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Bright-end of luminosity function:

astrophysical solutions:
AGN/quasar feedback, . . .

Faint-end of luminosity function:

dark matter (DM) solutions:
warm DM, interacting DM, DM from late
decays, large annihilation rates, . . .
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astrophysical solutions:
preventing gas from falling into DM potential wells:
increasing entropy by reionization, blazar heating . . .
preventing gas from forming stars in galaxies:
suppress cooling (photoionization, low metallicities), . . .
pushing gas out of galaxies:
supernova/quasar feedback → galactic winds
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Galactic winds

supernova Cassiopeia A
X-ray: NASA/CXC/SAO; Optical: NASA/STScI;
Infrared: NASA/JPL-Caltech/Steward/O.Krause et al.

galactic supernova remnants
drive shock waves, turbulence,
accelerate electrons + protons,
amplify magnetic fields

star formation and supernovae
drive gas out of galaxies by
galactic super winds

critical for understanding the
physics of galaxy formation
→ may explain puzzle of low
star conversion efficiency in
dwarf galaxies
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The role of supernova remnants
supernova remnant shocks amplify magnetic fields and
accelerate CR electrons up to ∼ 100 TeV (narrow X-ray
synchrotron filaments observed by Chandra)

pion bump provides evidence for CR proton acceleration
(Fermi/AGILE γ-ray spectra)

shell-type SNRs show evidence for efficient shock acceleration
beyond ∼ 100 TeV (HESS TeV γ-ray observations)

Fermi observations of W44:

Ackermann+ (2013)
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The role of supernova remnants
supernova remnant shocks amplify magnetic fields and
accelerate CR electrons up to ∼ 100 TeV (narrow X-ray
synchrotron filaments observed by Chandra)

pion bump provides evidence for CR proton acceleration
(Fermi/AGILE γ-ray spectra)

shell-type SNRs show evidence for efficient shock acceleration
beyond ∼ 100 TeV (HESS TeV γ-ray observations)

Fermi observations of W44:

Ackermann+ (2013)

HESS observations of shell-type SNRs:

Hinton (2009)
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Galactic cosmic ray spectrum

data compiled by Swordy

spans more than 33 decades in
flux and 12 decades in energy

“knee” indicates characteristic
maximum energy of galactic
accelerators

CRs beyond the “ankle” have
extra-galactic origin

energy density of cosmic rays,
magnetic fields, and turbulence
in the interstellar gas all similar:

→ CRs and magnetic fields
appear to be necessary for
understanding galactic winds!
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Galactic wind in the Milky Way?
Diffuse X-ray emission in our galaxy

. . . as suggested by Everett+ (2008) and Everett, Schiller, Zweibel (2010)
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Galactic wind in the Milky Way?
Fermi gamma-ray bubbles
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How to drive a wind?

standard picture: wind driven by thermal pressure

energy sources for winds: supernovae, AGN

problem with the standard picture: fast radiative cooling

alternative channels:

radiation pressure on atomic lines and dust grains?
cosmic rays (CRs, relativistic protons with γad = 4/3):
promising idea since observationally εCR ' εturb ' εB
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Radio halos in edge-on disk galaxies
CRs and magnetic fields exist at the disk-halo interface→ wind launching site?

Tüllmann+ (2000)

why are CRs important for
wind formation?

CR pressure drops less
quickly than thermal
pressure (P ∝ ργ)

CRs cool less efficiently
than thermal gas

most CR energy loss
goes into thermal
pressure
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Interactions of CRs and magnetic fields

CRs scatter on magnetic fields → isotropization of CR momenta

CR streaming instability: Kulsrud & Pearce 1969

if vcr > vA, CR current provides
steady driving force, which amplifies
an Alfvén wave field in resonance
with the gyroradii of CRs

scattering off of this wave field limits
the (GeV) CRs’ bulk speed ∼ vA

wave damping: transfer of CR energy
and momentum to the thermal gas

→ CRs exert a pressure on the thermal gas by means of
scattering off of Alfvén waves
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CR transport

total CR velocity vcr = v + vst + vdi (where v ≡ vgas)

CRs stream down their own pressure gradient relative to the gas,
CRs diffuse in the wave frame due to pitch angle scattering by
MHD waves (both transports are along the local direction of B):

vst = −vA
∇Pcr

|∇Pcr|
with vA =

√
B2

4πρ
, vdi = −κdi

∇Pcr

Pcr
,

energy equations with ε = εth + ρv2/2 (neglecting CR diffusion):

∂ε

∂t
+ ∇ · [(ε + Pth + Pcr)v ] = Pcr∇ ·v + |vst ·∇Pcr|

∂εcr

∂t
+ ∇ · (εcrv) + ∇ · [(εcr + Pcr)vst] = −Pcr∇ ·v − |vst ·∇Pcr|

⇐⇒ ∂εcr

∂t
+ ∇ · [εcr(v + vst)] = −Pcr∇ · (v + vst)
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Simulations – flowchart

ISM observables: Physical processes in the ISM:

thermal
energy

shocks
super-
novae

radiative
cooling

stellar 
populations

X-ray, Hα, HI, ... 
emission

stellar 
spectra

loss processes
gain processes
observables
populations

AGN

C.P., Enßlin, Springel (2008)
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Simulations with cosmic ray physics

ISM observables: Physical processes in the ISM:

cosmic ray
energy

thermal
energy

shocks
super-
novae

Coulomb
losses

radiative
cooling

stellar 
populations

X-ray, Hα, HI, ... 
emission

stellar 
spectra

loss processes
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observables
populations

AGN

C.P., Enßlin, Springel (2008)
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Simulations with extended cosmic ray physics

ISM observables: Physical processes in the ISM:
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energy

thermal
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stellar 
populations
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Christoph Pfrommer Cosmic ray feedback in galaxies and cool core clusters



Puzzles in galaxy formation
Driving galactic winds

AGN feedback

Galactic winds and cosmic rays
Mass loss and star formation
Cosmic-ray heating

Simulations with extended cosmic ray physics

ISM observables: Physical processes in the ISM:

cosmic ray
energy

thermal
energy

shocks
super-
novae

Coulomb
losses

radiative
cooling

hadronic
losses

stellar 
populations

X-ray, Hα, HI, ... 
emission

stellar 
spectra

radio
synchrotron

gamma-ray
emission

loss processes
gain processes
observables
populations

AGN

CR
streaming

heat
conduction

C.P., Enßlin, Springel (2008)
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Simulation setup

Uhlig, C.P., Sharma, Nath, Enßlin, Springel, MNRAS 423, 2374 (2012)
Galactic winds driven by cosmic-ray streaming
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CR streaming drives winds
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Wind velocity profile along the symmetry axis
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Mhalo = 109 h-1 M
O•

Mhalo = 1010 h-1 M
O•

Mhalo = 1011 h-1 M
O•

109 − 1010 M�: accelerating wind due to a continuous CR
momentum and energy deposition during the ascent of the wind
in the gravitational potential
→ different from traditional energy- or momentum-driven winds!

1011 M�: wind stalls in halo and falls back onto the disk
→ fountain flow
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Gas mass loss within the virial radius

different scenarios:
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different galaxy masses:
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Mhalo = 109 h-1 M
O•

Mhalo = 1010 h-1 M
O•

Mhalo = 1011 h-1 M
O•

after initial phase (∼ 2.5 Gyr), only winds driven by CR
streaming overcome the ram pressure of infalling gas and expel
gas from the halo

mass loss rate increases with CR injection efficiency ζSN (left)
and toward smaller galaxy masses (right)
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Star formation histories (SFHs)

CR feedback suppresses star formation

109 M�: CR advection-only (green, yellow): oscillating SFH

CR streaming (red, blue): suppressed smooth SFH

1010 M�: suppressed smooth SFH
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Temperature structure due to CR heating

halo temperatures scale as kT ∝ v2
wind ∼ v2

esc

109 → 1010 M�: transition of isotropic to bi-conical wind; in these
cones, CR wave heating overcomes radiative cooling

1010 → 1011 M�: broadening of hot temperature structure due to
inability of CR streaming to drive a sustained wind; instead,
fountain flows drive turbulence, thereby heating larger regions
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Gas temperature: observation vs. simulation

M82 observation CR streaming (1010 M�)
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CR-driven winds: analytics versus simulations
Bernoulli theorem along streamlines: wind speeds and mass loading factors

winds speeds increase with galaxy mass as vwind ∝ vcirc ∝ M1/3
200

until they cutoff around 1011 M� due to a fixed wind base height
(set by radiative physics)

mass loading factor η = Ṁ/SFR decreases with galaxy mass
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Conclusions on cosmic-ray driven winds in galaxies

galactic winds are naturally explained by CR streaming
(known energy source and plasma physics)

CR streaming heating can explain observed hot wind regions
above disks

substantial mass losses of low mass galaxies
→ opportunity for understanding the physics at the faint end of
galaxy luminosity function

outlook: improved hydrodynamics (AREPO), including MHD
(anisotropic transport), improved modeling of plasma physics,
cosmological settings, . . .
→ recent work: Booth+ (2013), Hanasz+ (2013), Salem & Bryan (2014)

Christoph Pfrommer Cosmic ray feedback in galaxies and cool core clusters



Puzzles in galaxy formation
Driving galactic winds

AGN feedback

Observations of M87
Cosmic-ray heating
Conclusions

“Radio-mode” AGN feedback
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Conclusions

Messier 87 at radio wavelengths

ν = 1.4 GHz (Owen+ 2000)

ν = 140 MHz (LOFAR/de Gasperin+ 2012)

high-ν: freshly accelerated CR electrons
low-ν: fossil CR electrons → time-integrated AGN feedback!

LOFAR: halo confined to same region at all frequencies and no
low-ν spectral steepening → puzzle of “missing fossil electrons”
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Solutions to the “missing fossil electrons” problem

solutions:

special time: M87 turned on
∼ 40 Myr ago after long
silence
⇔ conflicts order unity duty
cycle inferred from stat. AGN
feedback studies (Birzan+ 2012)

Coulomb cooling removes
fossil electrons
→ efficient mixing of CR
electrons and protons with
dense cluster gas
→ predicts γ rays from
CRp-p interactions:
p + p → π0 + . . . → 2γ + . . .
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Ė

[M
yr

]

synch.+ IC

Coulomb:

10−1

total loss

B = 10µG

B = 20µG

Coulomb

ne [cm−3] = 10−2

C.P. (2013)

Christoph Pfrommer Cosmic ray feedback in galaxies and cool core clusters



Puzzles in galaxy formation
Driving galactic winds

AGN feedback

Observations of M87
Cosmic-ray heating
Conclusions

The gamma-ray picture of M87

high state is time variable
→ jet emission

low state:
(1) steady flux

(2) γ-ray spectral index (2.2)
= CRp index
= CRe injection index as

probed by LOFAR

(3) spatial extension is under
investigation (?) Rieger & Aharonian (2012)

→ confirming this triad would be smoking gun for first γ-ray
signal from a galaxy cluster!
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Estimating the CR pressure in M87

hypothesis: low state of γ-ray emission traces π0 decay in ICM:

X-ray data → n and T profiles

assume steady-state CR
streaming: Pcr ∝ ργcr/2 ∝ Pth

Fγ ∝
∫

dV Pcrn enables to
estimate Xcr = Pcr/Pth = 0.31
(allowing for Coulomb cooling
with τCoul = 40 Myr)

Rieger & Aharonian (2012)

→ in agreement with non-thermal pressure constraints from
dynamical potential estimates (Churazov+ 2010)
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Cosmic-ray heating vs. radiative cooling (1)
CR Alfvén-wave heating:
(Loewenstein, Zweibel, Begelman 1991, Guo & Oh 2008, Enßlin+ 2011)

Hcr = −vA ·∇Pcr = −vA

(
Xcr∇r 〈Pth〉Ω +

δPcr

δl

)
Alfvén velocity vA = B/

√
4πρ with

B ∼ Beq from LOFAR and ρ from X-ray data

Xcr inferred from γ rays

Pth from X-ray data
pressure fluctuations δPcr/δl (e.g., due to weak shocks ofM' 1.1)

radiative cooling:
Crad = neniΛcool(T , Z )

cooling function Λcool with Z ' Z�,
all quantities determined from X-ray data
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Cosmic-ray heating vs. radiative cooling (2)
Global thermal equilibrium on all scales in M87
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C.P. (2013)
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Cosmic-ray heating vs. radiative cooling (3)

is this global thermal equilibrium a coincidence in Virgo?

CCs typically show a steep central density profile: n ∝ r−1

central temperature profile rises slowly: T ∝ rα, with α . 0.3

assume vA = const. and steady-state CR streaming,
Pcr ∝ ργcr/2 ∝ Pth (also required for self-consistency):

Hcr ∝ ∂

∂r
Pth ∝

∂

∂r
rα−1 ∝ rα−2

Crad ∝ n2 ∝ r−2

(1) identical radial profiles expected for T ' const. (α ' 0)
(2) for a smoothly rising temperature profile, heating is slightly favored
over cooling at larger radii → onset of cooling is smoothly modulated
from the outside in
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Local stability analysis (1)

heating

kT

cooling

isobaric perturbations to global thermal equilibrium

CRs are adiabatically trapped by perturbations
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Local stability analysis (1)

cooling
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heating
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isobaric perturbations to global thermal equilibrium

CRs are adiabatically trapped by perturbations
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Local stability analysis (1)

cooling

unstable FP

region of stability region of instability

separatrix

heating

stable FP

kT
isobaric perturbations to global thermal equilibrium

CRs are adiabatically trapped by perturbations
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Local stability analysis (2)
Theory predicts observed temperature floor at kT ' 1 keV
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C.P. (2013)
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Virgo cluster cooling flow: temperature profile
X-ray observations confirm temperature floor at kT ' 1 keV

Matsushita+ (2002)

Christoph Pfrommer Cosmic ray feedback in galaxies and cool core clusters



Puzzles in galaxy formation
Driving galactic winds

AGN feedback

Observations of M87
Cosmic-ray heating
Conclusions

Critical length scale of the instability (∼ Fields length)

CR streaming transfers energy to a gas parcel with the rate

Hcr = −vA ·∇Pcr ∼ fsvA|∇Pcr|,

where fs is the magnetic suppression factor

line and bremsstrahlung emission radiate energy with a rate Crad

limiting size of unstable gas parcel since CR Alfvén-wave heating
smoothes out temperature inhomogeneities on small scales:

λcrit =
fsvAPcr

Crad

however: unstable wavelength must be supported by the system
→ constraint on magnetic suppression factor fs
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Critical length scale of the instability (∼ Fields length)
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CR heating dominates over thermal conduction
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Emerging picture of CR feedback by AGNs

(1) during buoyant rise of bubbles:
CRs diffuse and stream outward
→ CR Alfvén-wave heating

(2) if bubbles are disrupted, CRs are
injected into the ICM and caught in a
turbulent downdraft that is excited by
the rising bubbles
→ CR advection with flux-frozen field
→ adiabatic CR compression and
energizing: Pcr/Pcr,0 = δ4/3 ∼ 20 for
compression factor δ = 10

(3) CR escape and outward stream-
ing → CR Alfvén-wave heating

CR streaming
and diffusion

CR injection
by bubble disruption

and CR energization
adiabatic compression
turbulent advection:
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Prediction: flattening of high-ν radio spectrum
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Conclusions on AGN feedback by cosmic-ray heating

LOFAR puzzle of “missing fossil electrons” solved by mixing with
dense cluster gas and Coulomb cooling

predicted γ rays identified with low state of M87
→ estimate CR-to-thermal pressure of Xcr = 0.31

CR Alfvén wave heating balances radiative cooling on all scales
within the radio halo (r < 35 kpc)

local thermal stability analysis predicts observed temperature
floor at kT ' 1 keV

outlook: simulate steaming CRs coupled to MHD, cosmological
cluster simulations, improve γ-ray and radio observations . . .
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Literature for the talk

Cosmic ray-driven winds in galaxies:
Uhlig, Pfrommer, Sharma, Nath, Enßlin, Springel, Galactic winds driven by
cosmic-ray streaming, 2012, MNRAS, 423, 2374.

AGN feedback by cosmic rays:
Pfrommer, Toward a comprehensive model for feedback by active galactic nuclei:
new insights from M87 observations by LOFAR, Fermi and H.E.S.S., 2013, ApJ,
779, 10.
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Self-consistent CR pressure in steady state

CR streaming transfers energy per unit volume to the gas as

∆εth = −τAvA ·∇Pcr ≈ Pcr = XcrPth,

where τA = δl/vA is the Alfvén crossing time and δl the CR
pressure gradient length

comparing the first and last term suggests that a constant
CR-to-thermal pressure ratio Xcr is a necessary condition if CR
streaming is the dominant heating process

→ thermal pressure profile adjusts to that of the streaming CRs!
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Impact of varying Alfvén speed on CR heating

global thermal equilibrium:
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radial extent of radio halo:

local stability criterion:
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HCR, υA = const.

parametrize B ∝ ραB , which implies vA = B/
√

4πρ ∝ ραB−1/2:

αB = 0.5 is the geometric mean, implying vA = const.

αB = 0 for collapse along B, implying vA,‖ ∝ ρ−1/2

αB = 1 for collapse perpendicular to B, implying vA,⊥ ∝ ρ1/2
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CR streaming: Gadget-2 versus 1-d grid solver
Evolution of the specific CR energy due to streaming in a medium at rest

Uhlig+ (2012)
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CR-driven wind simulations: resolution study

our results winds driven by CR streaming are converged with
respect to particle resolution (left) and time step of the explicit
streaming solver (right)
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