AGN feedback: mechanical versus cosmic-ray heating

Christoph Pfrommer

in collaboration with Svenja Jacob

Heidelberg Institute for Theoretical Studies, Germany

June 16, 2015 / ICM physics and modelling, MPA

Outline

- Observations of M87
- Cosmic rays
- Heating
- 2 Diversity of cool cores
 - Cool core sample
 - Bimodality
 - Conclusions

Observations of M8 Cosmic rays Heating

Radio mode feedback by AGN: open questions

• energy source:

release of non-gravitational accretion energy of a black hole

- jet-ICM interaction and rising bubbles:
 - 1.) magnetic draping \rightarrow amplification
 - 2.) CR confinement vs. release
 - 3.) excitation of turbulence
- heating mechanism:
 - 1.) self-regulated to avoid overcooling
 - 2.) thermally stable to explain T floor
 - 3.) low energy coupling efficiency
- cosmic ray heating:
 - 1.) are CRs efficiently mixed into the ICM?
 - 2.) is the CR heating rate sufficient to balance cooling?
 - 3.) how universal is this heating mechanism in cool cores?

Observations of M87 Cosmic rays Heating

Messier 87 at radio wavelengths

 $\nu = \text{1.4 GHz} \text{ (Owen+ 2000)}$

 $\nu =$ 140 MHz (LOFAR/de Gasperin+ 2012)

- high-ν: freshly accelerated CR electrons low-ν: fossil CR electrons → time-integrated AGN feedback!
- LOFAR: halo confined to same region at all frequencies and no low-ν spectral steepening → puzzle of "missing fossil electrons" √

Observations of M87 Cosmic rays Heating

Solutions to the "missing fossil electrons" problem

solutions:

 special time: M87 turned on ~ 40 Myr ago after long silence

⇔ conflicts order unity duty cycle inferred from stat. AGN feedback studies (Birzan+ 2012)

• Coulomb cooling removes fossil electrons \rightarrow efficient mixing of CR electrons and protons with dense cluster gas \rightarrow predicts γ rays from CRp-p interactions: $p + p \rightarrow \pi^0 + ... \rightarrow 2\gamma + ...$

C.P. (2013)

Observations of M87 Cosmic rays Heating

The gamma-ray picture of M87

- high state is time variable
 → jet emission
- low state:
 (1) steady flux
 - (2) γ -ray spectral index (2.2)
 - = CRp index
 - CRe injection index as probed by LOFAR
 - (3) spatial extension is under investigation (?)

Rieger & Aharonian (2012)

 \rightarrow confirming this triad would be smoking gun for first γ -ray signal from a galaxy cluster!

Observations of M87 Cosmic rays Heating

Estimating the cosmic-ray pressure in M87

hypothesis: low state of γ -ray emission traces π^0 decay in ICM:

- X-ray data \rightarrow *n* and *T* profiles
- assume steady-state CR streaming: $P_{\rm cr} \propto \rho^{\gamma_{\rm cr}/2} \propto P_{\rm th}$
- $F_{\gamma} \propto \int dV P_{cr} n$ enables to estimate $X_{cr} = P_{cr}/P_{th} = 0.31$ (allowing for Coulomb cooling with $\tau_{Coul} = 40$ Myr)

Rieger & Aharonian (2012)

 \rightarrow in agreement with non-thermal pressure constraints from dynamical potential estimates $_{(Churazov+\ 2010)}$

Observations of Ma Cosmic rays Heating

Interactions of cosmic rays and magnetic fields

- $\bullet~\mbox{CRs}$ scatter on magnetic fields \rightarrow isotropization of CR momenta
- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_A, CR current provides steady driving force, which amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_A
 - wave damping: transfer of CR energy and momentum to the thermal gas

\rightarrow CRs exert a pressure on the thermal gas by means of scattering off of Alfvén waves

Observations of M8 Cosmic rays Heating

Cosmic-ray transport

- total CR velocity $\mathbf{v}_{cr} = \mathbf{v} + \mathbf{v}_{st} + \mathbf{v}_{di}$ (where $\mathbf{v} \equiv \mathbf{v}_{gas}$)
- CRs are advected with the flux-frozen **B** field in the gas
- CRs stream adiabatically down their own pressure gradient relative to the gas:

$$m{v}_{st} = -m{v}_{A} \, m{b} \, rac{m{b} \cdot m{
abla} P_{cr}}{|m{b} \cdot m{
abla} P_{cr}|} \, ext{ with } \, m{b} = rac{m{B}}{|m{B}|} \, ext{ and } \, m{v}_{A} = \sqrt{rac{m{B}^{2}}{4\pi
ho}}$$

• CRs diffuse in the wave frame due to pitch angle scattering by MHD waves:

$$\boldsymbol{v}_{\mathsf{di}} = -\kappa_{\mathsf{di}} \, \boldsymbol{b} \, \frac{\boldsymbol{b} \cdot \nabla P_{\mathsf{cr}}}{P_{\mathsf{cr}}},$$

Observations of M8 Cosmic rays Heating

Cosmic-ray heating vs. radiative cooling (1)

CR Alfvén-wave heating:

(Loewenstein, Zweibel, Begelman 1991, Guo & Oh 2008, Enßlin+ 2011)

$$\mathcal{H}_{\rm cr} = -\boldsymbol{v}_{\mathcal{A}} \boldsymbol{\cdot} \boldsymbol{\nabla} \boldsymbol{P}_{\rm cr} = -\boldsymbol{v}_{\mathcal{A}} \left(\boldsymbol{X}_{\rm cr} \nabla_r \langle \boldsymbol{P}_{\rm th} \rangle_{\Omega} + \frac{\delta \boldsymbol{P}_{\rm cr}}{\delta l} \right)$$

- Alfvén velocity v_A = B/√4πρ with B ~ B_{eq} from LOFAR and ρ from X-ray data
- X_{cr} inferred from γ rays
- P_{th} from X-ray data
- pressure fluctuations $\delta P_{\rm cr}/\delta I$ (e.g., due to weak shocks of $\mathcal{M}\simeq$ 1.1)

radiative cooling:

$$C_{rad} = n_e n_i \Lambda_{cool}(T, Z)$$

 cooling function Λ_{cool} with Z ≃ Z_☉, all quantities determined from X-ray data

Observations of M8 Cosmic rays Heating

Cosmic-ray heating vs. radiative cooling (2) Global thermal equilibrium on all scales in M87

Christoph Pfrommer AGN feedback: mechanical versus cosmic-ray heating

Observations of M87 Cosmic rays Heating

- isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations

Observations of M87 Cosmic rays Heating

- isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations

Observations of M87 Cosmic rays Heating

- isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations

Observations of M87 Cosmic rays Heating

- isobaric perturbations to global thermal equilibrium
 - CRs are adiabatically trapped by perturbations

Observations of M8 Cosmic rays Heating

Local stability analysis (2) Theory predicts observed temperature floor at $kT \simeq 1$ keV

Christoph Pfrommer AGN feedback: mechanical versus cosmic-ray heating

Observations of M8 Cosmic rays Heating

Virgo cluster cooling flow: temperature profile X-ray observations confirm temperature floor at $kT \simeq 1$ keV

Christoph Pfrommer AGN feedback: mechanical versus cosmic-ray heating

Observations of M8 Cosmic rays Heating

Emerging picture of CR feedback by AGNs

(1) during buoyant rise of bubbles:
 CRs diffuse and stream outward
 → CR Alfvén-wave heating

(2) if bubbles are disrupted, CRs are injected into the ICM and caught in a turbulent downdraft that is excited by the rising bubbles

- → CR advection with flux-frozen field → adiabatic CR compression and energizing: $P_{\rm cr}/P_{\rm cr,0} = \delta^{4/3} \sim 20$ for compression factor $\delta = 10$
- (3) CR escape and outward streaming \rightarrow CR Alfvén-wave heating

Observations of M8 Cosmic rays Heating

Prediction: flattening of high- ν radio spectrum

How universal is CR heating in cool core clusters?

- no γ rays observed from other clusters $\rightarrow P_{cr}$ unconstrained
- strategy: construct sample of 24 cool cores
 - (1) assume $\mathcal{H}_{cr} = \mathcal{C}_{rad}$ at $r = r_{cool, 1 \text{ Gyr}}$
 - (2) assume steady-state CR streaming: $P_{\rm cr} \propto
 ho^{\gamma_{\rm cr}/2}$
 - (3) adopt B model from Faraday rotation studies:

$$B=40\,\mu ext{G} imes\left(n/0.1\, ext{cm}^{-3}
ight)^{lpha_{B}}$$
 where $lpha_{B}\in\{2/3,1\}$

 (4) calculate hadronic radio and γ-ray emission and compare to observations

consequences:

 $\Rightarrow \text{ if } \mathcal{H}_{cr} = \mathcal{C}_{rad} \; \forall \; r \text{ and hadr. emission below observational limits:} \\ \text{successful CR heating model that is locally stabilized at} \sim 1 \; \text{keV}$

 \Rightarrow otherwise CR heating ruled out as dominant heating source

Cool core sample Bimodality Conclusions

Cosmic-ray heating in cool core clusters (1)

Christoph Pfrommer AGN feedback: mechanical versus cosmic-ray heating

Cool core sample Bimodality Conclusions

Cosmic-ray heating in cool core clusters (2)

Christoph Pfrommer AGN feedback: mechanical versus cosmic-ray heating

Cool core sampl Bimodality Conclusions

Cosmic-ray heating in Hydra A vs. Perseus

Jacob & C.P. (in prep.)

2 populations of cool cores emerging:

- pop 1 (Hydra A, Virgo, ...): $\mathcal{H}_{cr} = \mathcal{C}_{rad} \rightarrow CR$ heated?
- pop 2 (Perseus, Ophiuchus, ...): $\mathcal{H}_{cr} \neq \mathcal{C}_{rad}$: host radio-mini halos!

Cool core sample Bimodality Conclusions

Non-thermal pressure balance

- define $X_{cr} = P_{cr}/P_{th}$ and $X_B = P_B/P_{th}$
- CR heating rate: $\mathcal{H}_{cr} = -\boldsymbol{v}_A \cdot \boldsymbol{\nabla} \boldsymbol{P}_{cr} \propto X_B^{0.5} X_{cr}$
- non-thermal pressure at fixed heating rate:

$$X_{\rm nt} \equiv (X_B + X_{\rm cr})_{\mathcal{H}_{\rm cr}} = AX_{\rm cr}^{-2} + X_{\rm cr} \quad
ightarrow \quad X_{\rm cr,min} = (2A)^{1/3}$$

Cool core sampl Bimodality Conclusions

Hadronic emission: radio and γ rays

Jacob & C.P. (in prep.)

Cool core sampl Bimodality Conclusions

Hadronic emission: radio and γ rays

Jacob & C.P. (in prep.)

Cool core sampl Bimodality Conclusions

Hadronic emission: radio and γ rays

Jacob & C.P. (in prep.)

Cool core sample Bimodality Conclusions

Hadronic emission: radio and γ rays

Jacob & C.P. (in prep.)

• CR heating solution ruled out in radio mini-halos $(\mathcal{H}_{cr} \neq \mathcal{C}_{rad})!$

Cool core sample Bimodality Conclusions

Correlations in cool cores

possibly cosmic ray-heated cool cores vs. radio mini halo clusters:

- $F_{\nu,obs} > F_{\nu,pred}$: strong radio source = abundant injection of CRs
- peaked CC profile (r_{cool} ≤ 20 kpc) and simmering star formation: cosmic-ray(?) heating is effectively balancing cooling
- large star formation rates: heating out of balance

Cool core sample Bimodality Conclusions

Conclusions on AGN feedback by cosmic-ray heating

cosmic-ray heating in M87:

- LOFAR puzzle of "missing fossil electrons" in M87 solved by mixing with dense cluster gas and Coulomb cooling
- predicted γ rays identified with low state of M87
 - \rightarrow estimate CR-to-thermal pressure of $X_{cr} = 0.31$
- CR Alfvén wave heating balances radiative cooling on all scales within the central radio halo (r < 35 kpc)
- local thermal stability analysis predicts observed temperature floor at $kT \simeq 1 \text{ keV}$

diversity of cool cores:

- peaked cool cores: possibly stably heated by cosmic rays
- radio mini halo clusters: cosmic-ray heating ruled out systems are strongly cooling and form stars at large rates

Cool core sample Bimodality Conclusions

Literature for the talk

AGN feedback by cosmic rays:

- Pfrommer, Toward a comprehensive model for feedback by active galactic nuclei: new insights from M87 observations by LOFAR, Fermi and H.E.S.S., 2013, ApJ, 779, 10.
- Jacob & Pfrommer, Diversity in cool core clusters: implications for cosmic-ray heating, in prep.

Cool core sample Bimodality Conclusions

Additional slides

Cool core sample Bimodality Conclusions

Impact of varying Alfvén speed on CR heating

parametrize $B \propto \rho^{\alpha_B}$, which implies $v_A = B/\sqrt{4\pi\rho} \propto \rho^{\alpha_B-1/2}$:

- $\alpha_B = 0.5$ is the geometric mean, implying $v_A = \text{const.}$
- $\alpha_B = 0$ for collapse along **B**, implying $v_{A,\parallel} \propto \rho^{-1/2}$

• $\alpha_B = 1$ for collapse perpendicular to **B**, implying $v_{A,\perp} \propto \rho^{1/2}$

Cool core sample Bimodality Conclusions

CR heating dominates over thermal conduction

Cool core sample Bimodality Conclusions

Critical length scale of the instability (\sim Fields length)

• CR streaming transfers energy to a gas parcel with the rate

 $\mathcal{H}_{cr} = - \mathbf{v}_{A} \cdot \mathbf{\nabla} \mathbf{P}_{cr} \sim \mathit{f}_{s} \mathit{v}_{A} | \nabla \mathbf{P}_{cr} |,$

where f_s is the magnetic suppression factor

- $\bullet\,$ line and bremsstrahlung emission radiate energy with a rate \mathcal{C}_{rad}
- limiting size of unstable gas parcel since CR Alfvén-wave heating smoothes out temperature inhomogeneities on small scales:

$$\lambda_{\text{crit}} = rac{f_s v_A P_{\text{cr}}}{\mathcal{C}_{\text{rad}}}$$

however: unstable wavelength must be supported by the system

 → constraint on magnetic suppression factor f_s
 √

Cool core sample Bimodality Conclusions

Critical length scale of the instability (\sim Fields length)

Christoph Pfrommer AGN feedback: mechanical versus cosmic-ray heating

Cool core sample Bimodality Conclusions

Self-consistent CR pressure in steady state

• CR streaming transfers energy per unit volume to the gas as

$$\Delta arepsilon_{\mathsf{th}} = - au_{\mathsf{A}} oldsymbol{v}_{\mathsf{A}} oldsymbol{\cdot} oldsymbol{
abla}_{\mathsf{cr}} pprox oldsymbol{P}_{\mathsf{cr}} pprox oldsymbol{P}_{\mathsf{cr}} = X_{\mathsf{cr}} oldsymbol{P}_{\mathsf{th}},$$

where $\tau_A = \delta I / v_A$ is the Alfvén crossing time and δI the CR pressure gradient length

 comparing the first and last term suggests that a constant CR-to-thermal pressure ratio X_{cr} is a necessary condition if CR streaming is the dominant heating process

 \rightarrow thermal pressure profile adjusts to that of the streaming CRs!

