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Shocks in galaxy clusters

1E 0657-56 (“Bullet cluster”)
(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical:
NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing:
NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)

Abell 3667
(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)
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Radiative simulations – flowchart

C.P., Enßlin, Springel (2008)
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Universal CR spectrum in clusters (Pinzke & CP 2010)
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Normalized CR spectrum shows universal concave shape→ governed by
hierarchical structure formation and the implied distribution of Mach numbers
that a fluid element had to pass through in cosmic history.
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CR proton and γ-ray spectrum (Pinzke & CP 2010)
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Hadronic γ-ray emission, Eγ > 100 GeV
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Inverse Compton emission, EIC > 100 GeV
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Total γ-ray emission, Eγ > 100 GeV
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Gamma-ray scaling relations
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Scaling relation + complete sample of the brightest X-ray clusters
(HIFLUGCS)→ predictions for Fermi and IACT’s

Christoph Pfrommer Cosmic ray transport



Cosmic rays in cluster simulations
Cosmic ray transport

Conclusions

Physical processes
Gamma-ray emission
Radio halos and relics

γ-ray limits and hadronic predictions (Ackermann et al. 2010)
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Which one is the simulation/observation of A2256?

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
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Observation – simulation of A2256

Clarke & Enßlin (2006) CP & Battaglia (in prep.)

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
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Radio halo theory – (i) hadronic model

pCR + p → π± → e±

strength:

all required ingredients available:
shocks to inject CRp, gas protons as targets, magnetic fields

predicted luminosities and morphologies as observed without
tuning

power-law spectra as observed

weakness:

all clusters should have radio halos

does not explain all reported spectral features

. . .

Christoph Pfrommer Cosmic ray transport



Cosmic rays in cluster simulations
Cosmic ray transport

Conclusions

Observations and models
CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Radio halo theory – (i) hadronic model

pCR + p → π± → e±

strength:

all required ingredients available:
shocks to inject CRp, gas protons as targets, magnetic fields

predicted luminosities and morphologies as observed without
tuning

power-law spectra as observed

weakness:

all clusters should have radio halos

does not explain all reported spectral features

. . .

Christoph Pfrommer Cosmic ray transport



Cosmic rays in cluster simulations
Cosmic ray transport

Conclusions

Observations and models
CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Radio halo and spectrum in the Bullet cluster

Liang et al. (2000): SZ-corrected
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Radio luminosity - X-ray luminosity
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Radio luminosity - central entropy
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Radio luminosity - central entropy
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Radio luminosity - central entropy
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Radio luminosity - central entropy

10 100 1000
0.1

1.0

10.0

100.0
P

1.
4

G
H

z
[1

031
er

g
s−

1
H

z−
1
]

K0 [keV cm2]

Christoph Pfrommer Cosmic ray transport



Cosmic rays in cluster simulations
Cosmic ray transport

Conclusions

Observations and models
CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Proton cooling times
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Proton cooling times
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Radio halo theory – (ii) re-acceleration model

strength:

all required ingredients available:
radio galaxies & relics to inject CRe, plasma waves to re-accelerate, . . .

reported complex radio spectra emerge naturally

clusters without halos← less turbulent

weakness:

Fermi II acceleration is inefficient – CRe cool rapidly

observed power-law spectra require fine tuning

. . .
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Electron cooling times
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Fermi II acceleration is inefficient

diffusion equation for wave energyWk (Brunetti & Lazarian 2007)

∂Wk

∂t
=

∂

∂k

[
k2Dkk

∂

∂k

(
Wk

k2

)]
−

∑
i

Γi(k)Wk + I(k)

stationary turbulent spectrum (inertial range: Γi ∼ 0):

Wk
∣∣
closed box ∝ k−3/2 → re-acceleration of CRs→ radio halo

radio luminosity dominated by core & cores are leaky boxes:

→ sound waves carry energy to cluster periphery, steepen to
shocks and dissipate

→ much less energy available for re-acceleration!
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Fermi II acceleration is inefficient

diffusion equation for wave energyWk (Brunetti & Lazarian 2007)
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Cosmic ray transport – magnetic flux tube with CRs
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Cosmic ray advection
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Adiabatic expansion and compression
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Cosmic ray streaming
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Expanded CRs
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Turbulent pumping
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Turbulent pumping
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Turbulent-to-streaming ratio
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Are CRs confined to magnetic flux tubes?
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Escape via diffusion: energy dependence
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CR transport theory

CR continuity equation in the absence of sources and sinks:

∂%

∂t
+ ~∇ · (υ %) = 0 υ = υad + υdi + υst

υst = −υst
~∇ %

|~∇ %|

υdi = −κdi
1
%

~∇%

υad = −κtu
η

%
~∇%

η κtu =
Ltu υtu

3
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CR profile due to advection
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CR density profile

γtu = υtu
υst
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CR density at fixed particle energy

γtu = υtu
υst
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Gamma-ray emission profile pCR + p → π0 → 2γ

γtu = υtu
υst
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Gamma-ray luminosity pCR + p → π0 → 2γ

γtu = υtu
υst
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γ-ray limits and hadronic predictions (Ackermann et al. 2010)
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Radio emission profile pCR + p → π± → e± → radio

γtu = υtu
υst
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Radio luminosity pCR + p → π± → e± → radio

γtu = υtu
υst
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Conclusions

cosmological simulations predict universal CR spectrum and
distribution (ignoring active CR transport)
→ Fermi limits consistent with simulations that use most
optimistic assumptions of CR acceleration and transport

streaming & diffusion produce spatially flat CR profiles
advection produces centrally enhanced CR profiles
→ profile depends on advection-to-streaming-velocity ratio

turbulent velocity ∼ sound speed← cluster merger
CR streaming velocity ∼ sound speed← plasma physics
→ peaked/flat CR profiles in merging/relaxed clusters

energy dependence of υmacro
st → CR & radio spectral variations

→ outstreaming CR: dying halo← decaying turbulence

→ bimodality of cluster radio halos & gamma-ray emission!
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