On the Cluster Physics of Sunyaev-Zel'dovich and X-ray Surveys

Christoph Pfrommer¹

in collaboration with

Nick Battaglia, Dick Bond, Jon Sievers

¹Heidelberg Institute for Theoretical Studies, Germany

June 15, 2015 / ICM physics and modelling, MPA

Outline

Cluster cosmology

- Introduction
- Cosmology toolbox
- Modeling the ICM physics
- 2 Describing cluster outskirts
 - Gas motions
 - Gas clumping
 - Cluster anisotropy
- Understanding the clumping physics
 - Inhomogeneities in shells
 - Clumping power spectra
 - Conclusions

Introduction Cosmology toolbox Modeling the ICM physics

Clusters in the era of "precision cosmology"

why bothering about clusters?

- complementarity of cosmological parameter estimates
- sensitive to growth of structure (Ω_m , σ_8)
- extreme objects can probe early Universe physics, e.g., primordial non-Gaussianity

1E 0657-56: "Bullet cluster"

 \rightarrow clusters are assembling today:

"every cluster is a bullet cluster - or a miniature version of it!"

Introduction Cosmology toolbox Modeling the ICM physics

Clusters in the era of "precision cosmology"

why bothering about clusters?

- complementarity of cosmological parameter estimates
- sensitive to growth of structure (Ω_m , σ_8)
- extreme objects can probe early Universe physics, e.g., primordial non-Gaussianity

 \rightarrow clusters are assembling today:

"every cluster is a bullet cluster – or a miniature version of it!" \rightarrow need to go beyond the spherical-cow approximation; necessarily with a heavy computational component!

Introduction Cosmology toolbox Modeling the ICM physics

Cluster cosmology toolbox Number counts and Sunyaev-Zel'dovich (SZ) power spectrum

• cluster number counts depend on scaling relations:

$$N = \int_0^{z_{\text{max}}} \mathrm{d}z \, \frac{\mathrm{d}V}{\mathrm{d}z} \, \int_{M_{\text{min}}(z)}^{\infty} \mathrm{d}M \, \frac{\mathrm{d}n(z,M)}{\mathrm{d}M(Y,T,L_X)}$$

 \rightarrow depends on space-time geometry, growth of structure, and cluster physics (selection function, scaling relation)

SZ power spectrum does not require mass information:

$$C_{\ell} = g_{\nu}^2 \int_0^{z_{\text{max}}} \mathrm{d}z \, \frac{\mathrm{d}V}{\mathrm{d}z} \, \int_0^\infty \mathrm{d}M \, \frac{\mathrm{d}n(z,M)}{\mathrm{d}M} \, |\tilde{y}_{\ell}(M,z)|^2$$

 \rightarrow depends on cluster form factor $\tilde{y}_{\ell}(M, z)$, i.e. Fourier transform of the thermal pressure profile

ightarrow amplitude of the SZ power spectrum $\mathcal{C}_\ell \propto \mathcal{A}_{
m SZ} \propto \sigma_8^{7...9}$

Introduction Cosmology toolbox Modeling the ICM physics

Modeling the ICM

processes that need to be included:

- cosmological cluster growth: asphericity and substructure
- radiative cooling and star formation
- energy feedback (AGN, SN)
- non-thermal pressure support *P*_{kin}, *P*_{CR}, *P*_B...
- plasma processes
- etc . . .

Introduction Cosmology toolbox Modeling the ICM physics

Modeling the ICM

processes that need to be included:

- cosmological cluster growth: asphericity and substructure
- radiative cooling and star formation
- energy feedback (AGN, SN)
- non-thermal pressure support P_{kin}, P_{CR}, P_B...
- plasma processes
- etc ...
- \rightarrow how does the physics impact upon various ICM observables?

 \rightarrow run large simulations: good compromise between large volumes (SZ power spectrum) and sufficient resolution for ICM modeling

Gas motions Gas clumping Cluster anisotropy

Kinetic pressure support

BBPS 2012a

*P*_{kin}/*P*_{th} increases with mass and redshift due to hierarchical formation history

Gas motions Gas clumping Cluster anisotropy

Kinetic pressure support

BBPS 2012a

P_{kin}/P_{th} almost insensitive to z when scaled to R_{200,mean}!

Gas motions Gas clumping Cluster anisotropy

Outskirts of galaxy clusters

 $P_{\rm kin}/P_{\rm th}$ increases with radius: dissipating formation shocks

Gas motions Gas clumping Cluster anisotropy

Outskirts of galaxy clusters

Rotate-stacked gas ellipticities

Gas motions Gas clumping Cluster anisotropy

Outskirts of galaxy clusters

Rotate-stacked DM ellipticities

Gas motions Gas clumping Cluster anisotropy

Outskirts of galaxy clusters

Density clumping ($T > 10^6$ K) biases f_{gas} measurements

Gas motions Gas clumping Cluster anisotropy

Outskirts of galaxy clusters

Pressure clumping adds small-scale power to tSZ power spectrum

Gas motions Gas clumping Cluster anisotropy

Pressure inhomogeneities, $z \simeq 0$

Compton-y of simulated cluster

 $z = 0.05, \, M_{200} = 1.4 imes 10^{15} \, {
m M}_{\odot}$

spherical fit to simulations

Gas motions Gas clumping Cluster anisotropy

Pressure inhomogeneities, $z \simeq 0$

Compton-y of simulated cluster

 $z = 0.05, M_{200} = 1.4 \times 10^{15} \,\mathrm{M_{\odot}}$

 $\delta y \rightarrow$ projected pressure clumps

Gas motions Gas clumping Cluster anisotropy

Pressure inhomogeneities, $z \simeq 0.5$

Compton-y of simulated cluster

 $z = 0.48, M_{200} = 2.2 \times 10^{14} \, \mathrm{M_{\odot}}$

spherical fit to simulations

Gas motions Gas clumping Cluster anisotropy

Pressure inhomogeneities, $z \simeq 0.5$

Compton-y of simulated cluster

 $z = 0.48, M_{200} = 2.2 \times 10^{14} \, \mathrm{M_{\odot}}$

 $\delta y \rightarrow$ projected pressure clumps

Gas motions Gas clumping Cluster anisotropy

tSZ power spectrum with pressure inhomogeneities

implications for tSZ power spectrum:

- high-mass halos: 25% at $\ell \sim 3000$
- all masses: 15% at ℓ ~ 3000

→ pressure clumping crucial for analytical tSZ power spectrum calculations!

Gas motions Gas clumping Cluster anisotropy

Understanding the outskirts of galaxy clusters

Simionescu+2011, Science

Gas motions Gas clumping Cluster anisotropy

Understanding the outskirts of galaxy clusters

- density clumping needed by data C ~ 10 20?
- density clumping in simulations C ~ 1.1 - 1.3
- other important effects: large non-thermal pressure, pressure clumping, anisotropy

Gas motions Gas clumping Cluster anisotropy

Biases of X-ray-inferred gas mass fractions

measurement biases of fgas:

- *M*_{HSE} bias: 20% at *R*₂₀₀
- density clumping bias: 10 - 20% at R₂₀₀ (mass dependent)

Gas motions Gas clumping Cluster anisotropy

Biases of X-ray-inferred gas mass fractions

BBPS 2013

measurement biases of fgas:

- *M*_{HSE} bias:
 20% at *R*₂₀₀
- density clumping bias: 10 – 20% at R₂₀₀ (mass dependent)
- cluster-to-cluster
 variance:
 5% for true f_{gas} but
 20% for f_{gas,HSE+clump}

Gas motions Gas clumping Cluster anisotropy

Mass profiles in cluster-centered cones

BBPS 2013

clusters are anisotropic:

- large angular variations of mass profiles: cosmic filaments seed anisotropic substructure distribution
- large offsets of DM and gas → cannot use DM as a gas proxy!

Gas motions Gas clumping Cluster anisotropy

Variance of mass profiles in cluster-centered cones

BBPS 2013

 $\sigma_{f_{\text{gas}}}(r)$:

clusters are anisotropic:

 $\sigma_{M_{\text{gas}}}(r)$:

- mean of the angular variance of $f_{\rm gas}$ across all clusters: $\sigma_{f_{\rm gas}} \simeq 30 35\%$
- collisionless DM more anisotropic than gas (shock physics)

Inhomogeneities in shells Clumping power spectra Conclusions

Cluster-centered shells of δP and $\delta \rho$ (1)

BBPS 2015

Christoph Pfrommer

On the Physics of Cluster Surveys

Inhomogeneities in shells Clumping power spectra Conclusions

Cluster-centered shells of δP and $\delta \rho$ (2)

BBPS 2015

Christoph Pfrommer On

On the Physics of Cluster Surveys

Inhomogeneities in shells Clumping power spectra Conclusions

Cluster-centered shells of δT and δj_X

Christoph Pfrommer

On the Physics of Cluster Surveys

Inhomogeneities in shells Clumping power spectra Conclusions

Contribution of cosmic filaments to clumping

BBPS 2015

- define filaments as the 4 cones with the largest M_{gas}(r < R₂₀₀) (dotted) and M_{gas}(r < 4R₂₀₀) (solid)
- filaments only account for \sim 8.3% of the volume
- they contribute ~ 30% (R₂₀₀) and ~ 80% (4R₂₀₀) to the total density clumping factor

Inhomogeneities in shells Clumping power spectra Conclusions

Understanding clumping: power spectra $C_{\ell}(\ell)$

 scaled angular power spectra show apparent evolution of the spectral shape from a bump (at R₂₀₀/2) to an almost flat distribution (at 4 R₂₀₀)

Inhomogeneities in shells Clumping power spectra Conclusions

Power spectra $C_{\ell}(k_{\perp})$ of shells quantify super-clumping

- which part of this evolution is driven by the decrease in angular scale when moving an object of fixed physical scale toward larger radii?
 → plot C_ℓ(k_⊥), where k_⊥ = (ℓ + 1/2)/x in the small-angle limit
- super-clumping: density and pressure clumping is dominated by comparably large (sub-)structures with scales L_⊥ ≥ πR₂₀₀/k_⊥ ~ R₂₀₀/5

Inhomogeneities in shells Clumping power spectra Conclusions

Conclusions

describing cluster outskirts:

- kinetic pressure contribution increasing with radius
- density and pressure clumping increasing with radius: biases f_{gas} and adds power to C_ℓ for ℓ ≥ 3000
- large anisotropies within clusters of M_{gas}, M_{DM}, and f_{gas} due to infalling substructures along filaments

towards an understanding of clumping in cluster outskirts:

- clumping is dominated by gravitationally-driven, large substructures → "super-clumping"
- these inhomogeneities are sourced by cosmic filaments that are channeling baryonic and dark matter onto clusters and maintain contact down to radii of order R₂₀₀/3
- such large-scale, radial overdense "super clumps" resemble structures in the deep *Chandra* observation of Abell 133

Inhomogeneities in shells Clumping power spectra Conclusions

Literature for the talk

- BBPSS 2010: Battaglia, Bond, Pfrommer, Sievers, Sijacki, Simulations of the Sunyaev-Zel'dovich Power Spectrum with AGN Feedback, ApJ, 725, 91 (2010).
- BBPS 2012a: Battaglia, Bond, Pfrommer, Sievers, On the Cluster Physics of Sunyaev-Zel'dovich and X-ray Surveys I: the Influence of Feedback, Non-thermal Pressure and Cluster Shapes on Y – M Scaling Relations, ApJ, 758, 74 (2012).
- BBPS 2012b: Battaglia, Bond, Pfrommer, Sievers, On the Cluster Physics of Sunyaev-Zel'dovich and X-ray Surveys II: Deconstructing the Thermal SZ Power Spectrum, ApJ, 758, 75 (2012).
- BBPS 2013: Battaglia, Bond, Pfrommer, Sievers, On the Cluster Physics of Sunyaev-Zel'dovich and X-ray Surveys III: Measurement Biases and Cosmological Evolution of Gas and Stellar Mass Fractions, ApJ, 777, 123, (2013).
- BBPS 2015: Battaglia, Bond, Pfrommer, Sievers, On the Cluster Physics of Sunyaev-Zel'dovich and X-ray Surveys IV: Density and Pressure Clumping due to Infalling Substructures, ApJ, 806, 43 (2015).

Inhomogeneities in shells Clumping power spectra Conclusions

additional slides

Inhomogeneities in shells Clumping power spectra Conclusions

Hydrostatic mass bias

BBPS 2012a

Inhomogeneities in shells Clumping power spectra Conclusions

AGN feedback

- sub-resolution approach: $r_{softening} \sim 10^8 r_{Schwarzschild}$
- tying feedback to virial properties not successful, $E_{
 m inj} \propto M_{
 m 200} c^2$
- self-regulated feedback (Thompson+05)

 $\begin{array}{rcl} M_{\rm BH} & \propto & M_{\rm star} \\ E_{\rm inj} & = & \varepsilon_r \dot{M}_{\rm star} c^2 \Delta t \end{array}$

- find halos and inject *E*_{inj} within spherical region *R*_{AGN}
- parameters: Δt, ε_r, R_{AGN};
 ε_r effective radiative efficiency
- match previous AGN models (Sijacki+2008)

Inhomogeneities in shells Clumping power spectra Conclusions

Baryon and stellar mass fraction

 $f_{\text{star}}(< r) = M_{\text{star}}(< r)/M_{\text{tot}}(< r)$ is reduced by AGN feedback to observed values

Battaglia, Bond, C.P., Sievers, Sijacki (2010) = BBPSS 2010

Inhomogeneities in shells Clumping power spectra Conclusions

Simulations

our simulations: (BBPSS 2010, BBPS 2012a,b,c,d)

- box lengths: $\{200, 400\}h^{-1}$ Mpc, $N = 2 \times \{256^3, 512^3\}$
- halo mass resolution $\sim 10^{13} h^{-1}\,M_\odot$
- \sim 800 clusters with $M_{200} > 10^{14} h^{-1} \, \mathrm{M}_{\odot}$
- Gadget2+ (SPH) with three different physics models:
 - shock heating (non-radiative)
 - radiative cooling + star formation + SNe + CR
 - additionally 'AGN' feedback

 \rightarrow good compromise between large volumes (SZ power spectrum) and sufficient resolution for ICM modeling (AGN feedback)

