Radio galaxies in clusters – cosmic weather stations or novel probes of cluster physics?

Christoph Pfrommer¹

in collaboration with Tom Jones²

¹Heidelberg Institute for Theoretical Studies, Germany ²University of Minnesota, Department of Astronomy, Minneapolis, USA

June 12, 2015 / JonesFest

Outline

Radio Galaxies in Clusters

- Introduction
- A puzzling radio galaxy
- Bubble-shock interaction

Probing accretion shocks

- Perseus accretion shock
- Vision and Speculations
- Conclusions

Introduction A puzzling radio galaxy Bubble-shock interaction

The structure of our Universe – a "cosmic web"

Left: projected gas density in a cosmological simulation ($L = 100 h^{-1}$ Mpc, z = 0). *Middle:* gas temperature of the gravitationally heated intergalactic medium. *Right:* structure formation shocks, color coded by Mach number.

(C.P. et al. 2006)

Introduction A puzzling radio galaxy Bubble-shock interaction

A theorist's perspective of a galaxy cluster

Galaxy clusters are dynamically evolving dark matter potential wells:

▶ < Ξ

Introduction A puzzling radio galaxy Bubble-shock interaction

... and how the observer's Universe looks like

1E 0657-56 ("Bullet cluster")

(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl; Magellan/U.Arizona/D.Clowe et al.; Lensing: NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)

Abell 3667

(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)

- 신문 () 신문

< 🗇 🕨

Christoph Pfrommer

Radio galaxies in clusters

Introduction A puzzling radio galaxy Bubble-shock interaction

Wish list for shocks

What we would like to measure and hope to infer:

- jump conditions: shock strength
- upstream properties: infalling warm-hot intergalactic medium
- post- and pre-shock conditions: geometry, obliquity
- shock curvature: vorticity and *B* field generation
- post-shock turbulence: power spectrum, non-thermal pressure support
- . . .

Introduction A puzzling radio galaxy Bubble-shock interaction

Wish list for shocks

What we would like to measure and hope to infer:

- jump conditions: shock strength
- upstream properties: infalling warm-hot intergalactic medium
- post- and pre-shock conditions: geometry, obliquity
- shock curvature: vorticity and *B* field generation
- post-shock turbulence: power spectrum, non-thermal pressure support
- . . .

X-rays give limited insight \rightarrow new complementary tools!

Introduction A puzzling radio galaxy Bubble-shock interaction

Radio galaxies in merging clusters

Christoph Pfrommer

Radio galaxies in clusters

Introduction A puzzling radio galaxy Bubble-shock interaction

Total synchrotron intensity of NGC 1265

NGC 1265 – a radio galaxy in the Perseus cluster at 4.9 GHz (*left*) and 1.4 GHz (*right*) O'Dea & Owen (1986)

Introduction A puzzling radio galaxy Bubble-shock interaction

Bipolar AGN jets in an ICM wind: magnetic field

Christoph Pfrommer

Radio galaxies in clusters

Radio Galaxies in Clusters

A puzzling radio galaxy **Bubble-shock interaction**

Bipolar AGN jets in an ICM wind: synthetic radio

Christoph Pfrommer

Radio galaxies in clusters

Introduction A puzzling radio galaxy Bubble-shock interaction

Radio properties of NGC 1265

Sijbring & de Bruyn (1998): *left:* radio intensity $I_{600 \text{ MHz}}$; *right:* variations of $I_{600 \text{ MHz}}$ (*triangles*), $I_{150 \text{ MHz}}$ (*squares*) and spectral index (*bottom*) along the tail

Introduction A puzzling radio galaxy Bubble-shock interaction

Previous models of NGC 1265 and why they fail

Chance superposition of several independent head-tail galaxies
 → lack of observed strong radio sources in this field

Previous models of NGC 1265 and why they fail

- Chance superposition of several independent head-tail galaxies → lack of observed strong radio sources in this field
- 2 re-acceleration of electrons in the turbulent wake of a galaxy \rightarrow contrived projection probabilities and implausible energetics (re-acceleration efficiency \sim 3%)

Previous models of NGC 1265 and why they fail

- chance superposition of several independent head-tail galaxies
 → lack of observed strong radio sources in this field
- 2 re-acceleration of electrons in the turbulent wake of a galaxy \rightarrow contrived projection probabilities and implausible energetics (re-acceleration efficiency \sim 3%)
- If a construction is a special cluster wind
 → wind needs special alignment with LOS, fine-tuned
 re-acceleration that balances electron cooling and avoids
 fanning out the well-confined radio emission along the arc

Previous models of NGC 1265 and why they fail

- chance superposition of several independent head-tail galaxies
 → lack of observed strong radio sources in this field
- 2 re-acceleration of electrons in the turbulent wake of a galaxy \rightarrow contrived projection probabilities and implausible energetics (re-acceleration efficiency \sim 3%)
- In the second se
- [●] 'radio tail' outlines ballistic orbit of NGC 1265 → requires dark object with $M \gtrsim M_{\text{NGC 1265}} \simeq 3 \times 10^{12} M_{\odot}$ orbiting the galaxy, no explanation of change of orbit and same challenges regarding electron cooling and re-acceleration

ヘロト ヘアト ヘビト ヘ

Introduction A puzzling radio galaxy Bubble-shock interaction

Requirements for any model of NGC 1265

- bright narrow angle tail radio jet: synchrotron cooling
- transition region: change of winding direction and sharp drop in S_ν and α
- coherent properties along the dim radio ring, confined morphology
- \rightarrow we are looking at 2 electron populations in projection possibly suggesting 2 different epochs of feedback:
- \rightarrow active jet + detached radio bubble that recently got energized coherently across 300 kpc \rightarrow shock?

Introduction A puzzling radio galaxy Bubble-shock interaction

Shock overruns an aged radio bubble (C.P. & Jones 2011)

Christoph Pfrommer

Radio galaxies in clusters

Introduction A puzzling radio galaxy Bubble-shock interaction

Bubble transformation to vortex ring

Enßlin & Brüggen (2002): gas density (top) and magnetic energy density (bottom)

Introduction A puzzling radio galaxy Bubble-shock interaction

Synthetic radio emission of shock-transformed bubble

Enßlin & Brüggen (2002): total 100 MHz intensity and polarization E-vectors, strong shock/weak *B (left)* and strong shock/strong *B* model (*right*)

Christoph Pfrommer Radio galaxies in clusters

Introduction A puzzling radio galaxy Bubble-shock interaction

Cartoon of the time evolution of NGC 1265

C.P. & Jones (2011)

> < ≣

NGC 1265 as a perfect probe of a shock

• idea:

- galaxy velocity not affected by shock
 → pre-shock conditions
- tail & torus as tracers of the post-shock flow
- assumptions:
 - shock surface || gravitational equipotential surface of Perseus
 - recent jet launched shortly after shock crossing

method:

- extrapolating position and velocity back in time
- employing conservation laws at oblique shock
- iterate until convergence

프 🖌 🖌 프

Perseus accretion shock Vision and Speculations Conclusions

Derived geometry for NGC 1265

Perseus accretion shock Vision and Speculations Conclusions

A 3D model for NGC 1265

3D model:

top view:

・ロト ・ 同ト ・ ヨト ・ ヨト

Christoph Pfrommer Radio galaxies in clusters

Perseus accretion shock Vision and Speculations Conclusions

A 3D model for NGC 1265

3D model:

observer's view:

Christoph Pfrommer Radio galaxies in clusters

Perseus accretion shock Vision and Speculations Conclusions

Shock strength and jump conditions

- shock compresses relativistic bubble adiabatically: $P_2/P_1 = C^{4/3}$
- bubble compression factor:

$$C = \frac{V_{\text{bubble}}}{V_{\text{torus}}} = \frac{\frac{4}{3}\pi R^3}{2\pi^2 R r_{\text{min}}^2} = \frac{2}{3\pi} \left(\frac{R}{r_{\text{min}}}\right)^2 \simeq 10$$

● assuming pressure equilibrium → shock jumps:

$$\frac{P_2}{P_1} \simeq 21.5, \quad \frac{\rho_2}{\rho_1} \simeq 3.4, \quad \frac{T_2}{T_1} \simeq 6.3, \quad \text{and } \mathcal{M} \simeq 4.2$$

C.P. & Jones (2011)

< 🗇 ▶

(< ∃) < ∃)</p>

Perseus accretion shock Vision and Speculations Conclusions

Perseus accretion shock and WHIM properties

- jet has low Faraday RM → NGC 1265 on near side of Perseus NGC 1265 redshifted w/r to Perseus → infalling system
 → shock likely the accretion shock
- extrapolating X-ray *n* and *T*-profiles to R_{200} & shock jumps: \rightarrow upper limits on infalling warm-hot intergalactic medium

$$kT_1 \lesssim 0.4 \text{ keV}$$

 $n_1 \lesssim 5 \times 10^{-5} \text{ cm}^{-3}$
 $P_1 \lesssim 3.6 \times 10^{-14} \text{ erg cm}^{-3}$

Perseus accretion shock Vision and Speculations Conclusions

Shear flows and shock curvature

- ellipticity of radio torus (magnitude and orientation) & bending direction of tail
 - \rightarrow excludes projection effects
 - \rightarrow evidence for post-shock shear flow
- shock curvature injects vorticity that shears the gas westwards:

$$rac{arepsilon_{
m shear}}{arepsilon_{
m th,2}} = rac{\mu m_{
m p} v_{\perp}^2}{3kT_2} \simeq 0.14,$$

with $kT_2\simeq 2.4\,\text{keV}$ and $v_\perp\simeq 400\,\text{km/s}$

C.P. & Jones (2011)

Sijbring & de Bruyn (1998)

Perseus accretion shock Vision and Speculations Conclusions

Vision and Speculations

Christoph Pfrommer

Radio galaxies in clusters

90

Perseus accretion shock Vision and Speculations Conclusions

Radio vortex rings in A2256

HITS

・ロト ・ 同ト ・ ヨト ・ ヨト

Perseus accretion shock Vision and Speculations Conclusions

The Universe is full of

Christoph Pfrommer

Radio galaxies in clusters

Perseus accretion shock Vision and Speculations Conclusions

Conclusions on radio galaxies as probes of shocks

- consistent 3D model of NGC 1265
- prediction of a very interesting source class for LOFAR/SKA
- radio galaxies as perfect probes of pre- and post-shock flows:
 - hydrodynamic jumps and Mach numbers
 - statistical properties of the infalling WHIM (+ X-rays)
 - estimating the curvature radius of shocks and induced shear flows

 \rightarrow implications for intra-cluster turbulence as well as generation and amplification of large-scale magnetic fields!

Perseus accretion shock Vision and Speculations Conclusions

Literature for the talk

 Pfrommer & Jones, 2011, ApJ, 730, 22, Radio Galaxy NGC 1265 unveils the Accretion Shock onto the Perseus Galaxy Cluster

