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Observations of M87
Cosmic ray heating
Local stability

Cosmic ray feedback

Messier 87 at radio wavelengths

v = 1.4 GHz (Owen+ 2000) v = 140 MHz (LOFAR/de Gasperin+ 2012)

@ high-v: freshly accelerated CR electrons
low-v:

@ LOFAR: halo confined to same region at all frequencies and no
low-v spectral steepening — puzzle of “missing fossil electrons” \:'><J

HITS
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Observations of M87
Cosmic ray heating
Local stability

Solution to the “missing fossil electrons” problem

Cosmic ray feedback

m';\\ 7\ " T
solution: I e
@ Coulomb cooling removes NN
fossil electrons SoporEme o ™
.. .. Dot N E
— efficient mixing of CR ik ]
electrons and protons with . )
dense cluster gas £ =10 ]
g B total loss
5 10"
IO”’
10° 10" 10 10 10°
p=plmec
C.P. (2013)
HITS
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Observations of M87
Cosmic ray heating
Local stability

The gamma-ray picture of M87

Cosmic ray feedback

@ high state is time variable

— jet emission
@ low state:
(1) steady flux 5 -
:E” 10 ‘
‘.
(3) spatial extension is under "
investigation (.?) Rieger & Aharonian (2012)

— confirming this triad would be smoking gun for first v-ray
signal from a galaxy cluster!

\’.X:/\JHWS
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Observations of M87
Cosmic ray heating
Local stability

Cosmic ray feedback

AGN feedback = cosmic ray heating (?)

hypothesis: low state v-ray emission traces 7° decay within cluster

@ cosmic rays excite Alfvén 107
WaVGS that dissipate the 7: radial extent of radio halo:
. 107 E
energy — heating rate _
=0k E
Hcr:|VA'VPcr| go
(Loewenstein+ 1991, Guo & Oh 2008, S ol ]
EnBlin+ 2011, Wiener+ 2013, C.P. 2013)
@ calibrate P, to y-ray o teing e
emission and v to . 10 100
radius [kpc]

radio/X-ray emission o 2013)

— cosmic-ray heating matches radiative cooling (observed in X-rays)
and may solve the famous “cooling flow problem” in galaxy clusters! /ijH]Ts
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Observations of M87
Cosmic ray heating
Local stability

Cosmic ray feedback

Local stability analysis (1)

T*Her
TQCrad

heating

cooling

kT
@ isobaric perturbations to global thermal equilibrium

@ CRs are adiabatically trapped by perturbations //XJH.TS
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Observations of M87
Cosmic ray heating
Local stability

Cosmic ray feedback

Local stability analysis (1)

T*Her
TQCrad

heating

cooling

kT
@ isobaric perturbations to global thermal equilibrium

@ CRs are adiabatically trapped by perturbations //XJH.TS
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Observations of M87
Cosmic ray heating
Local stability

Cosmic ray feedback

Local stability analysis (1)

T*Her
TQCrad

heating

stable FP cooling

kT
@ isobaric perturbations to global thermal equilibrium

@ CRs are adiabatically trapped by perturbations //XJH.TS
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Observations of M87
Cosmic ray heating
Local stability

Cosmic ray feedback

Local stability analysis (1)

T*Her
TQCrad

separatrix

heating

&

'stable FP | cooling

region of stability |

kT
@ isobaric perturbations to global thermal equilibrium

@ CRs are adiabatically trapped by perturbations //XJH.TS
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Observations of M87
Cosmic ray heating
Local stability

Cosmic ray feedback

Local stability analysis (2)

Theory predicts observed temperature floor at kT ~ 1 keV

[ — Xk =031
5 \ —_— - - XCR:0~031
. \ .
=~ [
g ]
st ! “islands of stability” 1
T |
g O
5 ] 1
Z | : ]
z 5 U | “ocean of instability”
L | L | L Lo

10° 10° 107 108
temperature 7" [K]

C.P. (2013) . ’X\JHITS
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. bserva M87
Cosmic ray feedback (0] )%ry"t»t\ons of .N‘ul
Cosmic ray heating

Local stability

Virgo cluster cooling flow: temperature profile

X-ray observations confirm temperature floor at kT ~ 1 keV

[V

KT (keV)

1 10

R ( arcmin ) Matsushita+ (2002) xJ
/ HITS
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Steady state solutions
Non-thermal emission

Diversity of cool cores
Simulations

How universal is CR heating in cool core clusters?

@ no -y rays observed from other clusters — P, unconstrained

@ strategy:
(1) construct large sample of 39 cool cores
(2) search for spherically symmetric, steady-state solutions:
CR heating (H¢r) + ~ cooling (Crad)
(3) calculate hadronic radio and ~-ray flux Fnaq and
compare to observed fluxes Fops

@ consequences:
= if Her + ~ Crag V r and Frag < Fops:
successful CR heating model that is locally stable at 1 keV
= otherwise CR heating ruled out as dominant heating source .

~ NHITS
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Steady state solutions
Non-thermal emission

Diversity of cool cores
Simulations

Sample selection

select 39 cool cores (CCs): ' < '

@ brightest 23 CCs from X-ray x
flux-limited sample (HIFLUGCS)
that are also in ACCEPT

@ 10 high-resolution Chandra data
(Vikhlinin+ 2006) + 4+

M0 (10" M)
T
+
+x
+
+
+
X
!

@ 15 clusters with radio-mini halos 'F + E

(RMHS) (Giacintucci+ 2014) 001 01
@ add Virgo + A2597 Jacob & C.P. (2016a)

= RMH clusters show selection bias towards high-z and being more
massive (fixed surface brightness limit)
\'.>/\:JHITS
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Steady state solutions
Non-thermal emission

Diversity of cool cores
Simulations

Sample selection

select 39 cool cores (CCs):

@ brightest 23 CCs from X-ray x
flux-limited sample (HIFLUGCS)
that are also in ACCEPT

@ 10 high-resolution Chandra data
(Vikhlinin+ 2006)

M0 (10" M)
T
+
+x
+
+
+
X
!

@ 15 clusters with radio-mini halos 'F ]

(RMHS) (Giacintucci+ 2014) 001 01
@ add Virgo + A2597 Jacob & C.P. (2016a)

= RMH clusters show selection bias towards high-z and being more
massive (fixed surface brightness limit)

= study sub-sample that is unbiased in M.y, and entire sample >\ J
NHITS
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Steady state solutions
Non-thermal emission

Diversity of cool cores
Simulations

Governing equations

@ conservation of mass, momentum, thermal and CR energy:

dp
at +pV.-v=0
dv
Par = =V (P + Per) — pVo
dey
at ‘f")’thethV V=—V_: Fn+Hs—pL
dec
ot + Y€V V==V Foo —Her + S

@ Lagrangian derivative d/dt = 9/9t+ v -V

@ equations of state:
Pin = (v — 1)ém 3
Per = (’Ycr - 1)ecr /k,XJHITS
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Steady state solutions
Non-thermal emission

Diversity of cool cores
Simulations

Governing equations

@ conservation of mass, momentum, thermal and CR energy:

dp
at +pV-v=0
dv ‘
pa = _V(Pth + Pcr) —pVo
dey
ar " nenV -V =—V - Fiy+ Her —
deg
at + Y€V V==V Foo —Her + S

@ gravitational potential ¢ = GMS In (1 + 7 ) +v2In (%)
@ radiative cooling  pL = n2 (A|+ A, T'/2)

@ CR source Ser = W (é)f%’ (1 _ ef(,/,c,)Z) \‘/S‘ZJH,TS
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Steady state solutions
Non-thermal emission

Diversity of cool cores
Simulations

Governing equations

@ conservation of mass, momentum, thermal and CR energy:

dp
a + pV -v=0
dv
pa = -V (Pnh+ Pa) — pVo
de
d; +’Ythethv v=-V. “I‘Hcr - pﬁ
decr

dt '|"YcrecrV v=-V. Fcr Hcr‘i‘scr

@ thermal heat flux

|VP(;|—‘
@ CRheatingrate Her = — Vet -V Per xj

Christoph Pfrommer Cosmic ray heating in cool core clusters

@ CR streaming flux Fo; = (€5 + Por) Vst With vy = —vp



Steady state solutions
Non-thermal emission
Simulations

Diversity of cool cores

Case study A1795: density and temperature

8
7

“ s
0 6

B =
N gs
4
L L 3

10 100
7 (kpc) r (kpc)

Jacob & C.P. (2016a)
@ beautiful match of steady-state solutions to observed profiles
@ pure NFW mass profile in A1795

Note: 3D model vs. projected 2D kT profiles .
Wish to X-ray community: update ACCEPT + include 3D kT profiles /’XJHITS
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Steady state solutions
Non-thermal emission

Diversity of cool cores
Simulations

Case study A1795: heating and cooling

A 1795

— Hy -
Heond

— Crd

1075 L
102 [
1027 _

10 [

Heating, Cooling (ergcm™ s™!)

o [ =042

10 100
 (kpe) Jacob & C.P. (2016a)
@ CR heating dominates in the center
o , K = 0.42/£Sp

@ He + ~ Craq: Modest mass deposition rate of 1 M, yr~! < XJ
HITS
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Steady state solutions
Non-thermal emission

Diversity of cool cores
Simulations

Case study A1795: CR and B pressure ratios

o A 1795
10 3 T T

Pressure ratios
)

{

1

1072 | .
—_— X
— Xp
— X
]0—3 1 1
10 100
r (kpc) Jacob & C.P. (2016a)

@ define Xy = Per/Pin, X = P/ P, Xnt = Pt/ Pin
o Xcr ~ COﬂSt‘ iﬂ Center. Agth == _TAVst . V Pcr ~ Pcr - Xchth
@ adopt B model from Faraday rotation studies:

B =10uG x (n/0.01cm=3)*° Kl
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Steady state solutions

R . Non-thermal emission
Diversity of cool cores
Simulations

Gallery of solutions: density profiles
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Steady state solutions
Non-thermal emission
Simulations

Gallery of solutions: temperature profiles

Diversity of cool cores

T T T
[ Centaurus [ Hydra A [ Virgo

kT (keV)

T
A 496 A 1644 A 2052

L L
10 1

T T T T
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L
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T
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Steady state solutions

R . Non-thermal emission
Diversity of cool cores
Simulations

Steady state solutions: density correlations

T
-1 | slope =0.31 - sl =0.96
10 o =033 LU x
T T
= =
= s
£ 02 ] £ 02 1
X RMH
+ NoRMH
‘ ‘ ‘ : .
102 100 100 10 102 10° 10 100
SFRir (Mo yr™')

Teool (Kpe)

Jacob & C.P. (2016b)

@ tight correlation of gas density ne(30 kpc) with SFR and with
1 Gyr cooling radius

@ RMH clusters are on average denser, show larger SFRsand .
cooling radii \JHITS
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Steady state solutions
Non-thermal emission

Diversity of cool cores
Simulations

Steady state solutions: P, correlations

P (ergcm™)

T T
. slope = 0.63 slope =2.11
jo-10 | 0.74 0oL Y2073 x X
1 T ]
10 E £ 10 nmp ]
5
107! 4 & 2L 4
e
10-13 e + NoRMH |} 10-13
. . . I .
1072 107! 10° 10! 10? 10° 10 100
SFRir (Mg yr™") Teool (KpC)

Jacob & C.P. (2016b)

@ strong correlation of CR pressure P, with SFR and rgo

@ strongly cooling RMH clusters require larger CR heating rates,
Her x Per, and thus CR pressure values to balance cooling

@ P, correlations significantly steeper than n, correlations

\’.X:/\JHWS
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Steady state solutions
Non-thermal emission

Diversity of cool cores
Simulations

Steady state solutions: X, correlations

slope = 0.32
107 | o =0.51

slope = 1.15
107 | o =0.55

107 E 102 4
7
- X RMH
+ NoRMH + NoRMH
-3 ! | 1 I 10—3 L
1072 107! 10° 10 102 10° 10 100
SFRir (Mg yr™") Teool (kpe)

Jacob & C.P. (2016b)

@ remainder made up by correlation of CR-to-thermal pressure

@ strongly cooling RMH clusters require not only larger P, but .
also larger X to balance cooling ,XJHITS
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Steady state solutions

Non-thermal emission

Simulations

Diversity of cool cores
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Steady state solutions
Non-thermal emission
Simulations

Hadronic gamma-ray emission: observational limits

Diversity of cool cores

1077

~ 108
L1070
e |0’:‘|'-
30
= 102 H
ESRTRE
1071
10!
2 10°
& i
< 107! |
LI !
> 107
W X | x
l()—3 Lo b )
NV ONLLAA=RNFTFTAN OO A =N 2N 200N FT O NS0T
— @ s 32 O8RS Iz TR TR E=IRE® 38285 ugigdgngds
FEESSESUASSENCR IS Ca RS IE8s2EERRT
< <gp<i<<acs T MRS S<Ei<c T a<gg <oy
= ] EF 5 g 2R ORREZR
Jacob & C.P. (2016b)
@ predictions close to observational limits
@ sensitivity not sufficient to be constraining /XJH.TS
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cool core clusters

Non-thermal emission

Steady state solutions
Simulations
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Steady state solutions
Non-thermal emission
Simulations

Diversity of cool cores

Hadronically induced radio emission: NVSS limits
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2 x, X
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& 107 E X x %X X | E
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. . Jacob & C.P. (2016b
@ continuous sequence in F, yred/Fu Nvss o eored)

@ CR heating solution ruled out in radio mini halos \
@ CR heating viable solution for non-RMH clusters //XJH.TS
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Steady state solutions
Non-thermal emission

Diversity of cool cores
Simulations

Self-regulated heating/cooling cycle in cool cores

10 . . 10

o0 g ° feo
L (] ° ] L ]
10 . °°° 10 i L
0 . . 0 Ophiuchus N .
é10 ——————— Pk S 107—.——2.—:—..—.———.————
L. _ um
=10 E u ] 10 L m " ]
B
S (Ul S . 1 02l "a a ]
9 Hydra A @ Perseus ® m  Cent® @ Perseus
3 " s " 3 5 5 "HydnA
107 | Centaurus = 107 | E
® RMH
104 n = NoRMH 104 L n m Virgo E
1 1 1 1
1072 107! 10° 10! 10% 10° 10 100
SFRig (Mo yr™") Teool (kpC)

. . . Jacob & C.P. (2016b)
possibly CR-heated cool cores vs. radio mini halo clusters:

@ simmering SF: CR heating is effectively balancing cooling
@ abundant SF: heating/cooling out of balance

@ F, obs > Fu prea: strong radio source = abundant injection of CRs e
= predicting existence of radio micro halos in CR heated clusters //XJH]TS
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Steady state solutions
Non-thermal emission
Simulations

Diversity of cool cores

Radio mini halos

RXJ1532 Perseus
10% ; ; 10° ;
. RX J1532 (x0.01) 10 Perseus (x0.6)
10 . E
3
100 1 10 3
2 ESRRTS y
SR S
2 10 E Z
=, ) 3 E
10 .
..... 100 [ .
1073 | I 10 L X
<
104 L L ! LA 102 L L L L >
1073 1072 107! 10° 10! 10? 1073 1072 107! 10° 10 10
v (GHz) v (GHz)

Jacob & C.P. (2016a)

@ radio mini halos may be of hadronic origin: CR protons from AGN that
have streamed outwards and cooled via Alfvén-wave excitation

@ RXJ1532: dying radio mini halo —
Perseus: transitional object, was CR heated until recently ,XJHITS
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Steady state solutions
Non-thermal emission

Diversity of cool cores
Simulations

Predicting radio micro halos

Flux (Jy)

RXJ1532 Virgo
107 - - 10* -
RX J1532 (x0.01) Virgo
10! r 10° n
10° ] 107 ]
5
107! E ROl E
5 e —Fsz
1072 1 5 wfp--# ]
..... TSz —_— Fy+Fsz k
1073 | o 10~' p = continuous inj. -
‘\" continuous inj., switch off
10-4 I I L L. > 1072 | L L Al
1073 1072 107! 10° 10! 10% 1073 1072 107! 10° 10! 10%
v (GHz) v (GHz)

Jacob & C.P. (2016a)

@ radio mini halos may be of hadronic origin: CR protons from AGN that
have streamed outwards and cooled via Alfvén-wave excitation

@ predicting radio micro halos of primary origin in CR-heated CCs: CR ..
electrons that escaped from AGN; subdominant hadronic emission /’XJHWS
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Steady state solutions
Non-thermal emission
Simulations

Cosmological moving-mesh code AREPO (springel 2010)

Diversity of cool cores

)

v

n
-
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Steady state solutions
Non-thermal emission

Diversity of cool cores . .
y Simulations

Simulations — flowcha

ISM observables: Physical processes in the ISM:

> super-
- @ ‘ ‘

X-ray, Ha, HI, ...
emission

stellar
spectra

loss processes
gain processes

observables N
C.P., Pakmor, Schaal, Simpson, Springel (2016) ~ populations HITS

%

ristoph Cosmic ray heating in cool core clusters



Steady state solutions
Non-thermal emission

Diversity of cool cores . .
y Simulations

Simulations with cosmic ray physics

ISM observables: Physical processes in the ISM:

> super-
- @ ‘

X-ray, Ha, HI, ...
emission

stellar
spectra

loss processes
gain processes

observables X
C.P., Pakmor, Schaal, Simpson, Springel (2016) ~ populations HITS
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Non-thern

Diversity of cool cores . .
y Simulations

Simulations with cosmic ray physics

ISM observables: Physical processes in the ISM:

o
super-
- ‘

loss processes
gain processes

observables X
C.P., Pakmor, Schaal, Simpson, Springel (2016) ~ populations HITS

X-ray, Ha, HI, ...
emission

stellar
spectra
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Non-thern
Simulations

Diversity of cool cores

Simulations with cosmic ray physics

ISM observables: Physical processes in the ISM:

=l
super-
<
N>

loss processes
gain processes

X-ray, Ha, HI, ...
emission

stellar
spectra

radio
synchrotron

gamma-ray
emission

observables X
C.P., Pakmor, Schaal, Simpson, Springel (2016) ~ populations HITS
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Steady state solutions
Non-thermal emission
Simulations

Jet simulation: gas density, CR energy, B field

Diversity of cool cores

>

Christoph Pfrommer Cosmic ray heating in cool core clusters

Weinberger+ in prep.
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Steady state solutions
Non-thermal emission

Diversity of cool cores . .
y Simulations

Conclusions on AGN feedback by cosmic-ray heating

cosmic-ray heating in M87:

@ radio and ~v-ray data of M87 imply CR mixing with dense cluster
gas with a CR-to-thermal pressure ratio of X;, = 0.3

@ CR Alfvén wave heating balances radiative cooling on all scales
within the central radio halo (r < 35 kpc)

o
at KT ~ 1 keV

large sample of cool cores = self-regulation cycle
@ low-density cool cores: possibly stably heated by cosmic rays

@ radio mini halo clusters: cosmic-ray heating ruled out
systems are strongly cooling and form stars at large rates

@ predicting continuous sequence of diffuse radio emission in all <
cool cores: from radio micro to mini halos JH.TS

Christoph Pfrommer Cosmic ray heating in cool core clusters



Steady state solutions
Non-thermal emission

Diversity of cool cores . .
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Literature for the talk

AGN feedback by cosmic rays:

@ Pfrommer, Toward a comprehensive model for feedback by active galactic nuclei:
new insights from M87 observations by LOFAR, Fermi and H.E.S.S., 2013, ApJ,
779, 10.

@ S. Jacob & C. Pfrommer, Cosmic ray heating in cool core clusters I: diversity of
steady state solutions, 2016a, in prep.

@ S. Jacob & C. Pfrommer, Cosmic ray heating in cool core clusters Il:
self-regulation cycle and non-thermal emission, 2016b, in prep.
Cosmic ray simulations with AREPO:

@ Pfrommer, Pakmor, Schaal, Simpson, Springel, Simulating cosmic ray physics on
a moving mesh, 2016, submitted.

HITS
istoph Pfrommer Cosmic ray heating in cool core clusters
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CRAGSMAN: The Impact of - osmic " ys on alaxy and Clu-ter For!/ /tio

uropean Research Council

Tﬁis:prdject has reeeived funding from the European Reséarch éoUnsiI (ERC) unider the'EUr_Ope'a’n
Union’s Horizon 2020 research and_inno\/ation program (grant agreement No CRAGSMAN-646955).‘
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Additional slides

.>\:j HITS

Cosmic ray heating in cool core clusters
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Case study A1795: non-thermal pressure balance

. A 1795
100 — ,
g
g :
= o100t e 4
g 10k
5
k=
5
g — X
— Xp
— Xy
1072 . ‘
102 107! 100
Xer Jacob & C.P. (2016a)

@ define Xy = Per/ Py and X = P/ Py
@ CRheating rate:  Her = —Vy - VPor oc X35 Xor
@ non-thermal pressure at fixed heating rate: .
Xo = (X + Xl = AXeZ + Xer = Xermin = QA 0,

istoph Pfrommer Cosmic ray heating in cool core clusters
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Non-thermal emission

Diversity of cool cores . .
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Steady state solutions: origin of density correlations

1
107" E ﬁ
N
£ SFR (M, yr™!)
E 1072 | —— 0.03
0.18
 — 4.20
— 6551
—  140.00
1073 L
1 10
r (kpc) Jacob & C.P. (2016a)

@ tight correlation of gas density ne(30 kpc) (squares) with SFR and with
1 Gyr cooling radius e (Circles)

@ clusters with larger SFRs are on average denser and show larger reoo: = J
more cool gas available for star formation HITS
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