High-energy astrophysics and cosmology with galaxy clusters

Christoph Pfrommer¹

in collaboration with

Jonathan Dursi^{2,3}, Volker Springel¹, Torsten Enßlin⁴, Anders Pinzke⁵, and Nick Battaglia³

¹Heidelberg Institute for Theoretical Studies, Germany ²Canadian Institute for Theoretical Astrophysics, Canada ³SciNet Consortium, University of Toronto, Canada ⁴Max Planck Institute for Astrophysics, Germany ⁵University of Santa Barbara, CA, USA

Jan 31, 2011 / MPRG Symposium, Düsseldorf

Christoph Pfrommer Astrophysics and cosmology with galaxy clusters

Outline

High-energy phenomena in galaxy clusters

- Introduction and Motivation
- Cosmological cluster simulations
- Non-thermal emission from clusters

2 Magnetic draping on spiral galaxies

- Radio emission in galaxies
- Physics of magnetic draping
- Implications for cosmology

▶ < ⊒ >

ntroduction and Motivation Cosmological cluster simulations Non-thermal emission from clusters

Outline

- Introduction and Motivation
- Cosmological cluster simulations
- Non-thermal emission from clusters
- 2 Magnetic draping on spiral galaxies
 - Radio emission in galaxies
 - Physics of magnetic draping
 - Implications for cosmology

Introduction and Motivation Cosmological cluster simulations Non-thermal emission from clusters

The structure of our Universe

 The "cosmic web" today. Left: the projected gas density in a cosmological simulation.

 Right: gravitationally heated intracluster medium through cosmological shock waves

 (C.P. et al. 2006).

A theorist's perspective of a galaxy cluster

Galaxy clusters are dynamically evolving dark matter potential wells:

▶ < Ξ

Introduction and Motivation Cosmological cluster simulations Non-thermal emission from clusters

... and how the observer's Universe looks like

1E 0657-56 ("Bullet cluster")

(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl; Magellan/U.Arizona/D.Clowe et al.; Lensing: NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)

Abell 3667

(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)

Christoph Pfrommer

Introduction and Motivation Cosmological cluster simulations Non-thermal emission from clusters

Giant radio halo in the Coma cluster

thermal X-ray emission

(Snowden/MPE/ROSAT)

radio synchrotron emission

(Deiss/Effelsberg)

표 < 표 >

Galaxy cluster astrophysics: the big questions

- What powers these non-thermal processes in galaxy clusters?
 - \rightarrow illuminating the process of structure formation
 - \rightarrow history of individual clusters: cluster archeology
- Can we separate the cluster physics from the pure cosmological signal?
- How can we learn about the nature of dark matter in the presence of astrophysical γ-ray foregrounds?
- What can we learn about fundamental plasma physics?
 - process of shock acceleration
 - origin and evolution of large scale magnetic fields

< ∃⇒

Introduction and Motivation Cosmological cluster simulations Non-thermal emission from clusters

Cosmological simulations – flowchart

Christoph Pfrommer Astrophysics and cosmology with galaxy clusters

Cosmological simulations with cosmic ray physics

Cosmological simulations with cosmic ray physics

Introduction and Motivation Cosmological cluster simulations Non-thermal emission from clusters

Hadronic cosmic ray proton interaction

Christoph Pfrommer

Introduction and Motivation Cosmological cluster simulations Non-thermal emission from clusters

Hadronic cosmic ray proton interaction

Christoph Pfrommer

Astrophysics and cosmology with galaxy clusters

90

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

★ E → ★ E →

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

(신문) (문)

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Introduction and Motivation Cosmological cluster simulations Non-thermal emission from clusters

Which one is the simulation/observation of A2256?

red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic

Christoph Pfrommer

Introduction and Motivation Cosmological cluster simulations Non-thermal emission from clusters

Observation – simulation of A2256

red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic

Christoph Pfrommer

Introduction and Motivation Cosmological cluster simulations Non-thermal emission from clusters

Inverse Compton emission, $E_{IC} > 100 \text{ GeV}$

Christoph Pfrommer

Introduction and Motivation Cosmological cluster simulations Non-thermal emission from clusters

Total γ -ray emission, $E_{\gamma} > 100$ GeV

Christoph Pfrommer

Introduction and Motivation Cosmological cluster simulations Non-thermal emission from clusters

γ -ray limits and hadronic predictions (Ackermann et al. 2010)

Christoph Pfrommer

Conclusions on high-energy astrophysics in clusters Exploring the memory of structure formation

- Cosmological hydrodynamical simulations are indispensable for understanding non-thermal processes in galaxy clusters

 — illuminating the process of structure formation
- 2 Multi-messenger approach including radio synchrotron, hard X-ray IC, and HE γ -ray emission:
 - fundamental plasma physics: diffusive shock acceleration, large scale magnetic fields, and turbulence
 - nature of dark matter
 - gold sample of clusters for precision cosmology

★ E → ★ E →

Conclusions on high-energy astrophysics in clusters New generation of observatories

How can we read out this information about non-thermal populations? \rightarrow new era of multi-frequency experiments, e.g.:

- LOFAR, GMRT, MWA, LWA, SKA: interferometric array of radio telescopes at low frequencies ($\nu \simeq (15 240)$ MHz)
- NuSTAR: future hard X-ray satellite ($E \simeq (1 100)$ keV)
- Fermi γ -ray space telescope ($E \simeq (0.1 300)$ GeV)
- MAGIC, H.E.S.S., Veritas, CTA: imaging air Čerenkov telescopes (*E* ~ (0.1 – 100) TeV)

イロト イポト イヨト イヨト

Radio emission in galaxies Physics of magnetic draping Implications for cosmology

Outline

High-energy phenomena in galaxy clusters

- Introduction and Motivation
- Cosmological cluster simulations
- Non-thermal emission from clusters

2 Magnetic draping on spiral galaxies

- Radio emission in galaxies
- Physics of magnetic draping
- Implications for cosmology

표 < 표 >

Radio emission in galaxies Physics of magnetic draping Implications for cosmology

Polarized synchrotron emission in a field spiral: M51

MPIfR Bonn and Hubble Heritage Team

- grand design 'whirlpool galaxy' (M51): optical star light superposed on radio contours
- polarized radio intensity follows the spiral pattern and is strongest in between the spiral arms
- the polarization 'B-vectors' are aligned with the spiral structure

Radio emission in galaxies Physics of magnetic draping Implications for cosmology

Ram-pressure stripping of cluster spirals

- 3D simulations show that the ram-pressure wind quickly strips the low-density gas in between spiral arms (Tonnesen & Bryan 2010)
- being flux-frozen into this dilute plasma, the large scale magnetic field will also be stripped

 \rightarrow resulting radio emission should be unpolarized

▶ < Ξ

Radio emission in galaxies Physics of magnetic draping Implications for cosmology

Polarized synchrotron ridges in Virgo spirals

Christoph Pfrommer

Radio emission in galaxies Physics of magnetic draping

Draping field lines around a moving object

Christoph Pfrommer Astrophysics and cosmology with galaxy clusters

Radio emission in galaxies Physics of magnetic draping Implications for cosmology

Magnetic draping around a spiral galaxy

Athena simulations of spiral galaxies interacting with a uniform cluster magnetic field. There is a sheath of strong field draped around the leading edge (shown in red). C.P. & Dursi, 2010, Nature Phys.

(A) (E) (A) (E)

Radio emission in galaxies Physics of magnetic draping Implications for cosmology

Magnetic draping around a spiral galaxy – physics

- the galactic gas is pushed back by the ram pressure wind $\sim \rho v^2$
- the stars are largely unaffected and lead the gas
- the draping sheath is formed at the contact of galaxy/cluster wind
- as stars die, their supernova remnants accelerate CRes that populate the draped field lines
- CRes are transported diffusively (along field lines) and advectively as field lines slip over the galaxy
- CRes emit radio synchrotron radiation in the draped region, tracing out the field lines there → coherent polarized emission at the galaxies' leading edges

Radio emission in galaxies Physics of magnetic draping Implications for cosmology

Magnetic draping and polarized synchrotron emission Synchrotron B-vectors reflect the upstream orientation of cluster magnetic fields

Radio emission in galaxies Physics of magnetic draping Implications for cosmology

Observations versus simulations

Christoph Pfrommer

Radio emission in galaxies Physics of magnetic draping Implications for cosmology

Mapping out the magnetic field in Virgo

Christoph Pfrommer

Radio emission in galaxies Physics of magnetic draping Implications for cosmology

Implications for galaxy clusters (probing cosmology)

- How are galaxy clusters thermally stabilized?

 → radial magnetic field in non-cool core clusters implies efficient thermal conduction that stabilizes these systems against entering a cooling catastrophe
 - \rightarrow thermal history + clusters as cosmological probes
- current cosmological cluster simulations fail to reproduce these clusters
 → magnetic fields + anisotropic conduction

Radio emission in galaxies Physics of magnetic draping Implications for cosmology

Conclusions on magnetic draping around galaxies

 draping of cluster magnetic fields naturally explains polarization ridges at Virgo spirals

- 王

Radio emission in galaxies Physics of magnetic draping Implications for cosmology

Conclusions on magnetic draping around galaxies

- draping of cluster magnetic fields naturally explains polarization ridges at Virgo spirals
- this represents a new tool for measuring the in situ orientation of cluster magnetic fields

> < ≣

Radio emission in galaxies Physics of magnetic draping Implications for cosmology

Conclusions on magnetic draping around galaxies

- draping of cluster magnetic fields naturally explains polarization ridges at Virgo spirals
- this represents a new tool for measuring the in situ orientation of cluster magnetic fields
- application to the Virgo cluster shows that the magnetic field is preferentially aligned radially

Radio emission in galaxies Physics of magnetic draping Implications for cosmology

Conclusions on magnetic draping around galaxies

- draping of cluster magnetic fields naturally explains polarization ridges at Virgo spirals
- this represents a new tool for measuring the in situ orientation of cluster magnetic fields
- application to the Virgo cluster shows that the magnetic field is preferentially aligned radially
- this finding implies efficient thermal conduction across clusters that stabilizes these non-cool core systems
- important implications for thermal cluster history \rightarrow galaxy cluster cosmology

