Cosmic rays in clusters of galaxies – Tuning in to the non-thermal Universe

Christoph Pfrommer¹

in collaboration with

Torsten Enßlin², Volker Springel²

¹Canadian Institute for Theoretical Astrophysics, Canada

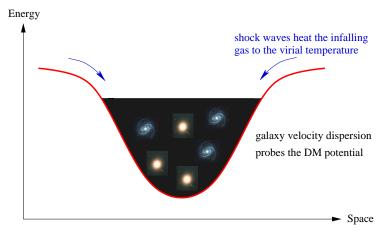
²Max-Planck Institute for Astrophysics, Germany

Apr 24, 2008 / McMaster University

Outline

- Cosmic rays in galaxy clusters
 - Introduction and motivation
 - Cluster simulations and cosmic ray physics
 - Cosmic ray pressure feedback
- Particle acceleration processes
 - Diffusive shock acceleration
 - Stochastic acceleration
 - Particle reactions
- Non-thermal cluster emission
 - Radiative processes
 - Unified model of radio halos and relics
 - High-energy gamma-ray emission

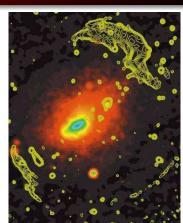
Outline


- Cosmic rays in galaxy clusters
 - Introduction and motivation
 - Cluster simulations and cosmic ray physics
 - Cosmic ray pressure feedback
- Particle acceleration processes
 - Diffusive shock acceleration
 - Stochastic acceleration
 - Particle reactions
- Non-thermal cluster emission
 - Radiative processes
 - Unified model of radio halos and relics
 - High-energy gamma-ray emission

A theorist's perspective of a galaxy cluster

Galaxy clusters are dynamically evolving dark matter potential wells:

Introduction and motivation


Cluster simulations and cosmic ray physic Cosmic ray pressure feedback

... and how the observer's Universe looks like

1E 0657-56 ("Bullet cluster")

(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl; Magellan/U.Arizona/D.Clowe et al.; Lensing: NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)

Abell 3667

(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)

Why should we care about cosmic rays in clusters?

It allows us to explore complementary windows to cluster cosmology

- Is high-precision cosmology possible using clusters?
 - Non-equilibrium processes such as cosmic ray pressure and turbulence possibly modify thermal X-ray emission and Sunyaev-Zel'dovich effect.
 - Non-thermal cluster emission will enable constructing a 'gold sample' for cosmology using orthogonal information on the dynamical cluster activity.
- What can we learn from non-thermal cluster emission?
 - Understanding mechanism of diffuse radio and non-thermal X-ray emission of clusters.
 - Estimating the cosmic ray pressure contribution.
 - Fundamental physics: diffusive shock acceleration, large scale magnetic fields, and turbulence.

Why should we care about cosmic rays in clusters?

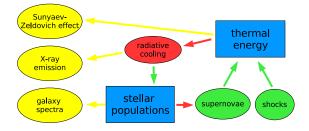
It allows us to explore complementary windows to cluster cosmology

- Is high-precision cosmology possible using clusters?
 - Non-equilibrium processes such as cosmic ray pressure and turbulence possibly modify thermal X-ray emission and Sunyaev-Zel'dovich effect.
 - Non-thermal cluster emission will enable constructing a 'gold sample' for cosmology using orthogonal information on the dynamical cluster activity.
- What can we learn from non-thermal cluster emission?
 - Understanding mechanism of diffuse radio and non-thermal X-ray emission of clusters.
 - Estimating the cosmic ray pressure contribution.
 - Fundamental physics: diffusive shock acceleration, large scale magnetic fields, and turbulence.

Literature for the talk

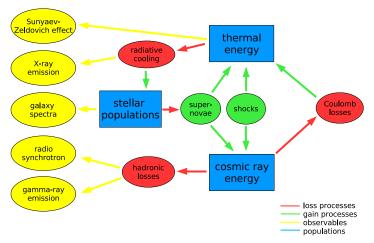
- Pfrommer, 2008, MNRAS, in print, ArXiv:0707.1693, Simulating cosmic rays in clusters of galaxies – III. Non-thermal scaling relations and comparison to observations
- Pfrommer, Enßlin, Springel, 2008, MNRAS, in print, ArXiv:0707.1707, Simulating cosmic rays in clusters of galaxies II. A unified scheme for radio halos and relics with predictions of the γ-ray emission
- Pfrommer, Enßlin, Springel, Jubelgas, and Dolag, 2007, MNRAS, 378, 385, Simulating cosmic rays in clusters of galaxies – I. Effects on the Sunyaev-Zel'dovich effect and the X-ray emission
- Pfrommer, Springel, Enßlin, Jubelgas 2006, MNRAS, 367, 113,
 Detecting shock waves in cosmological smoothed particle hydrodynamics simulations
- Enßlin, Pfrommer, Springel, and Jubelgas, 2007, A&A, 473, 41,
 Cosmic ray physics in calculations of cosmological structure formation
- Jubelgas, Springel, Enßlin, and Pfrommer, A&A, in print, astro-ph/0603485,
 Cosmic ray feedback in hydrodynamical simulations of galaxy formation

Outline


- Cosmic rays in galaxy clusters
 - Introduction and motivation
 - Cluster simulations and cosmic ray physics
 - Cosmic ray pressure feedback
- Particle acceleration processes
 - Diffusive shock acceleration
 - Stochastic acceleration
 - Particle reactions
- Non-thermal cluster emission
 - Radiative processes
 - Unified model of radio halos and relics
 - High-energy gamma-ray emission

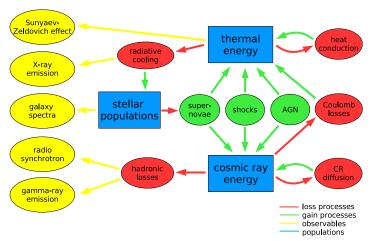
Radiative simulations – flowchart

Cluster observables:



Radiative simulations with cosmic ray (CR) physics

Cluster observables:



Radiative simulations with extended CR physics

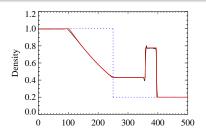
Cluster observables:

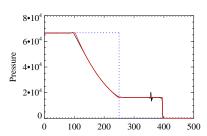
Detecting shock waves in SPH - Idea

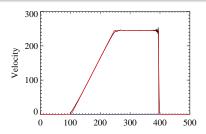
- SPH shock is broadened to a scale of the order of the smoothing length h, i.e. $f_h h$, and $f_h \sim 2$
- approximate instantaneous particle velocity by pre-shock velocity (denoted by $v_1 = \mathcal{M}_1 c_1$)

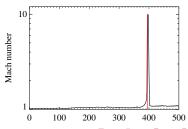
Using the entropy conserving formalism with the entropic function $A(s) = P\rho^{-\gamma}$ (Springel & Hernquist 2002):

$$\begin{array}{lll} \frac{A_{2}}{A_{1}} & = & \frac{A_{1} + dA_{1}}{A_{1}} = 1 + \frac{f_{h}h}{\mathcal{M}_{1}c_{1}A_{1}} \frac{dA_{1}}{dt} = \frac{P_{2}}{P_{1}} \left(\frac{\rho_{1}}{\rho_{2}}\right)^{\gamma} \\ & \frac{\rho_{2}}{\rho_{1}} & = & \frac{(\gamma + 1)\mathcal{M}_{1}^{2}}{(\gamma - 1)\mathcal{M}_{1}^{2} + 2} \\ & \frac{P_{2}}{P_{1}} & = & \frac{2\gamma\mathcal{M}_{1}^{2} - (\gamma - 1)}{\gamma + 1} \end{array}$$

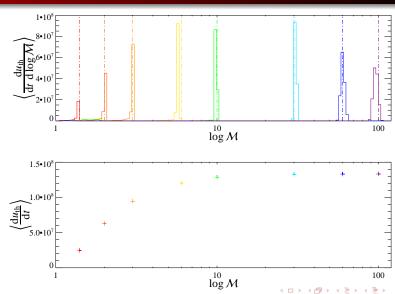

Detecting shock waves in SPH – Complications

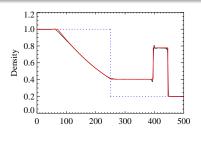

- Broad Mach number distributions $f(\mathcal{M}) = \frac{\mathrm{d}^2 u_{\mathrm{th}}}{\mathrm{d} t \, \mathrm{d} \log \mathcal{M}}$ because particle quantities within the (broadened) shock front do not correspond to those of the pre-shock regime. Solution: introduce decay time $\Delta t_{\mathrm{dec}} = f_h h/(\mathcal{M}_1 c)$, meanwhile the Mach number is set to the maximum (only allowing for its rise in the presence of multiple shocks).
- Weak shocks imply large values of Δt_{dec} : Solution: $\Delta t_{\text{dec}} = \min[f_h h/(\mathcal{M}_1 c), \Delta t_{\text{max}}]$
- **Strong shocks with** $\mathcal{M} > 5$ are slightly underestimated because there is no universal shock length. Solution: recalibrate strong shocks!

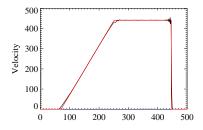


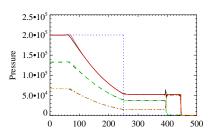


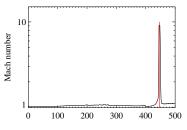
Shock tube: thermodynamics



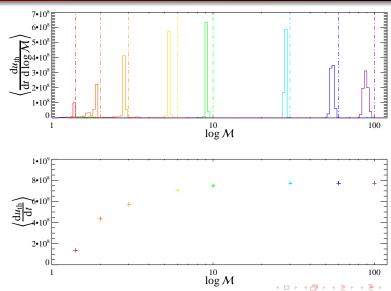



Shock tube: Mach number statistics

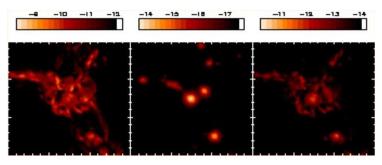


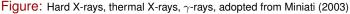


Shock tube (CRs & gas)



Shock tube (CRs & gas): Mach number statistics





Previous numerical work on cosmic rays in clusters

COSMOCR: A numerical code for cosmic ray studies in computational cosmology (Miniati, 2001):

- advantages: good resolution in momentum space
- drawbacks: CR pressure not accounted for in EoM, insufficient spatial resolution (grid code), non-radiative gas physics

4 □ > 4 □ > 4 □ > 4 □ >

Our philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as necessary

Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

Our philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as necessary

Assumptions:

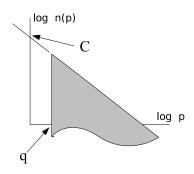
- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

Our philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as necessary


Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

CR spectral description

$$p = P_{\rm p}/m_{\rm p}\,c$$

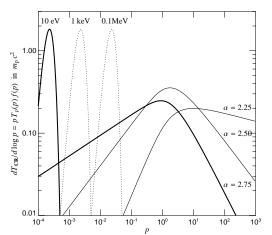
$$f(p) = \frac{dN}{dp\,dV} = C\,p^{-\alpha}\theta(p-q)$$

$$egin{aligned} q(
ho) &= \left(rac{
ho}{
ho_0}
ight)^{rac{1}{3}} q_0 \ C(
ho) &= \left(rac{
ho}{
ho_0}
ight)^{rac{lpha+2}{3}} C_0 \end{aligned}$$

$$C(\rho) = \left(\frac{\rho}{\rho_0}\right)^{\frac{3}{3}} C_0$$

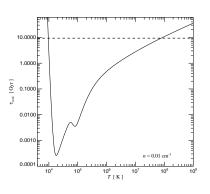
$$n_{\rm CR} = \int_0^\infty {\rm d} p \, f(p) = \frac{C \, q^{1-\alpha}}{\alpha-1}$$

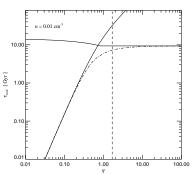
$$P_{\mathsf{CR}} = \frac{m_{\mathsf{p}}c^2}{3} \int_0^\infty \mathsf{d}p \, f(p) \, \beta(p) \, p$$


$$=\frac{C m_{\rm p}c^2}{6} \mathcal{B}_{\frac{1}{1+c^2}}\left(\frac{\alpha-2}{2},\frac{3-\alpha}{2}\right)$$

Thermal & CR energy spectra

Kinetic energy per logarithmic momentum interval:



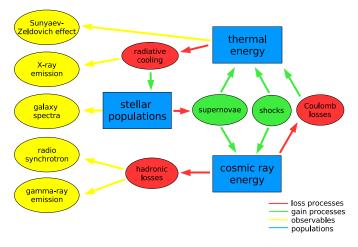


Cooling time scales of CR protons

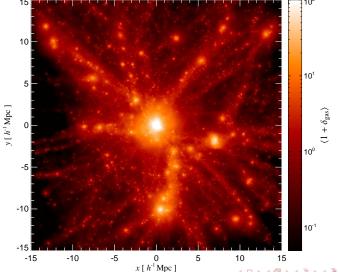
Cooling of primordial gas:

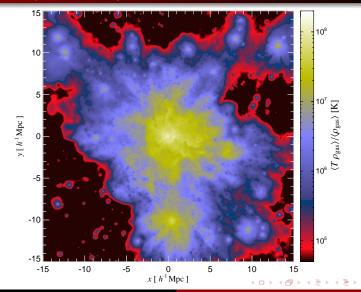
Cooling of cosmic rays:

Outline

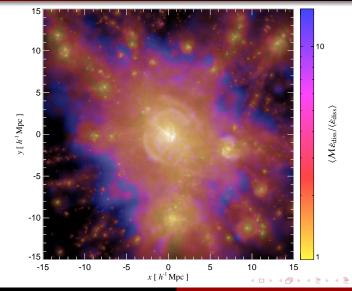

- Cosmic rays in galaxy clusters
 - Introduction and motivation
 - Cluster simulations and cosmic ray physics
 - Cosmic ray pressure feedback
- Particle acceleration processes
 - Diffusive shock acceleration
 - Stochastic acceleration
 - Particle reactions
- Non-thermal cluster emission
 - Radiative processes
 - Unified model of radio halos and relics
 - High-energy gamma-ray emission

Radiative simulations with CR physics

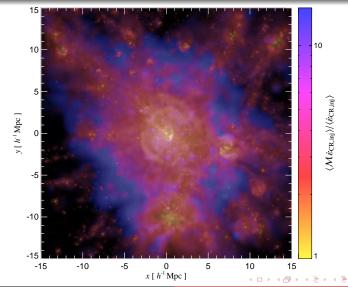

Cluster observables:



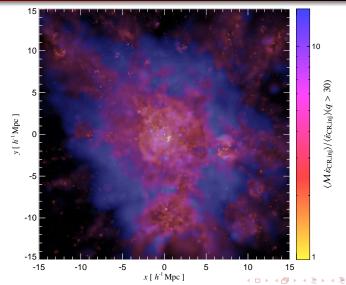
Radiative cool core cluster simulation: gas density



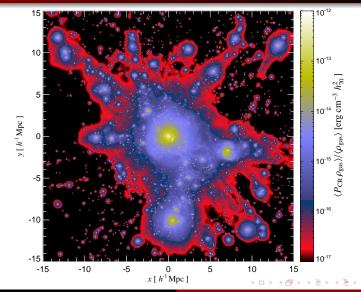
Mass weighted temperature



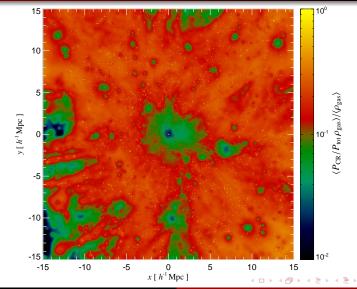
Mach number distribution weighted by $\varepsilon_{\text{diss}}$

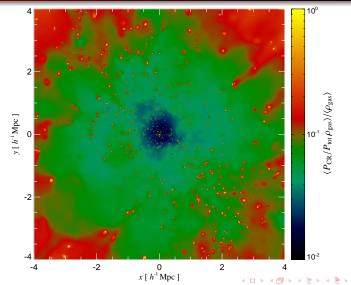


Mach number distribution weighted by $\varepsilon_{\mathrm{CR,inj}}$

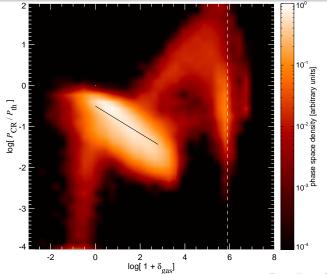


Mach number distribution weighted by $\varepsilon_{CR,ini}(q > 30)$

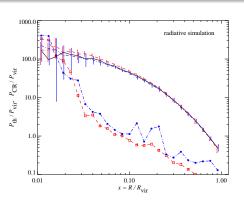

CR pressure P_{CR}

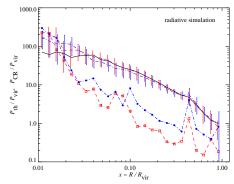

Introduction and motivation
Cluster simulations and cosmic ray physic
Cosmic ray pressure feedback

Relative CR pressure P_{CR}/P_{total}

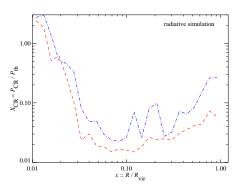


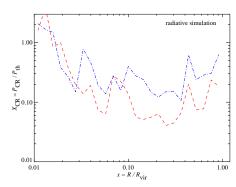
Relative CR pressure P_{CR}/P_{total}


Phase-space diagram of radiative cluster simulation



Radiative simulations: pressure profile

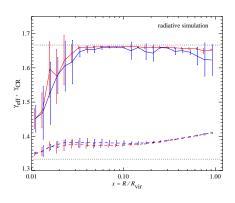

Cool core cluster sample.

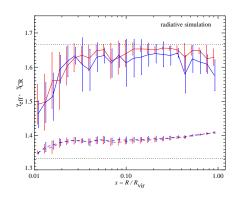

red: only structure formation shock CRs, blue: structure formation & SNe CRs.

Merging cluster sample.

Radiative simulations: relative CR pressure profile

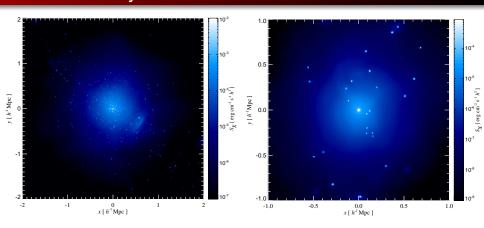
Cool core cluster sample.


red: only structure formation shock CRs, blue: structure formation & SNe CRs.


Merging cluster sample.

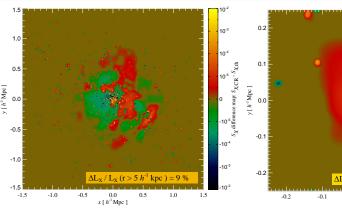
Radiative simulations: adiabatic index profile

Cool core cluster sample.

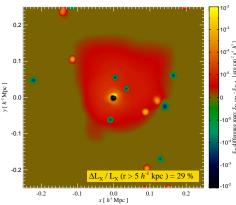

red: only structure formation shock CRs, blue: structure formation & SNe CRs.

Merging cluster sample.

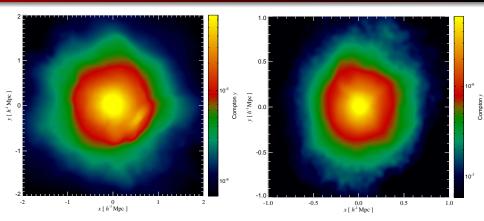
Thermal X-ray emission



large merging cluster, $M_{\rm vir} \simeq 10^{15} M_{\odot}/h$

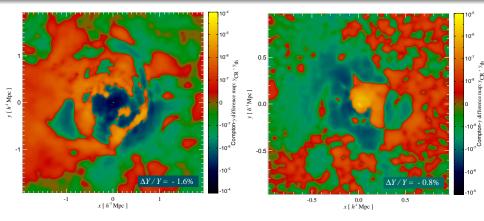

small cool core cluster, $M_{\rm vir} \simeq 10^{14} M_{\odot}/h$

Difference map of S_X : $S_{X,CR} - S_{X,th}$


large merging cluster, $M_{\rm vir} \simeq 10^{15} M_{\odot}/h$ \rightarrow contributes to the scatter in the $M-L_{\rm X}$ scaling relation

cool core cluster, $M_{\rm vir} \simeq 10^{14} M_{\odot}/h$ \rightarrow systematic increase of $L_{\rm X}$ for small cool core clusters

Compton y parameter in radiative cluster simulation


large merging cluster, $M_{\rm vir} \simeq 10^{15} M_{\odot}/h$

small cool core cluster, $\textit{M}_{\rm vir} \simeq 10^{14} \textit{M}_{\odot}/h$

Compton y difference map: $y_{CR} - y_{th}$

large merging cluster, $M_{\rm vir} \simeq 10^{15} M_{\odot}/h$

small cool core cluster, $\textit{M}_{\rm vir} \simeq 10^{14} \textit{M}_{\odot}/h$

Outline

- Cosmic rays in galaxy clusters
 - Introduction and motivation
 - Cluster simulations and cosmic ray physics
 - Cosmic ray pressure feedback
- Particle acceleration processes
 - Diffusive shock acceleration
 - Stochastic acceleration
 - Particle reactions
- Non-thermal cluster emission
 - Radiative processes
 - Unified model of radio halos and relics
 - High-energy gamma-ray emission

Particle acceleration processes

particles are acclerated via:

- adiabatic compression
- diffusive shock acceleration (Fermi I)
- stochastic acceleration by plasma waves (Fermi II)
- particle reactions (pp $\rightarrow \pi \rightarrow \mu \nu \rightarrow e \nu \nu$)

particles are de-accelerated via

- adiabatic expansion
- radiative cooling (synchrotron, inverse Compton, bremsstrahlung, hadronic interactions)
- non-radiative cooling (Coulomb interactions)

Particle acceleration processes

particles are acclerated via:

- adiabatic compression
- diffusive shock acceleration (Fermi I)
- stochastic acceleration by plasma waves (Fermi II)
- particle reactions (pp $\rightarrow \pi \rightarrow \mu \nu \rightarrow e \nu \nu$)

particles are de-accelerated via:

- adiabatic expansion
- radiative cooling (synchrotron, inverse Compton, bremsstrahlung, hadronic interactions)
- non-radiative cooling (Coulomb interactions)

Diffusive shock acceleration – Fermi 1 mechanism (1)

conditions:

- a collisionless shock wave
- magnetic fields to confine energetic particles
- plasma waves to scatter energetic particles → particle diffusion
- supra-thermal particles

mechanism:

- supra-thermal particles diffuse upstream across shock wave
- each shock crossing energizes particles through momentum transfer from recoil-free scattering off the macroscopic scattering agents
- momentum increases exponential with number of shock crossings
- number of particles decreases exponential with number of crossings

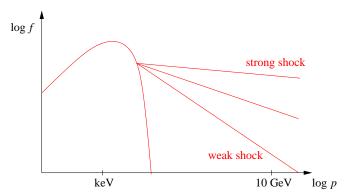
Diffusive shock acceleration – Fermi 1 mechanism (1)

conditions:

- a collisionless shock wave
- magnetic fields to confine energetic particles
- plasma waves to scatter energetic particles → particle diffusion
- supra-thermal particles

mechanism:

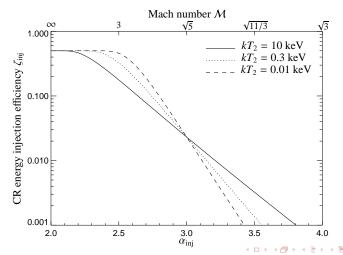
- supra-thermal particles diffuse upstream across shock wave
- each shock crossing energizes particles through momentum transfer from recoil-free scattering off the macroscopic scattering agents
- momentum increases exponential with number of shock crossings
- number of particles decreases exponential with number of crossings



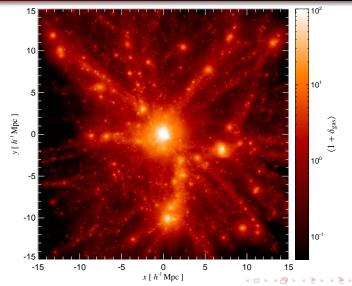
Diffusive shock acceleration – Fermi 1 mechanism (2)

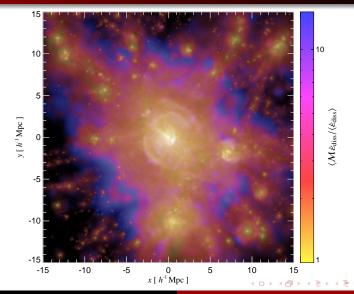
Spectral index depends on the Mach number of the shock,

$$\mathcal{M} = v_{\sf shock}/c_{\sf s}$$
:

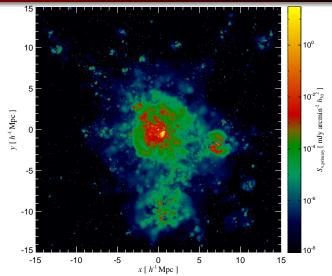


Diffusive shock acceleration – efficiency (3)

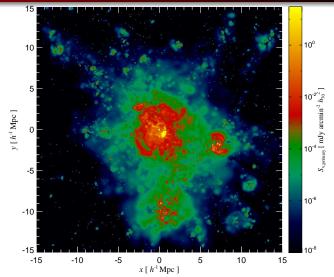

CR proton energy injection efficiency, $\zeta_{\rm inj} = \varepsilon_{\rm CR}/\varepsilon_{\rm diss}$:

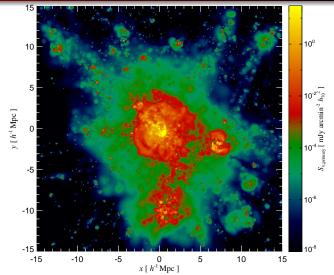


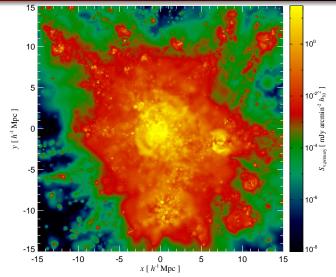
Radiative cool core cluster simulation: gas density



Cosmic web: Mach number


Radio web: primary CRe (1.4 GHz)


Radio web: primary CRe (150 MHz)


Radio web: primary CRe (15 MHz)

Radio web: primary CRe (15 MHz), slower magnetic decline

Outline

- Cosmic rays in galaxy clusters
 - Introduction and motivation
 - Cluster simulations and cosmic ray physics
 - Cosmic ray pressure feedback
- Particle acceleration processes
 - Diffusive shock acceleration
 - Stochastic acceleration
 - Particle reactions
- Non-thermal cluster emission
 - Radiative processes
 - Unified model of radio halos and relics
 - High-energy gamma-ray emission

Stochastic acceleration: recipe (1)

conditions:

- super-thermal or better relativistic particles
- magnetic fields to confine them
- high level of plasma waves to scatter them via gyro-resonances

mechanism

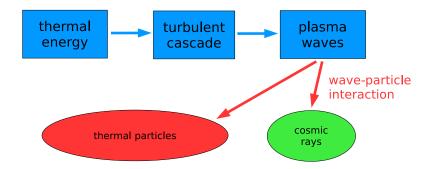
- head on wave-particle collision energises particle
- tail on wave-particle collision de-energise particle
- statistically more head-on than tail-on collisions

→ net energy gain due to diffusion in momentum space advantage: plamsa waves are everywhere!

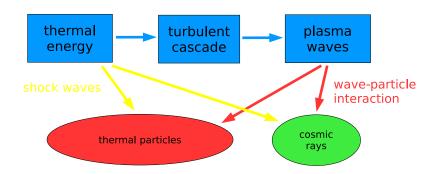
Stochastic acceleration: recipe (1)

conditions:

- super-thermal or better relativistic particles
- magnetic fields to confine them
- high level of plasma waves to scatter them via gyro-resonances


mechanism:

- head on wave-particle collision energises particle
- tail on wave-particle collision de-energise particle
- statistically more head-on than tail-on collisions
- → net energy gain due to diffusion in momentum space advantage: plamsa waves are everywhere!


Stochastic acceleration: cartoon (2)

Stochastic acceleration: cartoon (2)

Stochastic acceleration: problems (3)

problems:

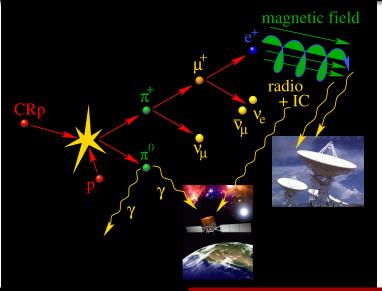
- low efficiency (2nd order in ratio of wave to particle velocity)
- waves like to cascade to small scales
- small-scale waves dissipate into the thermal pool
- wave energy budget is usually tight
- at locations with high wave density (e.g. shocks), more efficient acceleration mechanism may be in operation (e.g. DSA)

nevertheless: cluster radio halos may be due to stochastic re-acceleration of 0.2 MeV electrons (e.g. Brunetti et al.)

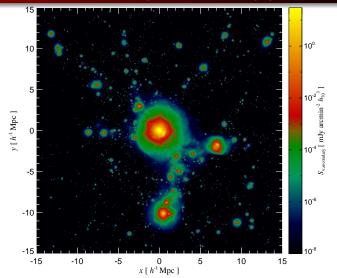
Outline

- Cosmic rays in galaxy clusters
 - Introduction and motivation
 - Cluster simulations and cosmic ray physics
 - Cosmic ray pressure feedback
- Particle acceleration processes
 - Diffusive shock acceleration
 - Stochastic acceleration
 - Particle reactions
- Non-thermal cluster emission
 - Radiative processes
 - Unified model of radio halos and relics
 - High-energy gamma-ray emission

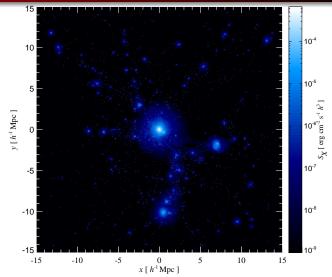
Particle reactions


relativistic proton populations can often be expected, since

- acceleration mechanisms work for protons . . .
 - ... as efficient as for electrons (adiabatic compression) or
 - ... more efficient than for electrons (DSA, stochastic acc.)
- galactic CR protons are observed to have 100 times higher energy density than electrons
- CR protons are very inert against radiative losses and therefore long-lived (~ Hubble time in galaxy clusters, longer outside)
- → an energetic CR proton population should exist in clusters



Hadronic cosmic ray proton interaction


Cluster radio emission by hadronically produced CRe

Thermal X-ray emission

Outline

- Cosmic rays in galaxy clusters
 - Introduction and motivation
 - Cluster simulations and cosmic ray physics
 - Cosmic ray pressure feedback
- Particle acceleration processes
 - Diffusive shock acceleration
 - Stochastic acceleration
 - Particle reactions
- Non-thermal cluster emission
 - Radiative processes
 - Unified model of radio halos and relics
 - High-energy gamma-ray emission

Non-thermal emission from clusters

Exploring the memory of structure formation

The thermal plasma lost most information on how cosmic structure formation proceeded due to the dissipative processes. The thermal observables, X-ray emission and the Sunyaev-Zel'dovich effect, tell us only very indirectly (if at all) about the cosmic history. In contrast, non-thermal processes retain their cosmic memory since their particle population is not in equilibrium \rightarrow cluster archaeology.

How can we read out this information about non-thermal populations? \rightarrow new era of multi-frequency experiments, e.g.:

- LOFAR, GMRT, MWA: interferometric array of radio telescopes at low frequencies ($\nu \simeq (15-240)$ MHz)
- Simbol-X: future hard X-ray satellite ($E \simeq (0.5 70)$ keV)
- GLAST: high-energy γ -ray space mission ($E \simeq (0.1-300)$ GeV)
- Imaging air Čerenkov telescopes (TeV photon energies)

4 日 > 4 周 > 4 至 > 4 至 >

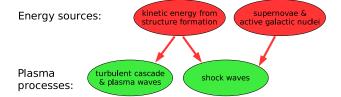
Non-thermal emission from clusters

Exploring the memory of structure formation

The thermal plasma lost most information on how cosmic structure formation proceeded due to the dissipative processes. The thermal observables, X-ray emission and the Sunyaev-Zel'dovich effect, tell us only very indirectly (if at all) about the cosmic history. In contrast, non-thermal processes retain their cosmic memory since their particle population is not in equilibrium \rightarrow cluster archaeology.

How can we read out this information about non-thermal populations? \rightarrow new era of multi-frequency experiments, e.g.:

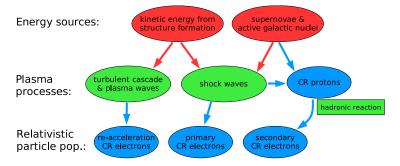
- LOFAR, GMRT, MWA: interferometric array of radio telescopes at low frequencies ($\nu \simeq (15-240)$ MHz)
- Simbol-X: future hard X-ray satellite ($E \simeq (0.5 70)$ keV)
- GLAST: high-energy γ -ray space mission ($E \simeq (0.1 300)$ GeV)
- Imaging air Čerenkov telescopes (TeV photon energies)



Radiative processes Unified model of radio halos and relicible High-energy gamma-ray emission

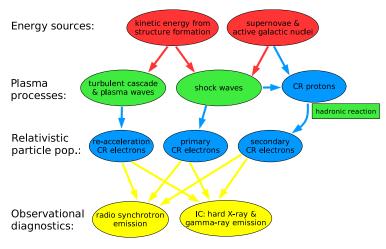
Cosmic rays and radiative processes

Relativistic populations and radiative processes in clusters:



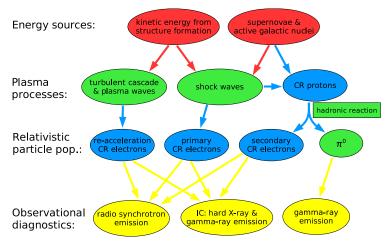
Cosmic rays and radiative processes

Relativistic populations and radiative processes in clusters:



Cosmic rays and radiative processes

Relativistic populations and radiative processes in clusters:



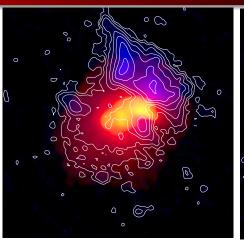
Cosmic rays and radiative processes

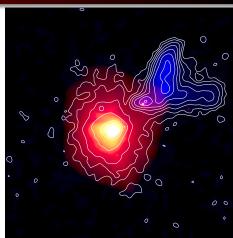
Relativistic populations and radiative processes in clusters:

Outline

- Cosmic rays in galaxy clusters
 - Introduction and motivation
 - Cluster simulations and cosmic ray physics
 - Cosmic ray pressure feedback
- Particle acceleration processes
 - Diffusive shock acceleration
 - Stochastic acceleration
 - Particle reactions
- Non-thermal cluster emission
 - Radiative processes
 - Unified model of radio halos and relics
 - High-energy gamma-ray emission

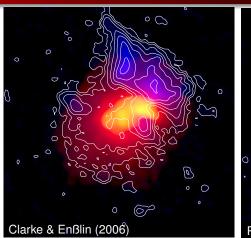
Previous models for giant radio halos in clusters

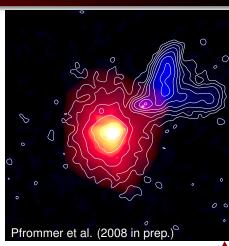

Radio halos show a smooth unpolarized radio emission at Mpc-scales. How are they generated?


- Primary accelerated CR electrons: synchrotron/IC cooling times too short to account for extended diffuse emission.
- Continuous in-situ acceleration of pre-existing CR electrons either via interactions with magneto-hydrodynamic waves, or through turbulent spectra (Jaffe 1977, Schlickeiser 1987, Brunetti 2001, Brunetti & Lazarian 2007).
- Hadronically produced CR electrons in inelastic collisions of CR protons with the ambient gas (Dennison 1980, Vestrad 1982, Miniati 2001, Pfrommer 2004).

All of these models face theoretical short-comings when comparing to observations.

Which one is the simulation/observation of A2256?





red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic

Which one is the simulation/observation of A2256?

red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic

Unified model of radio halos and relics

Cluster radio emission varies with dynamical stage of a cluster:

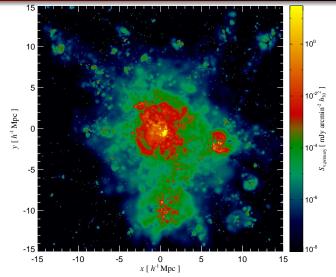
- Cluster relaxes and develops cool core: radio mini-halo develops due to hadronically produced CR electrons, magnetic fields are adiabatically compressed (cooling gas triggers radio mode feedback of AGN that outshines mini-halo → selection effect).
- Cluster experiences major merger: two leading shock waves are produced that become stronger as they break at the shallow peripheral cluster potential → shock-acceleration of primary electrons and development of radio relics.
- Generation of morphologically complex network of virializing shock waves. Lower sound speed in the cluster outskirts lead to strong shocks
 → irregular distribution of primary electrons, MHD turbulence amplifies magnetic fields.
- Giant radio halo develops due to (1) boost of the hadronically generated radio emission in the center (2) irregular radio 'gischt' emission in the cluster outskirts.

Unified model of radio halos and relics

Cluster radio emission varies with dynamical stage of a cluster:

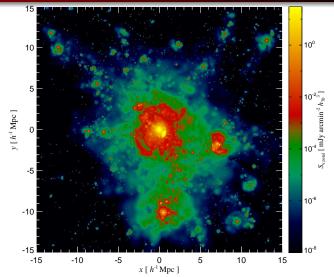
- Cluster relaxes and develops cool core: radio mini-halo develops due to hadronically produced CR electrons, magnetic fields are adiabatically compressed (cooling gas triggers radio mode feedback of AGN that outshines mini-halo → selection effect).
- Cluster experiences major merger: two leading shock waves are produced that become stronger as they break at the shallow peripheral cluster potential → shock-acceleration of primary electrons and development of radio relics.
- Generation of morphologically complex network of virializing shock waves. Lower sound speed in the cluster outskirts lead to strong shocks
 → irregular distribution of primary electrons, MHD turbulence amplifies magnetic fields.
- Giant radio halo develops due to (1) boost of the hadronically generated radio emission in the center (2) irregular radio 'gischt' emission in the cluster outskirts.

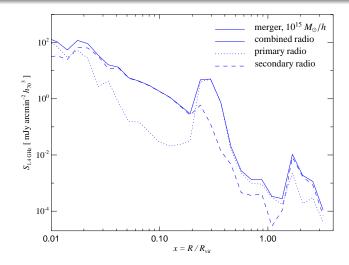
Unified model of radio halos and relics

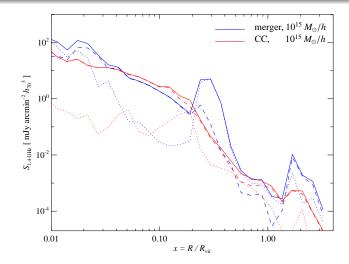

Cluster radio emission varies with dynamical stage of a cluster:

- Cluster relaxes and develops cool core: radio mini-halo develops due to hadronically produced CR electrons, magnetic fields are adiabatically compressed (cooling gas triggers radio mode feedback of AGN that outshines mini-halo → selection effect).
- Cluster experiences major merger: two leading shock waves are produced that become stronger as they break at the shallow peripheral cluster potential → shock-acceleration of primary electrons and development of radio relics.
- Generation of morphologically complex network of virializing shock waves. Lower sound speed in the cluster outskirts lead to strong shocks

 → irregular distribution of primary electrons, MHD turbulence amplifies magnetic fields.
- Giant radio halo develops due to (1) boost of the hadronically generated radio emission in the center (2) irregular radio 'gischt' emission in the cluster outskirts.


Radio gischt: primary CRe (150 MHz)


Radio gischt + central hadronic halo = giant radio halo


Giant radio halo profile


Giant radio halo vs. mini-halo

Radio relics + halos: spectral index

Low-frequency radio emission from clusters

Window into current and past structure formation

Our unified model accounts for . . .

- correlation between merging clusters and giant halos, occurrence of mini-halos in cool core clusters
- observed luminosities of halos/relics for magnetic fields derived from Faraday rotation measurements
- observed morphologies, variations, spectral and polarization properties in radio halos/relics

How we can make use of this information:

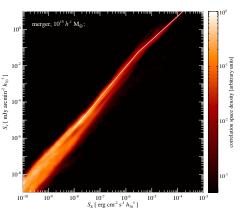
- Radio relics: produced by primary accelerated CR electrons at formation shocks → probes current dynamical, non-equilibrium activity of forming structures (shocks and magnetic fields)
- Central radio halos: produced by secondary CR electrons in hadronic CR proton interactions → tracing time-integrated non-equilibrium activity, modulated by recent dynamical activities

Low-frequency radio emission from clusters

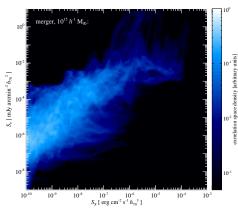
Window into current and past structure formation

Our unified model accounts for . . .

- correlation between merging clusters and giant halos, occurrence of mini-halos in cool core clusters
- observed luminosities of halos/relics for magnetic fields derived from Faraday rotation measurements
- observed morphologies, variations, spectral and polarization properties in radio halos/relics


How we can make use of this information:

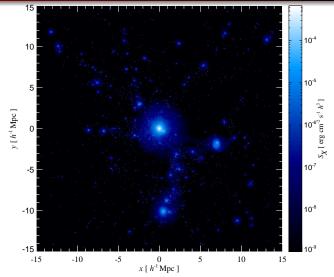
- Radio relics: produced by primary accelerated CR electrons at formation shocks → probes current dynamical, non-equilibrium activity of forming structures (shocks and magnetic fields)
- Central radio halos: produced by secondary CR electrons in hadronic CR proton interactions → tracing time-integrated non-equilibrium activity, modulated by recent dynamical activities



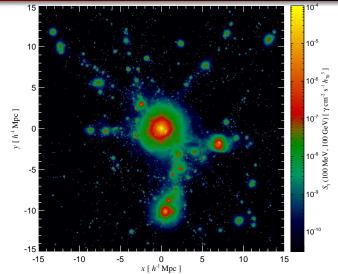
Correlation between X-ray and synchrotron emission

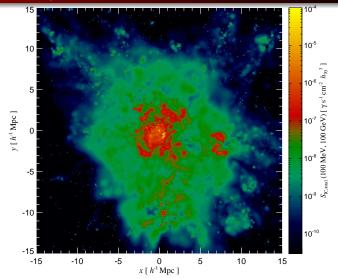
Correlation with secondary 'halo' emission, merging cluster, $M_{vir} \simeq 10^{15} M_{\odot}/h$

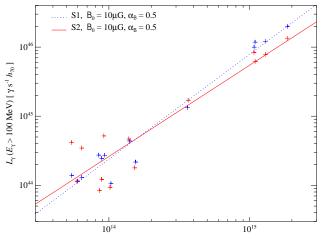
Correlation with primary 'relic' emission, merging cluster, $M_{\rm vir} \simeq 10^{15} M_{\odot}/h$

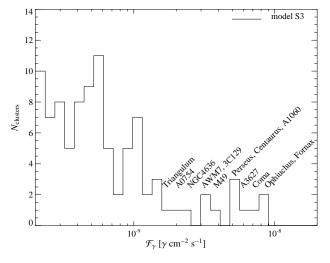

Outline

- Cosmic rays in galaxy clusters
 - Introduction and motivation
 - Cluster simulations and cosmic ray physics
 - Cosmic ray pressure feedback
- Particle acceleration processes
 - Diffusive shock acceleration
 - Stochastic acceleration
 - Particle reactions
- Non-thermal cluster emission
 - Radiative processes
 - Unified model of radio halos and relics
 - High-energy gamma-ray emission

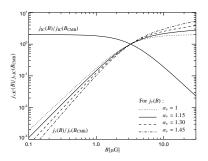

Thermal X-ray emission


Hadronic γ -ray emission, $E_{\gamma} > 100 \text{ MeV}$


Inverse Compton emission, $E_{IC} > 100 \text{ MeV}$


Gamma-ray scaling relations

Scaling relation + complete sample of the brightest X-ray clusters (HIFLUCGS) \rightarrow predictions for GLAST


Predicted cluster sample for GLAST

Minimum γ -ray flux in the hadronic model (1)

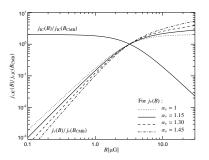
Synchrotron emissivity of highenergy, steady state electron distribution is independent of the magnetic field for $B\gg B_{\rm CMB}!$

Synchrotron luminosity:

$$L_{
u} = A_{
u} \int dV \, n_{
m CR} n_{
m gas} rac{arepsilon_{B}^{(lpha_{
u}+1)/2}}{arepsilon_{
m CMB} + arepsilon_{B}} \
ightarrow A_{
u} \int dV \, n_{
m CR} n_{
m gas} \quad (arepsilon_{B} \gg arepsilon_{
m CMB}$$

γ -ray luminosity

$$L_{\gamma} = A_{\gamma} \int {
m d} V \, n_{
m CR} n_{
m gas}$$


\rightarrow minimum γ -ray flux:

$$\mathcal{F}_{\gamma, \min} = \frac{A_{\gamma}}{A_{\nu}} \frac{L_{\nu}}{4\pi D^2}$$

Minimum γ -ray flux in the hadronic model (1)

Synchrotron emissivity of highenergy, steady state electron distribution is independent of the magnetic field for $B \gg B_{CMB}$!

Synchrotron luminosity:

$$\begin{array}{rcl} \textit{L}_{\nu} & = & \textit{A}_{\nu} \int \textrm{d}\textit{V} \, \textit{n}_{\text{CR}} \textit{n}_{\text{gas}} \frac{\varepsilon_{\textit{B}}^{(\alpha_{\nu}+1)/2}}{\varepsilon_{\text{CMB}} + \varepsilon_{\textit{B}}} \\ & \rightarrow & \textit{A}_{\nu} \int \textrm{d}\textit{V} \, \textit{n}_{\text{CR}} \textit{n}_{\text{gas}} \quad (\varepsilon_{\textit{B}} \gg \varepsilon_{\text{CMB}}) \end{array}$$

 γ -ray luminosity:

$$L_{\gamma} = A_{\gamma} \int \mathrm{d}V \, n_{\mathrm{CR}} n_{\mathrm{gas}}$$

ightarrow minimum γ -ray flux:

$$\mathcal{F}_{\gamma, \mathsf{min}} = \frac{A_{\gamma}}{A_{\nu}} \frac{L_{\nu}}{4\pi D^2}$$

Minimum γ -ray flux in the hadronic model (2)

Minimum γ -ray flux ($E_{\gamma} > 100$ MeV) for the Coma cluster:

CR spectral index	2.0	2.3	2.6	2.9
\mathcal{F}_{γ} [10 ⁻¹⁰ γ cm ⁻² s ⁻¹]	0.8	1.6	3.4	7.1

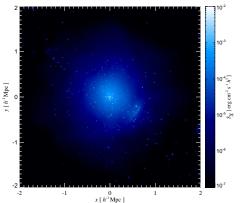
• These limits can be made even tighter when considering energy constraints, $P_B < P_{\rm gas}/20$ and B-fields derived from Faraday rotation studies, $B_0 = 3 \, \mu \rm G$:

$$\mathcal{F}_{\gamma, extsf{COMA}} \gtrsim 2 imes 10^{-9} \gamma \, extsf{cm}^{-2} extsf{s}^{-1} = \mathcal{F}_{ extsf{GLAST, 2yr}}$$

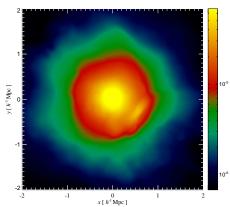
- Non-detection by GLAST seriously challenges the hadronic model.
- Potential of measuring the CR accleration efficiency for diffusive shock accleration.

Summary – 1. CR pressure feedback

- Oharacteristics of the CRs in clusters:
 - CR proton pressure: time integrated non-equilibrium activities of clusters, modulated by recent mergers.
 - Primary CR electron pressure: resembles current accretion and merging shocks in the virial regions.
- CR pressure modifies the ICM in merging clusters and cooling core regions:
 - Galaxy cluster X-ray emission is enhanced up to 35%, systematic effect in low-mass cooling core clusters.
 - Integrated Sunyaev-Zel'dovich effect remains largely unchanged while the Compton-y profile is more peaked.
 - GLAST should see hadronic γ -ray emission from clusters: measurement of CR protons and origin of radio halos.

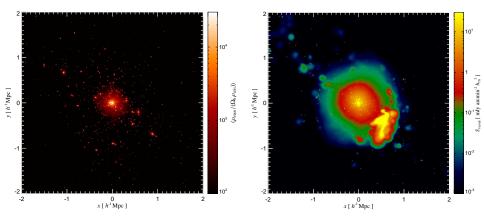

Summary – 2. Non-thermal cluster emission

- Unified model for the generation of giant radio halos, radio mini-halos, and relics:
 - Giant radio halos are dominated in the center by secondary synchrotron emission.
 - Transition to the radio emission from primary electrons in the cluster periphery.
- LOFAR/GMRT are expected to see the radio web emission: origin of cosmic magnetic fields.
- **3** We predict GLAST to detect \sim ten γ -ray clusters: test of the presented scenario
- → exciting experiments allow a complementary view on structure formation as well as fundamental physics!



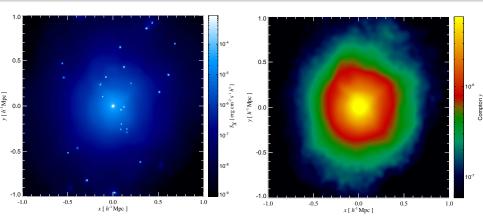
Thermal cluster observables (1)

Thermal bremsstrahlung emission, merging cluster, $M_{\rm vir} \simeq 10^{15} M_{\odot}/h$



Sunyaev-Zel'dovich effect, $\label{eq:merging} \text{merging cluster, } \textit{M}_{\text{vir}} \simeq 10^{15} \textit{M}_{\odot} / \textit{h}$

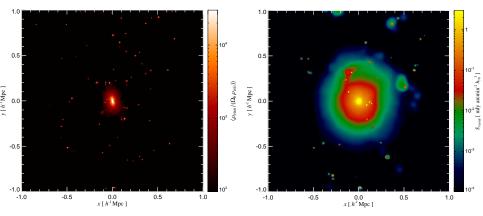
Optical and radio synchrotron cluster observables (1)



Stellar mass density ("cluster galaxies"), merging cluster, $M_{\rm vir} \simeq 10^{15} M_{\odot}/h$

Radio halo and relic emission, merging cluster, $\textit{M}_{\textrm{vir}} \simeq 10^{15} \textit{M}_{\odot}/\textit{h}$

Thermal cluster observables (2)



Thermal bremsstrahlung emission, cool core cluster, $M_{\rm vir} \simeq 10^{14} M_{\odot}/h$

Sunyaev-Zel'dovich effect, cool core cluster, $M_{vir} \simeq 10^{14} M_{\odot}/h$

Optical and radio synchrotron cluster observables (2)

Stellar mass density ("cluster galaxies"), cool core cluster, $M_{\rm vir} \simeq 10^{14} M_{\odot}/h$

Radio halo and relic emission, cool core cluster, $\textit{M}_{\textrm{vir}} \simeq 10^{14} \textit{M}_{\odot}/\textit{h}$

