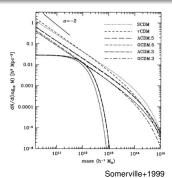
Cosmic rays in galaxy formation: a solution to the faint and bright-end of the population?

Christoph Pfrommer¹

in collaboration with

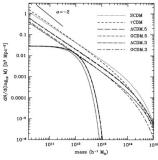
Max Uhlig, Mahavir Sharma, Biman Nath, Torsten Enßlin, Volker Springel (cosmic ray-driven winds)

¹ Heidelberg Institute for Theoretical Studies, Germany


Dec 5, 2013 / Galaxy Theory Meeting, MPIA

Outline

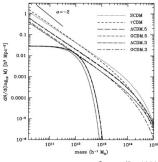
- Puzzles in galaxy formation
- Driving galactic winds
 - Galactic winds and cosmic rays
 - Mass loss and star formation
 - Cosmic-ray heating
- AGN feedback
 - Observations of M87
 - Cosmic-ray heating
 - Conclusions



Bright-end of luminosity function:

 astrophysical solutions: AGN/quasar feedback, . . .

Somerville+1999



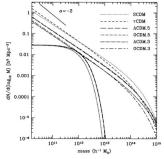
Bright-end of luminosity function:

 astrophysical solutions: AGN/quasar feedback, . . .

Faint-end of luminosity function:

 dark matter (DM) solutions: warm DM, interacting DM, DM from late decays, large annihilation rates, ...

Somerville+1999



Bright-end of luminosity function:

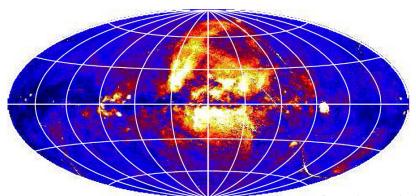
 astrophysical solutions: AGN/quasar feedback, . . .

Faint-end of luminosity function:

 dark matter (DM) solutions: warm DM, interacting DM, DM from late decays, large annihilation rates, ...

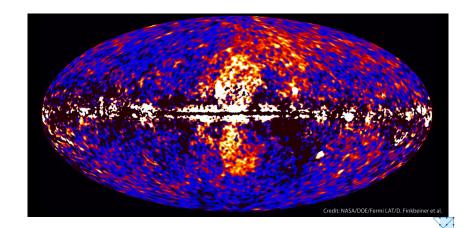
astrophysical solutions:

- Somerville+1999
- preventing gas from falling into DM potential wells: increasing entropy by reionization, blazar heating . . .
- preventing gas from forming stars in galaxies: suppress cooling (photoionization, low metallicities), ...
- pushing gas out of galaxies: supernova/quasar feedback → galactic winds


Galactic super wind in M82

Galactic wind in the Milky Way?

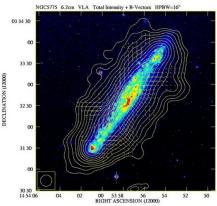
Diffuse X-ray emission in our galaxy



Snowden et al., 2007

Galactic wind in the Milky Way?

Fermi gamma-ray bubbles

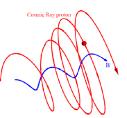

How to drive a wind?

- standard picture: wind driven by thermal pressure
- energy sources for winds: supernovae, AGN
- problem with the standard picture: fast radiative cooling
- alternative channels:
 - radiation pressure on dust grains
 - cosmic rays (CRs, relativistic protons with $\gamma_{ad}=4/3$): promising idea since observationally $\varepsilon_{CR}\simeq\varepsilon_{th}\simeq\varepsilon_{B}$

Radio halos in edge-on disk galaxies

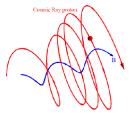
CRs and magnetic fields exist at the disk-halo interface → wind launching site?

Tüllmann+ (2000)


why are CRs important for wind formation?

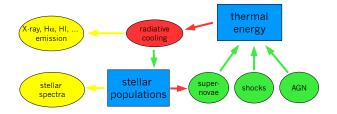
- CR pressure drops less quickly than thermal pressure $(P \propto \rho^{\gamma})$
- CRs cool less efficiently than thermal gas
- most CR energy loss goes into thermal pressure

Interactions of CRs and magnetic fields


- CRs scatter on magnetic fields → isotropization of CR momenta
- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_{waves} with respect to the gas,
 CR excite Alfvén waves
 - scattering off this wave field limits the CRs' bulk speed $\ll c$
 - wave damping: transfer of CR energy and momentum to the thermal gas

Interactions of CRs and magnetic fields

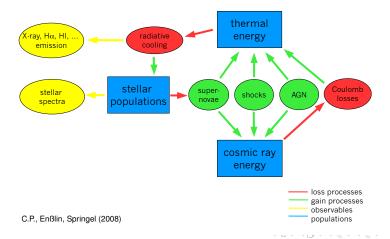
- CRs scatter on magnetic fields → isotropization of CR momenta
- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_{waves} with respect to the gas,
 CR excite Alfvén waves
 - ullet scattering off this wave field limits the CRs' bulk speed $\ll c$
 - wave damping: transfer of CR energy and momentum to the thermal gas


→ CRs exert a pressure on the thermal gas by means of scattering off Alfvén waves

Interstellar medium (ISM) simulations – flowchart

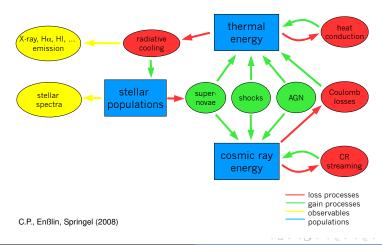
ISM observables:

Physical processes in the ISM:


loss processes gain processes observables populations

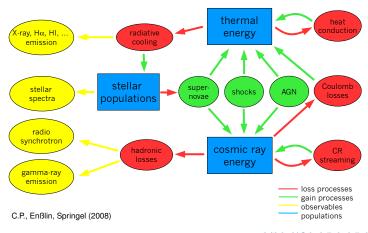
ISM simulations with cosmic ray physics

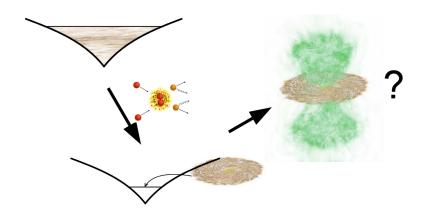
ISM observables:


Physical processes in the ISM:

ISM simulations with extended cosmic ray physics

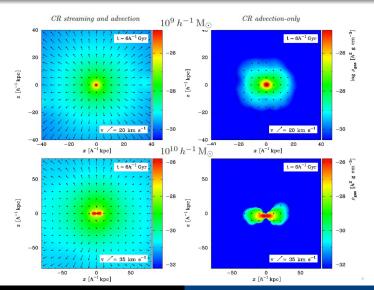
ISM observables:

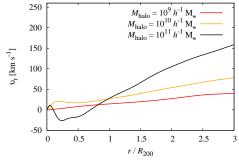

Physical processes in the ISM:


ISM simulations with extended cosmic ray physics

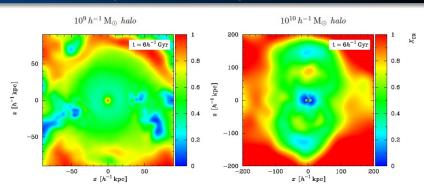
ISM observables:

Physical processes in the ISM:


Simulation setup

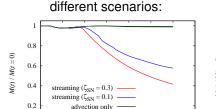

Uhlig, C.P., Sharma, Nath, Enßlin, Springel, MNRAS **423**, 2374 (2012) Galactic winds driven by cosmic-ray streaming

CR streaming drives winds


Wind velocity profile along the symmetry axis

- 10⁹ 10¹⁰ M_☉: accelerating wind due to a continuous CR momentum and energy deposition during the ascent of the wind in the gravitational potential
 - → different from traditional energy- or momentum-driven winds!
- $\bullet~10^{11}\,M_{\odot}$: wind stalls in halo and falls back onto the disk
 - → fountain flow

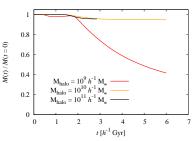
CR-to-thermal pressure in edge-on slice



- $X_{cr} = P_{cr}/P_{th} < 50\%$ in vicinity of center because of loss processes that effectively transfer CR into thermal energy
- X_{cr} becomes dominant at larger heights due to the softer adiabatic index of CRs

5

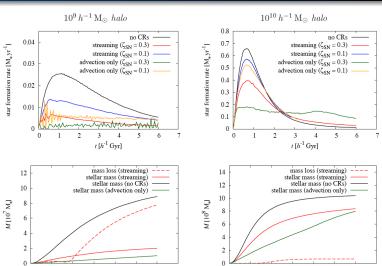
Gas mass loss within the virial radius


no CRs

t [h-1 Gyr]

0

0

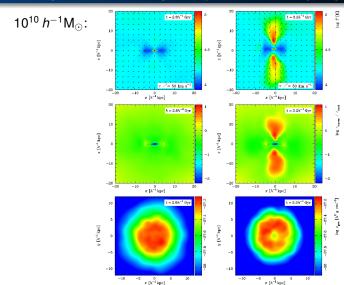

different galaxy masses:

- after initial phase (~ 2.5 Gyr), only winds driven by CR streaming overcome the ram pressure of infalling gas and expel gas from the halo
- mass loss rate increases with CR injection efficiency ζ_{SN} (left) and toward smaller galaxy masses (right)

Mass loss and star formation histories

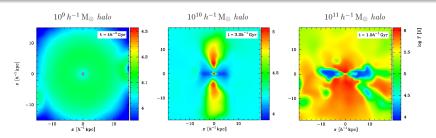
5 6

t [h-1 Gyr]

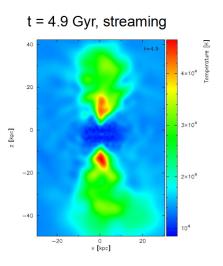

0

3

t [h-1 Gyr]

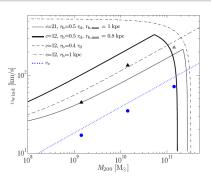

5

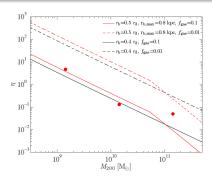
Heating of the halo gas by wave damping


Temperature structure

- halo temperatures scale as $kT \propto v_{
 m wind}^2 \sim v_{
 m esc}^2$
- $10^9 \to 10^{10} \, M_\odot$: transition of isotropic to bi-conical wind; in these cones, CR wave heating overcomes radiative cooling
- 10¹⁰ → 10¹¹ M_☉: broadening of hot temperature structure due to inability of CR streaming to drive a sustained wind; instead, fountain flows drive turbulence, thereby heating larger regions

Gas temperature: simulation (10¹⁰ M_☉) vs. observation




M82

CR-driven winds: analytics versus simulations

Wind speeds and mass loading factors

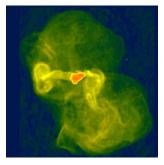
- winds speeds increase with galaxy mass as $v_{\rm wind} \propto v_{\rm circ} \propto M_{200}^{1/3}$ until they cutoff around $10^{11}\,{\rm M}_\odot$ due to a fixed wind base height (set by radiative physics)
- mass loading factor $\eta = \dot{M}/{\rm SFR}$ decreases with galaxy mass

Conclusions on cosmic-ray driven winds in galaxies

- galactic winds are naturally explained by CR streaming (energy source, known plasma physics, observed scaling relations)
- CR streaming heating can explain observed hot wind regions above disks
- substantial mass losses of low mass galaxies
 - \rightarrow opportunity for understanding the physics at the faint end of galaxy luminosity function

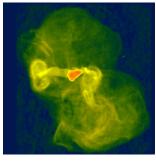
outlook: MHD simulations, better understanding of plasma physics, cosmological settings, ...

→ recent work: Salem & Bryan (2013), Booth et al. (2013), Hanasz et al. (2013)



"Radio-mode" AGN feedback

Messier 87 at radio wavelengths



 $\nu = 1.4 \, \text{GHz} \, (\text{Owen+ 2000})$

• expectation: low frequencies sensitive to fossil electrons $(E \sim 100 \text{ MeV}) \rightarrow \text{time-integrated activity of AGN feedback!}$

Messier 87 at radio wavelengths

 $\nu = 1.4 \, \text{GHz} \, (\text{Owen+ 2000})$

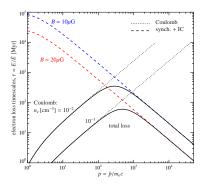
u= 140 MHz (LOFAR/de Gasperin+ 2012)

- expectation: low frequencies sensitive to fossil electrons
 (E ~ 100 MeV) → time-integrated activity of AGN feedback!
- LOFAR: halo confined to same region at all frequencies and no low-ν spectral steepening → puzzle of "missing fossil electrons"

Solutions to the "missing fossil electrons" problem

solutions:

- special time: M87 turned on ~ 40 Myr ago after long silence
 - ⇔ conflicts order unity duty cycle inferred from stat. AGN feedback studies (Birzan+ 2012)

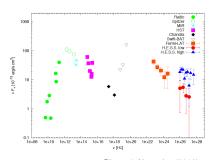


Solutions to the "missing fossil electrons" problem

solutions:

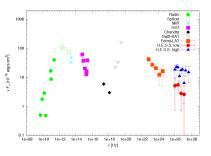

- special time: M87 turned on ~ 40 Myr ago after long silence
 - ⇔ conflicts order unity duty cycle inferred from stat. AGN feedback studies (Birzan+ 2012)
- Coulomb cooling removes fossil electrons
 - → efficient mixing of CR electrons and protons with dense cluster gas
 - \rightarrow predicts γ rays from CRp-p interactions:

$$p + p \rightarrow \pi^0 + \ldots \rightarrow 2\gamma + \ldots$$


C.P. (2013)

The gamma-ray picture of M87

- high state is time variable
 → jet emission
- low state:
 - (1) steady flux
 - (2) γ -ray spectral index (2.2)
 - = CRp index
 - = CRe injection index as probed by LOFAR
 - (3) spatial extension is under investigation (?)


Rieger & Aharonian (2012)

ightarrow confirming this triad would be smoking gun for first γ -ray signal from a galaxy cluster!

Estimating the CR pressure in M87

- X-ray data → n and T profiles
- assume X_{cr} = P_{cr}/P_{th} (self-consistency requirement)
- $F_{\gamma} \propto \int \mathrm{d} V \, P_{\mathrm{cr}} n$ enables to estimate $X_{\mathrm{cr}} = 0.31$ (allowing for Coulomb cooling with $\tau_{\mathrm{Coul}} = 40\,\mathrm{Myr}$)

Rieger & Aharonian (2012)

 \rightarrow in agreement with non-thermal pressure constraints from dynamical potential estimates $_{(\text{Churazov+}\ 2010)}$

Cosmic-ray heating vs. radiative cooling (1)

CR Alfvén-wave heating:

$$\mathcal{H}_{\mathsf{cr}} = -oldsymbol{v}_{\mathcal{A}} oldsymbol{\cdot} oldsymbol{
abla} P_{\mathsf{cr}} = -oldsymbol{v}_{\mathcal{A}} \left(oldsymbol{X}_{\mathsf{cr}}
abla_{\mathit{r}} \langle P_{\mathsf{th}}
angle_{\Omega} + rac{\delta P_{\mathsf{cr}}}{\delta \mathit{I}}
ight)$$

- Alfvén velocity $v_A = B/\sqrt{4\pi\rho}$ with $B \sim B_{\rm eq}$ from LOFAR and ρ from X-ray data
- X_{cr} calibrated to γ rays
- P_{th} from X-ray data
- ullet pressure fluctuations $\delta P_{
 m cr}/\delta I$ (e.g., due to weak shocks of ${\cal M}\simeq$ 1.1)

Cosmic-ray heating vs. radiative cooling (1)

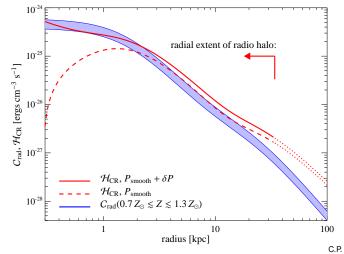
CR Alfvén-wave heating:

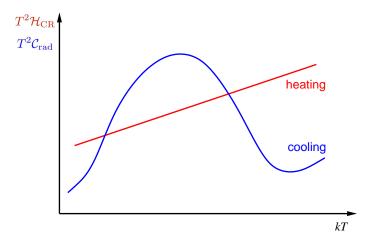
$$\mathcal{H}_{\mathsf{cr}} = -oldsymbol{v}_{\mathcal{A}} oldsymbol{\cdot} oldsymbol{
abla} P_{\mathsf{cr}} = -oldsymbol{v}_{\mathcal{A}} \left(oldsymbol{X}_{\mathsf{cr}}
abla_{\mathit{r}} \langle P_{\mathsf{th}}
angle_{\Omega} + rac{\delta P_{\mathsf{cr}}}{\delta \mathit{I}}
ight)$$

- Alfvén velocity $v_A = B/\sqrt{4\pi\rho}$ with $B \sim B_{\rm eq}$ from LOFAR and ρ from X-ray data
- X_{cr} calibrated to γ rays
- P_{th} from X-ray data
- pressure fluctuations $\delta P_{\rm cr}/\delta I$ (e.g., due to weak shocks of $\mathcal{M}\simeq$ 1.1)

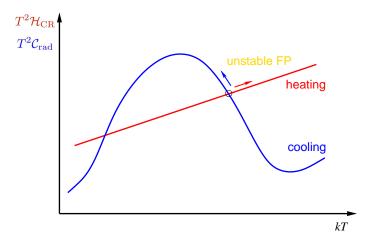
radiative cooling:

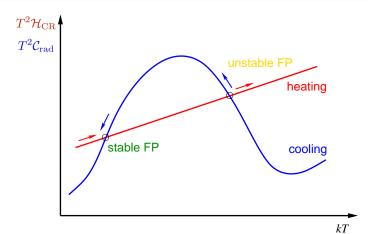
$$C_{\mathsf{rad}} = n_e n_t \Lambda_{\mathsf{cool}}(T, Z)$$

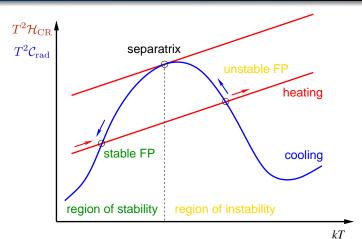

• cooling function Λ_{cool} with $Z \simeq Z_{\odot}$, all quantities determined from X-ray data



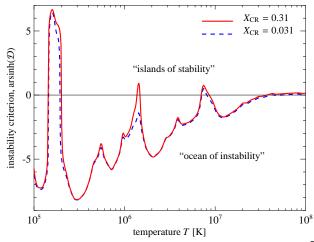
Cosmic-ray heating vs. radiative cooling (2)

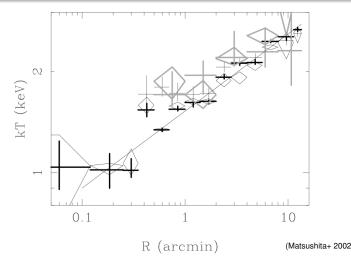

Global thermal equilibrium on all scales in M87


- isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations

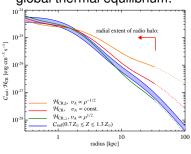

- isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations

- isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations

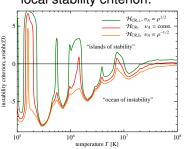



- isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations

Theory predicts observed temperature floor at $kT \simeq 1 \text{ keV}$



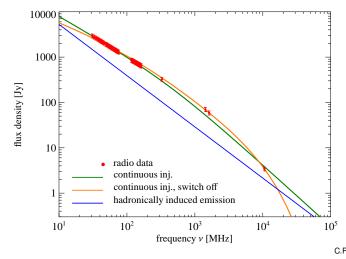
Virgo cluster cooling flow: temperature profile X-ray observations confirm temperature floor at $kT \simeq 1 \text{ keV}$



Impact of varying Alfvén speed on CR heating

global thermal equilibrium:

local stability criterion:


parametrize $B \propto \rho^{\alpha_B}$, which implies $v_A = B/\sqrt{4\pi\rho} \propto \rho^{\alpha_B-1/2}$:

- $\alpha_B = 0.5$ is the geometric mean, implying $v_A = \text{const.}$
- $\alpha_B = 0$ for collapse along **B**, implying $v_{A,\parallel} \propto \rho^{-1/2}$
- $\alpha_B = 1$ for collapse perpendicular to **B**, implying $v_{A,\perp} \propto \rho^{1/2}$

Prediction: flattening of high- ν radio spectrum

Conclusions on AGN feedback by cosmic-ray heating

- LOFAR puzzle of "missing fossil electrons" solved by mixing with dense cluster gas and Coulomb cooling
- predicted γ rays identified with low state of M87
 → estimate CR-to-thermal pressure of X_{cr} = 0.31
- CR Alfvén wave heating balances radiative cooling on all scales
- local thermal stability analysis predicts observed temperature floor at $kT \simeq 1 \text{ keV}$

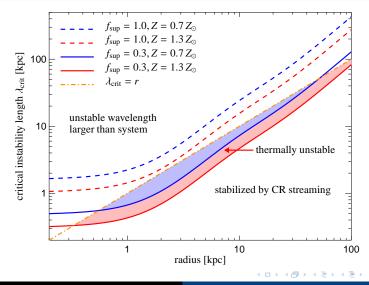
outlook: simulate steaming CRs coupled to MHD, cosmological cluster simulations, . . .

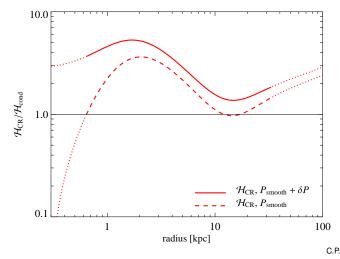
Literature for the talk

Cosmic ray-driven winds in galaxies:

 Uhlig, Pfrommer, Sharma, Nath, Enßlin, Springel, Galactic winds driven by cosmic-ray streaming, 2012, MNRAS, 423, 2374.

AGN feedback by cosmic rays:


 Pfrommer, Toward a comprehensive model for feedback by active galactic nuclei: new insights from M87 observations by LOFAR, Fermi and H.E.S.S., 2013, ApJ, 779, 10.


Additional slides

Critical length scale of the instability

CR heating dominates over thermal conduction

CR streaming (1)

- ullet total CR velocity $oldsymbol{v}_{
 m cr} = oldsymbol{v}_{
 m gas} + oldsymbol{v}_{
 m st}$
- CRs stream down their own pressure gradient relative to the gas:

$$oldsymbol{v}_{\mathsf{st}} = -\lambda \, oldsymbol{c}_{\mathsf{s}} \, rac{
abla P_{\mathsf{cr}}}{|
abla P_{\mathsf{cr}}|},$$

 CR transport equation → evolution equation for CR number and energy density:

$$\begin{array}{lcl} \frac{\partial \textit{n}_{\text{cr}}}{\partial \textit{t}} & = & -\nabla \cdot \left[\left(\textit{\textbf{v}}_{\text{gas}} + \textit{\textbf{v}}_{\text{st}} \right) \textit{n}_{\text{cr}} \right] \\ \frac{\partial \varepsilon_{\text{cr}}}{\partial \textit{t}} & = & \left(\textit{\textbf{v}}_{\text{gas}} + \textit{\textbf{v}}_{\text{st}} \right) \cdot \nabla \textit{P}_{\text{cr}} - \nabla \cdot \left[\left(\textit{\textbf{v}}_{\text{gas}} + \textit{\textbf{v}}_{\text{st}} \right) \left(\varepsilon_{\text{cr}} + \textit{P}_{\text{cr}} \right) \right] \end{array}$$

CR streaming (2)

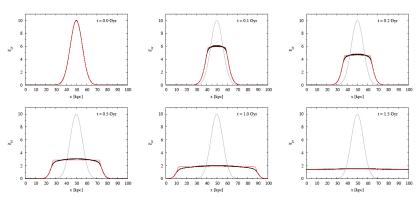
Lagrangian time derivative

$$\frac{\mathsf{d}}{\mathsf{d}t} = \frac{\partial}{\partial t} + \mathbf{v}_{\mathsf{gas}} \cdot \nabla$$

• specific CR energy, $\tilde{\varepsilon}_{cr}$, and CR particle number, \tilde{n}_{cr} ,

$$arepsilon_{
m cr} = ilde{arepsilon}_{
m cr}
ho \qquad {
m and} \qquad {\it n}_{
m cr} = ilde{\it n}_{
m cr}
ho$$

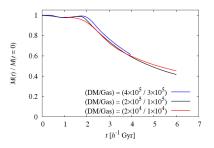
CR evolution equations:

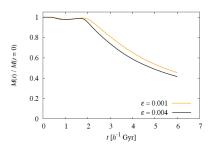

$$\rho \frac{\mathrm{d}\tilde{n}_{\mathrm{cr}}}{\mathrm{d}t} = -\nabla \cdot [\mathbf{v}_{\mathrm{st}} \, \rho \, \tilde{n}_{\mathrm{cr}}]$$

$$\rho \frac{\mathrm{d}\tilde{\varepsilon}_{\mathrm{cr}}}{\mathrm{d}t} = \underbrace{\mathbf{v}_{\mathrm{st}} \cdot \nabla P_{\mathrm{cr}}}_{\text{energy loss term}} - \underbrace{P_{\mathrm{cr}} \nabla \cdot \mathbf{v}_{\mathrm{gas}}}_{\text{adiabatic changes}} - \underbrace{\nabla \cdot [\mathbf{v}_{\mathrm{st}} \, (\rho \tilde{\varepsilon}_{\mathrm{cr}} + P_{\mathrm{cr}})]}_{\text{energy change due to}}$$

$$\frac{\mathrm{d}\tilde{n}_{\mathrm{cr}}}{\mathrm{d}t} = \underbrace{\mathbf{v}_{\mathrm{st}} \cdot \nabla P_{\mathrm{cr}}}_{\text{energy loss term}} - \underbrace{P_{\mathrm{cr}} \nabla \cdot \mathbf{v}_{\mathrm{gas}}}_{\text{due to converging/diverging gas flow}} - \underbrace{\nabla \cdot [\mathbf{v}_{\mathrm{st}} \, (\rho \tilde{\varepsilon}_{\mathrm{cr}} + P_{\mathrm{cr}})]}_{\text{energy change due to}}$$

Test: Gadget-2 versus 1-d grid solver


Evolution of the specific CR energy due to streaming in a medium at rest



Resolution study

 our results winds driven by CR streaming are converged with respect to particle resolution (*left*) and time step of the explicit streaming solver (*right*)

