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Cosmic rays iIn GADG E T (Pfrommer, Springel, EnRlin, Jubelgas, 2006, MNRAS)
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The "cosmic web" today. Left: the projected gas density in a cosmological simulation.
Right: gravitationally heated intracluster medium through cosmological shock waves.  cra-icar
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Cosmic rays in GADGET— flowchart

-«/_fo
e o
S | | CED

— existing

CITA-ICAT

C. Pfrommer Cosmological shock waves in SPH simulations



Cosmological shock waves Cosmic rays in GADGET
Mach number finder
Cosmological and cluster simulations

Diffusive shock acceleration — Fermi 1 mechanism

Cosmic rays gain energy AE /E « v; — v, through bouncing back and forth
the shock front. Accounting for the loss probability o v, of particles leaving
the shock downstream leads to power-law CR population.
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Observations of cluster shock waves

1E 0657-56 (“Bullet cluster”)

(NASA/SAO/CXC/M.Markevitch et al.)

(Radio: Austr.TC Array. X-ray: ROSAT/PSPC.)
CITA-ICAT
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Motivation for the Mach number finder

@ cosmological shocks dissipate gravitational energy into
thermal gas energy: where and when is the gas heated,
and which shocks are mainly responsible for it?

@ shock waves are tracers of the large scale structure and
contain information about its dynamical history (warm-hot
intergalactic medium)

@ shocks accelerate cosmic rays through diffusive shock
acceleration at structure formation shocks: what are the
cosmological implications of such a CR component, and
does this influence the cosmic thermal history?

@ simulating realistic CR distributions within galaxy clusters
provides detailed predictions for the expected radio
synchrotron and ~-ray emission
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Cosmic ray
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Shock tube (CRs & gas, M = 10): thermodynamics
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Shock tube (CRs & gas): Mach number statistics
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Shock tube (th. gas): Mach number statistics

1 10 100
log M
1.5-10° ]
L + +
s ]
_10:10° :
EN [ ]
=
i r + ]
TT50007 - -
L+ ]
oL ‘ ]
1 10 100
log M

CITA-ICAT

C. Pfrommer Cosmological shock waves in



Cosmological shock waves Cosmic rays in GADGET
Mach number finder
Cosmological and cluster simulations

Cosmological Mach numbers: weighted by egjss

Mach number
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Cosmological Mach numbers: weighted by ccr
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Cosmological Mach number statistics
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@ more energy is dissipated in weak shocks internal to collapsed
structures than in external strong shocks

@ more energy is dissipated at later times
@ mean Mach number decreases with time CITA-ICAT
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Cosmological statistics: influence of reionization
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@ reionization epoch at zjon = 10 suppresses efficiently strong
shocks at z < Zyejon due to jump in sound velocity

@ cosmological constant causes structure formation to cease
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Adiabatic cluster simulation: gas density
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Mass weighted temperature
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Mach number distribution weighted by ejss
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Cosmological shock waves Cosmic rays in GADGET
nic ray Mach number finder

Cosmological and cluster simulations

Relative CR pressure Pcr/Piotal
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Cluster radio halos
Cosmic rays in galaxy clusters Energetically preferred CR pressure profiles
CR pressure influences SZ effect

Radio halos as window for non-equilibrium processes

Coma Cluster
0.5-2.0 keV

Coma radio halo, v = 1.4 GHz, Coma thermal X-ray emission,

largest emission diameter ~ 3 Mpc (2.7° x 2.5°, credit: ROSAT/MPE/Snowden)

(2.5° x 2.0°, credit: Deiss/Effelsberg) CITA-ICAT
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Cosmic rays in galaxy clusters Energetically preferred CR pressure profiles
CR pressure influences SZ effect

Models for radio synchrotron halos in clusters

Halo characteristics: smooth unpolarized radio emission at
scales of 3 Mpc.
Different CR electron populations:

@ Primary accelerated CR electrons: synchrotron/IC cooling
times too short to account for extended diffuse emission

@ Re-accelerated CR electrons through resonant interaction
with turbulent Alfvén waves: possibly too inefficient, no first
principle calculations (Jaffe 1977, Schlickeiser 1987, Brunetti 2001)

@ Hadronically produced CR electrons in inelastic collisions
of CR protons with the ambient gas (Dennison 1980, Vestrad
1982, Miniati 2001, Pfrommer 2004)
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Cluster radio halos

Energetically preferred CR pressure profiles
CR pressure influences SZ effect

Hadronic cosmic ray proton interaction

Cosmic rays in galaxy clusters
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preferred CR pressure profiles
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Energetically preferred CR pressure profiles

Cosmic rays in galaxy clusters

Coma cluster: hadronic minimum energy condition
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Cluster radio halos
Cosmic rays in galaxy clusters Energetically preferred CR pressure profiles
CR pressure influences SZ effect

Compton y parameter in radiative cluster simulation
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Cosmic rays in galaxy clusters
CR pressure influences SZ effect

Compton y difference map: ycr — Yin
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sho Cluster radio halos
Cosmic rays in galaxy clusters Energetically preferred CR pressure profiles
Summary CR pressure influences SZ effect

Simulated CBI Observatlon of YcR — Yth (with Sievers & Bond)
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Cluster radio halos
Cosmic rays in galaxy clusters Energetically preferred CR pressure profiles
CR pressure influences SZ effect

Pressure profiles with and without CRs

100.000 E

10.000 " -

£ C ]

g [ ]
Q

2  1.000 .

S E 3

S L ]

A - 4

& o0.100E -

A £ 3

0.010 = AN -

C N - 3

£ \ ]

0.001L 4 01 N

10 100 1000

R[h"kpc]

CITA-ICAT

C. Pfrommer Cosmological shock waves in



Cluster radio halos
Cosmic rays in galaxy clusters Energetically preferred CR pressure profiles
CR pressure influences SZ effect

Phase-space diagram of radiative cluster simulation

probability density [arbitrary units]
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Summary

Summary

@ Understanding non-thermal processes is crucial for using
clusters as cosmological probes (high-z scaling relations).

@ Radio halos might be of hadronic origin as our simulations
suggests — tracer of structure formation

@ Dynamical CR feedback influences Sunyaev-Zel'dovic
effect

@ Outlook

e Galaxy evolution: influence on energetic feedback, star
formation, and galactic winds

e Huge potential and predictive power of cosmological CR
simulations/Mach number finder — provides detailed
~-ray/radio emission maps

CITA-ICAT
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Cosmological statistics: resolution study

Differential distributions: 2 x 256° versus 2 x 128°
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@ more energy is dissipated at later times
@ mean Mach number decreases with time
@ differential Mach number distributions are converged forz < 3 o Tmear
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Cosmological statistics: resolution study
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@ in higher resolution simulations structure forms earlier

@ more energy is dissipated in shocks internal to collapsed
structures than in external shocks of pristine gas

@ integrated Mach number distribution converged CITATICAT
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Idea of the Mach number finder in SPH

@ SPH shock is broadened to a scale of the order of the
smoothing length h, i.e. fyh, and f, ~ 2

@ approximate instantaneous particle velocity by pre-shock
velocity (denoted by v, = Mcq)

Using the entropy conserving formalism of Springel &
Hernquist 2002 (A(s) = Pp~" is the entropic function):
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Minimum energy criterion (MEC): the idea

@ What is the energetically least expensive distribution of
non-thermal energy density eyt given the observed
synchrotron emissivity?

@ enT = €B 1+ ECRp + ECRe
— minimum energy criterion: aaETNBT _ 20

iv

enT A .
defining tolerance

levels: deviation
from minimum by
one e-fold
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Philosophy and description

@ CRs are coupled to the thermal gas by
magnetic fields. — C

@ We assume a single power-law CR
spectrum: momentum cutoff g,

normalization C, spectral index «

log p

(constant). /
— determines CR energy density and

pressure uniquely

The CR spectrum can be expressed by three adiabatic invariants, which scale
only with the gas density. Non-adiabatic processes are mapped into changes

of the adiabatic constants using mass, energy and momentum conservation.
CITA-ICAT
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