict universal CR spectrum and distribution (ignoring active CR transport)

 \rightarrow Fermi limits consistent with simulations that use most optimistic assumptions of CR acceleration and transport

- streaming & diffusion produce spatially flat CR profiles advection produces centrally enhanced CR profiles
 → profile depends on advection-to-streaming-velocity ratio
- turbulent velocity ~ sound speed ← cluster merger CR streaming velocity ~ sound speed ← plasma physics → peaked/flat CR profiles in merging/relaxed clusters
- energy dependence of v_{st}^{macro} → CR & radio spectral variations
 → outstreaming CR: dying halo ← decaying turbulence
- → bimodality of cluster radio halos & gamma-ray emission!

Literature for the talk

- Enßlin, Pfrommer, Miniati, Subramanian, Cosmic ray transport in galaxy clusters: implications for radio halos, gamma-ray signatures, and cool core heating
- Pinzke & Pfrommer, 2010, MNRAS, in print, arXiv:1001.5023, Simulating the gamma-ray emission from galaxy clusters: a universal cosmic ray spectrum and spatial distribution
- Pfrommer, 2008, MNRAS, 385, 1242, Simulating cosmic rays in clusters of galaxies – III. Non-thermal scaling relations and comparison to observations
- Pfrommer, Enßlin, Springel, 2008, MNRAS, 385, 1211, Simulating cosmic rays in clusters of galaxies – II. A unified scheme for radio halos and relics with predictions of the γ-ray emission
- Pfrommer, Enßlin, Springel, Jubelgas, Dolag, 2007, MNRAS, 378, 385, Simulating cosmic rays in clusters of galaxies – I. Effects on the Sunyaev-Zel'dovich effect and the X-ray emission