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Collisionless shocks in supernova remnants

Astrophysical collisionless shocks can:

accelerate particles (electrons and ions)

amplify magnetic fields (or generate them from scratch)

exchange energy between electrons and ions

SN 1006 X-rays (CXC/Hughes) G347.3 HESS TeV
(Aharonian et al. 2006)

Tycho X-rays (CXC)
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Collisionless shocks
Astrophysical collisionless shocks can:

accelerate particles (electrons and ions)
amplify magnetic fields (or generate them from scratch)
exchange energy between electrons and ions

Particle-in-cell simulations of unmagnetized, relativistic pair shocks that are
mediated by the Weibel instability (Spitkovsky 2008)

magnetic energy density (Spitkovsky 2008) post-shock Maxwellian and accelerated CR power-law
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Shocks in galaxy clusters

1E 0657-56 (“Bullet cluster”)
(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical:
NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing:
NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)

Abell 3667
(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)
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Giant radio halo in the Coma cluster

thermal X-ray emission
(Snowden/MPE/ROSAT)

radio synchrotron emission
(Deiss/Effelsberg)
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How universal is diffusive shock acceleration?
What can galaxy clusters teach us about shock acceleration and beyond?

Cosmological structure formation shock physics complementary to
interplanetary and SNR shocks:

probing unique regions of shock acceleration parameter space:
→ Mach numbersM∼ 2 . . . 10 with ‘infinitely’ extended (Mpc)
and lasting (Gyr) shocks (observationally accessible @ z = 0)
→ plasma-β factors of β ∼ 102 . . . 105

consistent picture of non-thermal processes in galaxy clusters
(radio, soft/hard X-ray, γ-ray emission)
→ illuminating the process of structure formation
→ history of individual clusters: cluster archeology
→ calibrating thermal cluster obervables: cluster cosmology
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Radiative simulations – flowchart

Cluster observables: Physical processes in clusters:

thermal
energy

shocks
super-
novae

radiative
cooling

stellar 
populations

Sunyaev-
Zeldovich effect

X-ray
emission

galaxy 
spectra

loss processes
gain processes
observables
populationsC.P., Enßlin, Springel (2008)
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Radiative simulations with CR physics

Cluster observables: Physical processes in clusters:

cosmic ray
energy

thermal
energy

shocks
super-
novae

Coulomb
losses

radiative
cooling

stellar 
populations

Sunyaev-
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X-ray
emission

galaxy 
spectra

loss processes
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observables
populationsC.P., Enßlin, Springel (2008)
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Radiative simulations with extended CR physics

Cluster observables: Physical processes in clusters:

cosmic ray
energy

thermal
energy

shocks
super-
novae

Coulomb
losses
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cooling

stellar 
populations

Sunyaev-
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emission
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CR
diffusion

heat
conduction

C.P., Enßlin, Springel (2008)
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Radiative simulations with extended CR physics

Cluster observables: Physical processes in clusters:

cosmic ray
energy

thermal
energy

shocks
super-
novae

Coulomb
losses

radiative
cooling

hadronic
losses

stellar 
populations

Sunyaev-
Zeldovich effect

X-ray
emission

galaxy 
spectra

radio
synchrotron

gamma-ray
emission

loss processes
gain processes
observables
populations
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CR
diffusion

heat
conduction

C.P., Enßlin, Springel (2008)
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Hadronic cosmic ray proton interaction
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Hadronic cosmic ray proton interaction
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Our philosophy and description

An accurate description of CRs should follow the evolution of
the spectral energy distribution of CRs as a function of time and
space, and keep track of their dynamical, non-linear coupling
with the hydrodynamics.

We seek a compromise between
capturing as many physical properties as possible
requiring as little computational resources as necessary

Assumptions:
protons dominate the CR population
a momentum power-law is a typical spectrum
CR energy & particle number conservation
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CR spectral description

p = Pp/mp c

Enßlin, C.P., Springel, Jubelgas (2007)

f (p) = dN
dp dV = C p−αθ(p − q)

q(ρ) =
(

ρ
ρ0

) 1
3 q0

C(ρ) =
(

ρ
ρ0

)α+2
3 C0

nCR =

∫ ∞

0
dp f (p) = C q1−α

α−1

PCR =
mpc2

3

∫ ∞

0
dp f (p) β(p) p

=
C mpc2

6 B 1
1+q2

(
α−2

2 , 3−α
2

)
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Cosmological cluster simulation: gas density
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Mass weighted temperature
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Mach number distribution weighted by εdiss
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Diffusive shock acceleration – Fermi 1 mechanism (1)

Spectral index depends on the Mach number of the shock,
M = υshock/cs:

log p

strong shock

10 GeV

weak shock

keV

log f

Christoph Pfrommer Cosmic ray transport



Cosmological simulations
Non-thermal emission
Cosmic ray transport

Introduction
Simulated physics
Cosmic rays in galaxy clusters

Diffusive shock acceleration – Efficiency (2)

CR proton energy injection efficiency, ζinj = εCR/εdiss:
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Mach number distribution weighted by εdiss
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Mach number distribution weighted by εCR,inj
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CR pressure PCR
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Relative CR pressure PCR/Ptotal

10-2

10-1

100

-15 -10 -5 0 5 10 15-15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15
x [ h-1 Mpc ]

-15

-10

-5

0

5

10

15

y 
[ 

h-1
 M

pc
 ]

-15 -10 -5 0 5 10 15-15

-10

-5

0

5

10

15

〈P
C

R
/
P

to
t
ρ

ga
s〉
/
〈ρ

ga
s〉

Christoph Pfrommer Cosmic ray transport



Cosmological simulations
Non-thermal emission
Cosmic ray transport

Overview
Radio emission
Gamma-ray emission

Outline

1 Cosmological simulations
Introduction
Simulated physics
Cosmic rays in galaxy clusters

2 Non-thermal emission
Overview
Radio emission
Gamma-ray emission

3 Cosmic ray transport
Observations and models
CR pumping and streaming
Radio and gamma-ray bimodality

Christoph Pfrommer Cosmic ray transport



Cosmological simulations
Non-thermal emission
Cosmic ray transport

Overview
Radio emission
Gamma-ray emission

Multi messenger approach for non-thermal processes
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Cluster radio emission by hadronically produced CRe
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Cosmic web: Mach number
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Radio gischt: primary CRe (150 MHz)
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Radio gischt + central hadronic halo = giant radio halo
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Which one is the simulation/observation of A2256?

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
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Observation – simulation of A2256

Clarke & Enßlin (2006) C.P. & Battaglia (in prep.)

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
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Universal CR spectrum in clusters (Pinzke & C.P. 2010)

Fermi:        ~ 2.5

IACT:       ~ 2.2αp

α p

10-4 10-2 100 102 104 106 108 1010

p

0.001

0.01

0.1

1

10

<
 f(

p)
 p

2  >

Normalized CR spectrum shows universal concave shape→ governed by
hierarchical structure formation and the implied distribution of Mach numbers
that a fluid element had to pass through in cosmic history.
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CR proton and γ-ray spectrum (Pinzke & C.P. 2010)
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Hadronic γ-ray emission, Eγ > 100 GeV
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Inverse Compton emission, EIC > 100 GeV
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Total γ-ray emission, Eγ > 100 GeV
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An analytic model for the cluster γ-ray emission
Comparison: simulation vs. analytic model, Mvir ' (1014, 1015) M�
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Gamma-ray scaling relations
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Scaling relation + complete sample of the brightest X-ray clusters
(HIFLUGCS)→ predictions for Fermi and IACT’s
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γ-ray limits and hadronic predictions (Ackermann et al. 2010)
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Minimum γ-ray flux in the hadronic model
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Minimum γ-ray flux in the hadronic model
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Upper limit on the TeV γ-ray emission from Perseus
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γ (
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E
 )
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ph
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]

radiative physics w/o gal. x 2

radiative physics w/ gal.

radiative physics w/o gal.

Fγ, min (B0 = 10 µG, εB < εth / 3)

The MAGIC Collaboration: Aleksic et al. 2010
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Results from the Perseus observation by MAGIC

assuming f ∝ p−α with α = 2.1, PCR ∝ Pth:
〈PCR〉 < 0.02〈Pth〉 → most stringent constraint on CR pressure!

upper limits consistent with cosmological simulations:
Fupper limits(100 GeV) = 2 Fsim (optimistic model)

simulation modeling of pressure constraint yields
〈PCR〉/〈Pth〉 < 0.04 (0.08) for the core (entire cluster)

resolving the apparent discrepancy:

concave curvature ‘hides’ CR pressure at GeV energies
relative CR pressure increases towards the outer parts
(adiabatic compression and softer equation of state of CRs)
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Conclusions on non-thermal emission from clusters
Exploring the memory of structure formation

primary, shock-accelerated CR electrons resemble current
accretion and merging shock waves

CR protons/hadronically produced CR electrons trace the time
integrated non-equilibrium activities of clusters that is modulated
by the recent dynamical activities

How can we read out this information about non-thermal populations?
→ new era of multi-frequency experiments, e.g.:

LOFAR, GMRT, MWA, LWA, SKA: interferometric array of radio
telescopes at low frequencies (ν ' (15− 240) MHz)

NuSTAR: future hard X-ray satellites (E ' (1− 100) keV)

Fermi γ-ray space telescope (E ' (0.1− 300) GeV)

Imaging air Čerenkov telescopes (E ' (0.1− 100) TeV)
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Radio halo theory – (i) hadronic model

pCR + p → π± → e±

strength:

all required ingredients available:
shocks to inject CRp, gas protons as targets, magnetic fields

predicted luminosities and morphologies as observed without
tuning

power-law spectra as observed

weakness:

all clusters should have radio halos

does not explain all reported spectral features

. . .
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Radio halo and spectrum in the Bullet cluster

Liang et al. (2000): SZ-corrected
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Radio luminosity - central entropy
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Proton cooling times
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Radio halo theory – (ii) re-acceleration model

strength:

all required ingredients available:
radio galaxies & relics to inject CRe, plasma waves to re-accelerate, . . .

reported complex radio spectra emerge naturally

clusters without halos← less turbulent

weakness:

Fermi II acceleration is inefficient – CRe cool rapidly

observed power-law spectra require fine tuning

. . .
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Cosmic ray transport – magnetic flux tube with CRs
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Cosmic ray advection
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Adiabatic expansion and compression
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Cosmic ray streaming
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Expanded CRs
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Turbulent pumping
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Turbulent pumping
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Turbulent-to-streaming ratio
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Are CRs confined to magnetic flux tubes?
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Escape via diffusion: energy dependence
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CR transport theory

CR continuity equation in the absence of sources and sinks:

∂%

∂t
+ ~∇ · (υ %) = 0 υ = υad + υdi + υst

υst = −υst
~∇ %

|~∇ %|

υdi = −κdi
1
%

~∇%

υad = −κtu
η

%
~∇%

η κtu =
Ltu υtu

3
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CR profile due to advection
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CR density profile

γtu = υtu
υst
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CR density at fixed particle energy

γtu = υtu
υst
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Gamma-ray emission profile pCR + p → π0 → 2γ

γtu = υtu
υst
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Gamma-ray luminosity pCR + p → π0 → 2γ

γtu = υtu
υst
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γ-ray limits and hadronic predictions (Ackermann et al. 2010)
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Radio emission profile pCR + p → π± → e± → radio

γtu = υtu
υst
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Radio luminosity pCR + p → π± → e± → radio

γtu = υtu
υst
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Conclusions

cosmological simulations predict universal CR spectrum and
distribution (ignoring active CR transport)
→ Fermi limits consistent with simulations that use most
optimistic assumptions of CR acceleration and transport

streaming & diffusion produce spatially flat CR profiles
advection produces centrally enhanced CR profiles
→ profile depends on advection-to-streaming-velocity ratio

turbulent velocity ∼ sound speed← cluster merger
CR streaming velocity ∼ sound speed← plasma physics
→ peaked/flat CR profiles in merging/relaxed clusters

energy dependence of υmacro
st → CR & radio spectral variations

→ outstreaming CR: dying halo← decaying turbulence

→ bimodality of cluster radio halos & gamma-ray emission!
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