Blazar Heating – The Rosetta Stone for Structure Formation?

Christoph Pfrommer¹

in collaboration with

Avery E. Broderick², Phil Chang², Ewald Puchwein¹, Volker Springel¹

Jul 26, 2011 / Lorentz Center Workshop

¹Heidelberg Institute for Theoretical Studies, Germany

²Canadian Institute for Theoretical Astrophysics, Canada

Outline

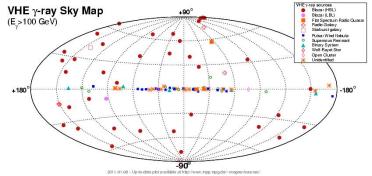
- Physics of blazar heating
 - TeV emission from blazars
 - Propagation of TeV photons
 - Plasma instabilities
- The intergalactic medium
 - Properties of blazar heating
 - Thermal history of the IGM
 - The Lyman- α forest
- Structure formation
 - Entropy evolution
 - Bimodality of galaxy clusters
 - Formation of dwarf galaxies

Outline

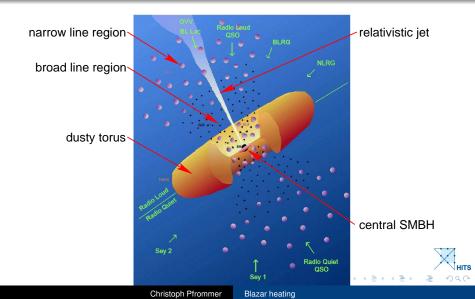
- Physics of blazar heating
 - TeV emission from blazars
 - Propagation of TeV photons
 - Plasma instabilities
- 2 The intergalactic medium
 - Properties of blazar heating
 - Thermal history of the IGM
 - The Lyman- α forest
- Structure formation
 - Entropy evolution
 - Bimodality of galaxy clusters
 - Formation of dwarf galaxies

TeV gamma-ray astronomy

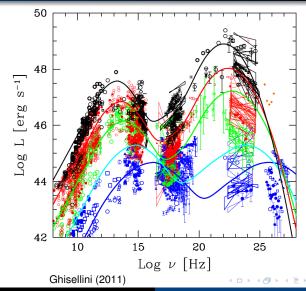
Jamma ray add onomy



The TeV gamma-ray sky


There are several classes of TeV sources:

- Galactic pulsars, BH binaries, supernova remnants
- Extragalactic mostly blazars, two starburst galaxies



Unified model of active galactic nuclei

The blazar sequence

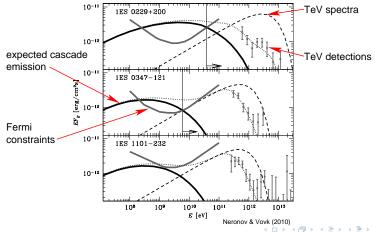
Propagation of TeV photons

1 TeV photons can pair produce with 1 eV photons:

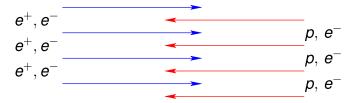
$$\gamma + \gamma \rightarrow \mathbf{e}^+ + \mathbf{e}^-$$

- mean free path for this depends on the density of 1 eV photons:
 - \rightarrow typically \sim 100 Mpc
 - ightarrow pairs produced with energy of 0.5 TeV ($\gamma = 10^6$)
- these pairs inverse Compton scatter off the CMB photons
 - \rightarrow mean free path is \sim 30 kpc
 - \rightarrow producing gamma-rays of \sim 1 GeV

$$E \sim \gamma^2 E_{\rm CMB} \sim 1 \; {\rm GeV}$$


each TeV point source is also a GeV point source

What about the cascade emission?


Every TeV source should be associated with a 1-100 GeV gamma-ray halo – **not seen!**

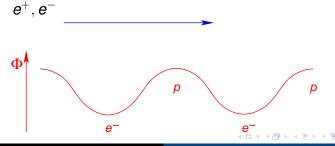
Missing plasma physics?

How do beams of e^+/e^- propagate through the IGM?

- plasma processes are important
- interpenetrating beams of charged particles are unstable
- consider the two-stream instability for two beams:

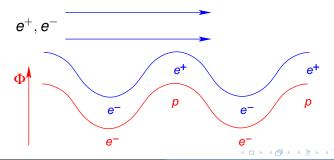
one frequency (timescale) and one length in the problem:

$$rac{\omega_p}{\gamma} = \sqrt{rac{4\pi e^2 n_e}{\gamma^2 m_e}}$$

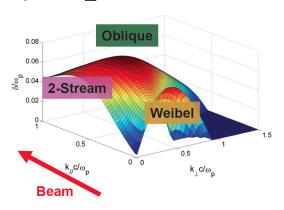

$$\lambda_{p} = rac{\gamma c}{\omega_{p}}$$

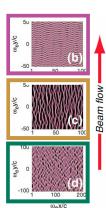
Two-stream instability: mechanism

wave-like perturbation with $\mathbf{k}||\mathbf{v}_{beam}$, longitudinal charge oscillations in background plasma (Langmuir wave):


- initially homogeneous beam-e⁻: attractive (repulsive) force by potential maxima (minima)
- ullet e^- attain lowest velocity in potential minima o bunching up
- ullet e^+ attain lowest velocity in potential maxima o bunching up

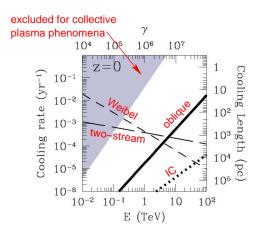
Two-stream instability: mechanism


wave-like perturbation with $\mathbf{k}||\mathbf{v}_{beam}$, longitudinal charge oscillations in background plasma (Langmuir wave):


- beam- e^+/e^- couple in phase with the background perturbation: enhances background potential
- stronger forces on beam- $e^+/e^- \rightarrow$ positive feedback
- exponential wave-growth → instability

Oblique instability

 $\emph{\textbf{k}}$ oblique to $\emph{\textbf{v}}_{beam}$: real word perturbations don't choose "easy" alignment $=\sum$ all orientations



Bret (2009), Bret+ (2010)

Beam physics - growth rates

- consider a light beam penetrating into relatively dense plasma
- maximum growth rate

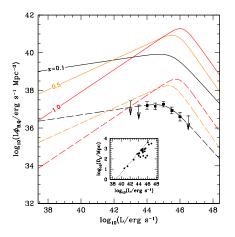
$$\sim$$
 0.4 $\gamma \, rac{ extit{n}_{ ext{beam}}}{ extit{n}_{ ext{IGM}}} \, \omega_{ extit{p}}$

 oblique instability beats IC by two orders of magnitude

Broderick, Chang, C.P. (2011)

Beam physics – growth rates

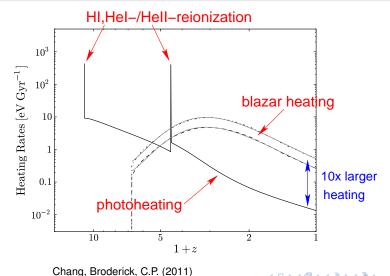
- non-linear evolution of these instabilities at these density contrasts is not known
- expectation from PIC simulations suggest substantial isotropization of the beam
- plasma instabilities cool the beam, no energy left over for IC off the CMB


Outline

- Physics of blazar heating
 - TeV emission from blazars
 - Propagation of TeV photons
 - Plasma instabilities
- The intergalactic medium
 - Properties of blazar heating
 - Thermal history of the IGM
 - ullet The Lyman-lpha forest
- Structure formation
 - Entropy evolution
 - Bimodality of galaxy clusters
 - Formation of dwarf galaxies

TeV blazar luminosity density

TeV blazars with good spectral measurements


collect luminosity of all 23

- account for the selection effects
- TeV blazar luminosity density is a scaled version (~ 0.2%) of that of quasars!
- assume that they trace each other for all z

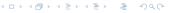
Broderick, Chang, C.P. (2011)

Evolution of the heating rates

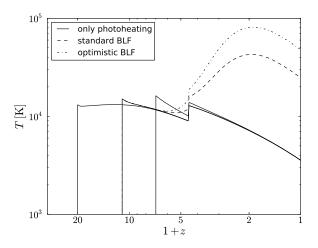
Blazar heating vs. photoheating

- total power from AGN/stars vastly exceeds the TeV power of blazars
- $T_{\rm IGM} \sim 10^4$ K (1 eV) at mean density ($z \sim 2$)

$$\varepsilon_{\rm th} = \frac{kT}{m_{\rm p}c^2} \sim 10^{-9}$$


radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)

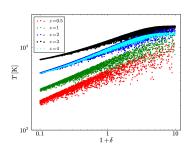
$$\varepsilon_{\rm rad} = \eta \, \Omega_{\rm bh} \sim 0.1 \times 10^{-4} \sim 10^{-5}$$


• fraction of the energy energetic enough to ionize H $\scriptstyle\rm I$ is \sim 0.1:

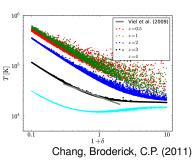
$$\varepsilon_{\rm UV} \sim 0.1 \varepsilon_{\rm rad} \sim 10^{-6} \quad \rightarrow \quad kT \sim {\rm keV}$$

- photoheating efficiency $\eta_{\rm ph} \sim 10^{-3} \rightarrow kT \sim \eta_{\rm ph} \, \varepsilon_{\rm UV} \, m_{\rm p} c^2 \sim {\rm eV}$ (limitted by the abundance of H I/He II due to the small recombination rate)
- blazar heating efficiency $\eta_{\rm bh}\sim 10^{-3}$ \to $kT\sim\eta_{\rm bh}\,\varepsilon_{\rm rad}\,m_{\rm p}c^2\sim 10\,{\rm eV}$ (limited by the total power of TeV sources)

Thermal history of the IGM



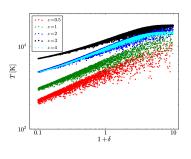
Chang, Broderick, C.P. (2011)



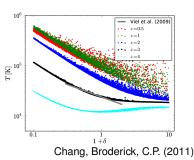
Evolution of the equation of state

no blazar heating

blazar heating



- blazars and extragalactic background light are uniform
 - → blazar heating independent of density
 - \rightarrow causes inverted equation of state, $T \propto 1/\delta$
- blazars completely change the thermal history of the diffuse IGM and late-time structure formation

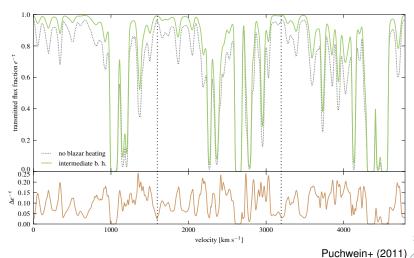


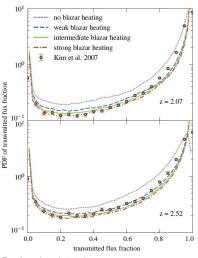
Evolution of the equation of state

no blazar heating

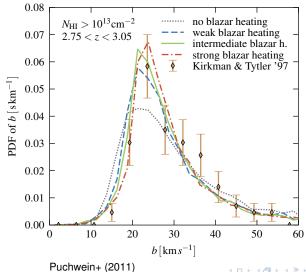
blazar heating

- blazars and extragalactic background light are uniform
 - → blazar heating independent of density
 - \rightarrow causes inverted equation of state, $T \propto 1/\delta$
- blazars completely change the thermal history of the diffuse IGM and late-time structure formation


Equation of state


Puchwein, C.P., Springel, Broderick, Chang (2011)

Ly- α spectra


Ly- α flux PDFs and power spectra

10z = 2.07 10^{-2} no blazar heating power spectrum $\frac{k}{\pi} \times P_{1D}(k)$ weak blazar heating intermediate blazar heating strong blazar heating Viel at al. 2004 10^{-3} 10^{-1} z = 2.52 10^{-2} Kim et al. 2004 10- 10^{-2} 10^{-1} k [s km-1]

Puchwein+ (2011)

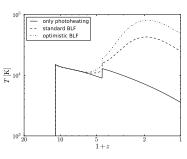
Voigt profile fitting – line width distribution

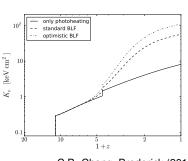
Lyman- α forest in a blazar heated Universe

impressive improvement in modelling the Lyman- α forest is a direct consequence of the peculiar properties of blazar heating:

- heating rate independent of IGM density → naturally produces the inverted EOS that Lyman-α forest data demand
- recent and continuous nature of the heating needed to match the redshift evolutions of all Lyman- α forest statistics
- magnitude of the heating rate required by Lyman- α forest data \sim the total energy output of TeV blazars (or equivalently \sim 0.2% of that of quasars)

Outline

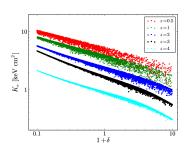

- Physics of blazar heating
 - TeV emission from blazars
 - Propagation of TeV photons
 - Plasma instabilities
- 2 The intergalactic medium
 - Properties of blazar heating
 - Thermal history of the IGM
 - The Lyman- α forest
- Structure formation
 - Entropy evolution
 - Bimodality of galaxy clusters
 - Formation of dwarf galaxies



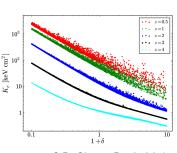
Entropy evolution

temperature evolution

entropy evolution


C.P., Chang, Broderick (2011)

- evolution of the entropy, $K_e = kTn_e^{-2/3}$, at mean density
- blazar heating substantially increases the entropy floor ($z \lesssim 2$)



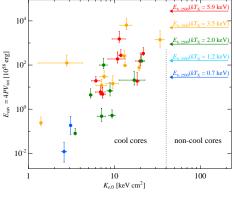
Evolution of the entropy equation of state

no blazar heating

blazar heating

C.P., Chang, Broderick (2011)

- blazar heating substantially increases the entropy in voids
- scatter is also increased → larger stochasticity of structure formation


Blazar heating: AGN feedback vs. pre-heating

Blazar heating is an amalgam of pre-heating and AGN feedback:

- blazar heating is not localized (≠ AGN feedback)
 - \rightarrow changes initial conditions for forming groups (but provides no stability for cool cores, CCs)
- blazar heating generates time-dependent entropy floor (≠ pre-heating)
 - \rightarrow solves the classical problems of pre-heating ($z \sim 3$):
 - provides a physical mechanism
 - does not starve galaxy formation for $z \lesssim 3$
 - early forming groups can cool and develop observed low-K_e cores

How efficient is heating by AGN feedback?

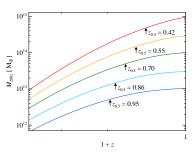
C.P., Chang, Broderick (2011)

cavity enthalpy

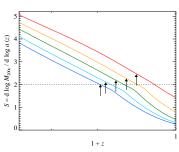
$$E_{cav} = 4 PV_{tot}$$

in some cases

$$E_{\mathsf{cav}} \gtrsim E_{\mathsf{bind}}(R_{2500})$$


 cavity energy only couples weakly into ICM, but prevents cooling catastrophe

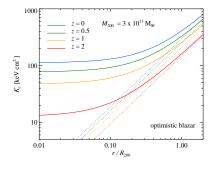
 on a buoyancy timescale, no AGN outburst transforms a CC to a non-cool core (NCC) cluster!



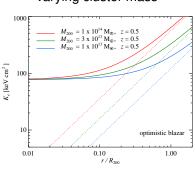
Mass accretion history of groups/clusters

mass accretion history

mass accretion rates


C.P., Chang, Broderick (2011)

- \bullet peak entropy injection from blazar heating (z \sim 1) matches formation time of groups
- early forming groups are unaffected and develop cool cores
- late forming groups have an elevated entropy core



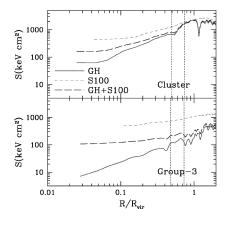
Entropy profiles: effect of blazar heating

varying formation time

varying cluster mass

C.P., Chang, Broderick (2011)

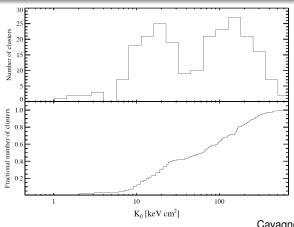
- cluster entropy profile immediately after formation (no cooling)
- largest effect for late forming, small objects



Scenario for the bimodality of cluster core entropies?

- entropy core, $K_{e,0}$, immediately after formation is set by the z-dependent blazar heating
- only late forming groups ($z \lesssim 1$) are directly affected by blazar (pre-)heating
- if the cooling time, t_{cool}, is shorter than the time period to the successive merger, t_{merger}, the group will radiate away the elevated core entropy and evolve into a CC
- if t_{cool} > t_{merger}, merger shocks can gravitationally reprocess the entropy cores and amplify them → potentially those forming clusters evolve into non-cool core (NCC) systems

Gravitational reprocessing of entropy floors



Borgani+ (2005)

- larger $K_{e,0}$ of a merging cluster facilitates shock heating \rightarrow increase of $K_{e,0}$ over entropy floor
- entropy floor of 100 keV cm² at z=3 in non-radiative simulation: net entropy amplification factor \sim 3–5 for clusters and groups (Borgani+ 2005)
- expect median of $K_{\rm e,0} \sim$ 150 keV cm²; maximum $K_{\rm e,0} \sim$ 600 keV cm²

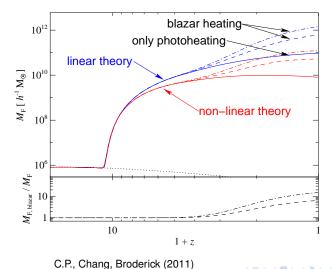
Bimodality of cluster core entropies

- Cavagnolo+ (2009)
- Chandra observations match blazar heating expectations!
- need hydrodynamic simulations to confirm this scenario

Jeans mass

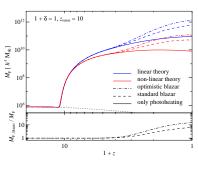
- on small enough scales, the thermal pressure can oppose gravitational collapse of the gas
- characteristic length scale below which objects will not form
- Jeans wavenumber and mass is obtained by balancing the sound crossing and free-fall timescales

$$\begin{array}{lcl} k_J(a) & \equiv & \frac{a}{c_s(a)} \, \sqrt{4\pi G \bar{\rho}(a)} \\ \\ M_J(a) & \equiv & \frac{4\pi}{3} \, \bar{\rho}(a) \, \left(\frac{2\pi a}{k_J(a)}\right)^3 = \frac{4\pi^{5/2}}{3} \, \frac{c_s^3(a)}{G^{3/2} \bar{\rho}^{1/2}(a)} \end{array}$$

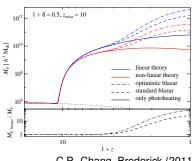

ullet blazar heating increases the IGM temperature by \sim 10:

$$rac{ extit{M}_{ extit{J,blazar}}}{ extit{M}_{ extit{J,photo}}} = \left(rac{ extit{c}_{ ext{s,blazar}}}{ extit{c}_{ ext{s,photo}}}
ight)^3 = \left(rac{ extit{T}_{ ext{blazar}}}{ extit{T}_{ ext{photo}}}
ight)^{3/2} \gtrsim 30$$

Filtering mass – dwarf formation



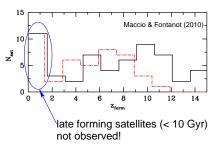
C.P., Chang, Broderick (20)



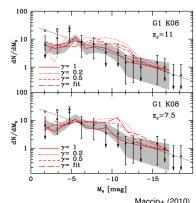
Peebles' void phenomenon explained?

mean density

void, $1 + \delta = 0.5$



- C.P., Chang, Broderick (2011)
- blazar heating efficiently suppresses the formation of void dwarfs within existing DM halos of masses $< 3 \times 10^{11} \, M_\odot \ (z=0)$
- reconciling the number of void dwarfs in simulations and the paucity of those in observations



"Missing satellite" problem in the Milky Way

satellite formation time

satellite luminosity function

Maccio+ (2010)

 blazar heating suppresses late satellite formation, reconciling low observed dwarf abundances with CDM simulations

Conclusions on blazar heating

- novel mechanism; dramatically alters thermal history of the IGM:
 - uniform and z-dependent preheating
 - rate independent of density → inverted EOS
 - ullet consistent picture of Lyman-lpha forest
- significantly modifies late-time structure formation:
 - group/cluster bimodality of core entropy values
 - may suppress Sunyaev-Zel'dovich power spectrum
 - dwarf formation: "missing satellite" problem, void phenomenon
- explains puzzles in high-energy astrophysics:
 - TeV blazars can evolve like quasars
 - extragalactic gamma-ray background at E ≥ 10 GeV
 - invalidates intergalactic B-constraints from blazar spectra

