### 1E0657-56

Illuminating cosmological formation shocks

Christoph Pfrommer

in collaboration with

T. Enßlin, V. Springel Heidelberg Institute for Theoretical Studies, Germany

IMAGINE workshop – Lorentz Center, Mar 2017

▲□▶ ▲雨

5900

Introduction Cosmological simulations Shocks and cosmic ray acceleration

### Cosmological structure formation



 small fluctuations in cosmic microwave background are initial conditions for structure formation

ESA/Planck Collaboration (2013)



Introduction Cosmological simulations Shocks and cosmic ray acceleration

### Cosmological structure formation



ESA/Planck Collaboration (2013)



dropping pebbles into the pond generates expanding waves that interfere with each other

- small fluctuations in cosmic microwave background are initial conditions for structure formation
- galaxies and clusters form at sites of constructive interference of those primordial waves



Introduction Cosmological simulations Shocks and cosmic ray acceleration

### Cosmological structure formation



- small fluctuations in cosmic microwave background are initial conditions for structure formation
- galaxies and clusters form at sites of constructive interference of those primordial waves
- cosmic matter assembles in the "cosmic web" through gravitational instability
- galaxies form as "beats on a string" along the cosmic filaments
- galaxy clusters form at the knots of the cosmic web by mergers of galaxies and galaxy groups

Introduction Cosmological simulations Shocks and cosmic ray acceleration

### Cosmological structure formation



- small fluctuations in cosmic microwave background are initial conditions for structure formation
- galaxies and clusters form at sites of constructive interference of those primordial waves
- cosmic matter assembles in the "cosmic web" through gravitational instability
- galaxies form as "beats on a string" along the cosmic filaments
- galaxy clusters form at the knots of the cosmic web by mergers of galaxies and galaxy groups

Introduction Cosmological simulations Shocks and cosmic ray acceleration

## Shocks in galaxy clusters



### 1E 0657-56 ("Bullet cluster")

(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl; Magellan/U.Arizona/D.Clowe et al.; Lensing: NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)



### Abell 3667

(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)

→ E > < E</p>

Christoph Pfrommer

Illuminating cosmological formation shocks

Cosmological simulations

### Radiative simulations – flowchart





Introduction Cosmological simulations Shocks and cosmic ray acceleration

## Radiative simulations with cosmic ray (CR) physics



Introduction Cosmological simulations Shocks and cosmic ray acceleration

## Radiative simulations with extended CR physics



Introduction Cosmological simulations Shocks and cosmic ray acceleration

### Radiative cool core cluster simulation: gas density



Introduction Cosmological simulations Shocks and cosmic ray acceleration

### Mass weighted temperature



Introduction Cosmological simulations Shocks and cosmic ray acceleration

## Mach number distribution weighted by $\varepsilon_{ m diss}$



Introduction Cosmological simulations Shocks and cosmic ray acceleration

## Cosmological shock statistics



- more energy is dissipated at later times
- mean Mach number decreases with time

Introduction Cosmological simulations Shocks and cosmic ray acceleration

### Cosmological shock statistics: influence of reionization



- reionization epoch at z<sub>reion</sub> = 10 suppresses efficiently strong shocks at z < z<sub>reion</sub> due to jump in sound velocity
- cosmological constant causes structure formation to cease



Introduction Cosmological simulations Shocks and cosmic ray acceleration

### Cosmological shock statistics: CR injection



- Mach number dependent injection efficiency of CRs favors medium Mach number shocks ( $M \gtrsim$  3) for the injection
- more energy is dissipated in weak shocks internal to collapsed structures than in external strong shocks

Introduction Cosmological simulations Shocks and cosmic ray acceleration

Diffusive shock acceleration – Fermi 1 mechanism

Spectral index depends on the Mach number of the shock,  $\mathcal{M} = v_{\text{shock}} / c_{s}$ :



Introduction Cosmological simulations Shocks and cosmic ray acceleration

## Mach number distribution weighted by $\varepsilon_{ m diss}$



Introduction Cosmological simulations Shocks and cosmic ray acceleration

## Mach number distribution weighted by $\varepsilon_{CR,inj}$



Introduction Cosmological simulations Shocks and cosmic ray acceleration

## Mach number distribution weighted by $\varepsilon_{CR,inj}(q > 30)$



Cosmological shocks

Non-thermal processes in clusters

Introduction Cosmological simulations Shocks and cosmic ray acceleration

## CR pressure P<sub>CR</sub>



Introduction Cosmological simulations Shocks and cosmic ray acceleration

# Relative CR pressure $P_{CR}/P_{total}$



Introduction Cosmological simulations Shocks and cosmic ray acceleration

# Relative CR pressure $P_{CR}/P_{total}$



Introduction Cosmological simulations Shocks and cosmic ray acceleration

### CR phase-space diagram: final distribution @ z = 0



Christoph Pfrommer

Illuminating cosmological formation shocks

General picture Shock related emission Hadronically induced emission

#### Non-thermal emission from clusters Exploring the memory of structure formation

- primary, shock-accelerated CR electrons resemble current accretion and merging shock waves
- CR protons/hadronically produced CR electrons trace the time integrated non-equilibrium activities of clusters that is modulated by the recent dynamical activities



General picture Shock related emission Hadronically induced emission

#### Non-thermal emission from clusters Exploring the memory of structure formation

- primary, shock-accelerated CR electrons resemble current accretion and merging shock waves
- CR protons/hadronically produced CR electrons trace the time integrated non-equilibrium activities of clusters that is modulated by the recent dynamical activities

How can we read out this information about non-thermal populations?  $\rightarrow$  new era of multi-frequency experiments, e.g.:

- LOFAR, GMRT, MWA, LWA: interferometric array of radio telescopes at low frequencies ( $\nu \simeq (15 240)$  MHz)
- Jansky VLA: array of radio telescopes ( $\nu \simeq (0.07 50)$  GHz)
- *Fermi*:  $\gamma$ -ray space satellite ( $E \simeq (0.1 300)$  GeV)
- Imaging air Čerenkov telescopes ( $E \simeq (0.1 100)$  TeV)



General picture Shock related emission Hadronically induced emission

### Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:





### Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:





ヘロン 人間 とくほとく ほとう

### Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:



### Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:



General picture Shock related emission Hadronically induced emission

### Cosmic web: Mach number



General picture Shock related emission Hadronically induced emission

### Radio gischt (relics): primary CRe (1.4 GHz)



General picture Shock related emission Hadronically induced emission

### Radio gischt: primary CRe (150 MHz)



General picture Shock related emission Hadronically induced emission

### Radio gischt: primary CRe (15 MHz)



General picture Shock related emission Hadronically induced emission

# Radio gischt: primary CRe (15 MHz), slower magnetic decline



General picture Shock related emission Hadronically induced emission

### Hadronic cosmic ray proton interaction



General picture Shock related emission Hadronically induced emission

### Cluster radio emission by hadronically produced CRe



General picture Shock related emission Hadronically induced emission

### Thermal X-ray emission



General picture Shock related emission Hadronically induced emission

### Radio gischt: primary CRe (150 MHz)



General picture Shock related emission Hadronically induced emission

### Radio gischt + central hadronic mini-halo



General picture Shock related emission Hadronically induced emission

### Which one is the simulation/observation of A2256?



red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic



Christoph Pfrommer

Illuminating cosmological formation shocks

General picture Shock related emission Hadronically induced emission

### Observation – simulation of A2256



red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic



( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( )

Christoph Pfrommer

Illuminating cosmological formation shocks

General picture Shock related emission Hadronically induced emission

### Conclusions

In contrast to the thermal plasma, the non-equilibrium distributions of CRs preserve the information about their injection and transport processes and provide thus a unique window of current and past structure formation processes!



General picture Shock related emission Hadronically induced emission

### Conclusions

In contrast to the thermal plasma, the non-equilibrium distributions of CRs preserve the information about their injection and transport processes and provide thus a unique window of current and past structure formation processes!

 Cosmological hydrodynamical simulations are indispensable for understanding non-thermal processes in galaxy clusters

 → illuminating the process of structure formation



General picture Shock related emission Hadronically induced emission

## Conclusions

In contrast to the thermal plasma, the non-equilibrium distributions of CRs preserve the information about their injection and transport processes and provide thus a unique window of current and past structure formation processes!

- Cosmological hydrodynamical simulations are indispensable for understanding non-thermal processes in galaxy clusters

   → illuminating the process of structure formation
- 2 Multi-messenger approach including radio synchrotron, X-ray, and  $\gamma$ -ray emission:
  - plasma physics: diffusive shock acceleration, large scale magnetic fields, and turbulence
  - nature of dark matter
  - gold sample of cluster for precision cosmology



• • • • • • • •

- ∃ → - < = →

General picture Shock related emission Hadronically induced emission

#### CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtioN





Christoph Pfrommer

Illuminating cosmological formation shocks

General picture Shock related emission Hadronically induced emission

### Literature for the talk

- Pfrommer, 2008, MNRAS, 385, 1242 Simulating cosmic rays in clusters of galaxies – III. Non-thermal scaling relations and comparison to observations
- Pfrommer, Enßlin, Springel, 2008, MNRAS, 385, 1211, Simulating cosmic rays in clusters of galaxies – II. A unified scheme for radio halos and relics with predictions of the γ-ray emission
- Pfrommer, Enßlin, Springel, Jubelgas, and Dolag, 2007, MNRAS, 378, 385, Simulating cosmic rays in clusters of galaxies – I. Effects on the Sunyaev-Zel'dovich effect and the X-ray emission
- Pfrommer, Springel, Enßlin, Jubelgas 2006, MNRAS, 367, 113, Detecting shock waves in cosmological smoothed particle hydrodynamics simulations
- Enßlin, Pfrommer, Springel, and Jubelgas, 2007, A&A, 473, 41, Cosmic ray physics in calculations of cosmological structure formation
- Jubelgas, Springel, Enßlin, and Pfrommer, A&A, in print, astro-ph/0603485, Cosmic ray feedback in hydrodynamical simulations of galaxy formation



イロト イ理ト イヨト イヨト