Cosmological simulations of clusters

Christoph Pfrommer

Leibniz Institute for Astrophysics Potsdam (AIP)

Oct 24, 2017 / Diffuse Synchrotron Emission in Galaxy Clusters, Leiden

< 🗇 🕨

-∢ ≣ ▶

Outline

Introduction

- Modelled physics
- Structure formation
- Non-thermal signatures

2 Major challenges

- Physics
- Radio relics
- Radio halos

3 Cosmological simulations

- Radio relics
- Radio halos
- Conclusions

AIP

Modelled physics Structure formation Non-thermal signatures

Outline

Introduction

- Modelled physics
- Structure formation
- Non-thermal signatures

2 Major challenges

- Physics
- Radio relics
- Radio halos

3 Cosmological simulations

- Radio relics
- Radio halos
- Conclusions

< 🗇 >

3

AIP

Modelled physics Structure formation Non-thermal signatures

Cluster mergers: the most energetic cosmic events

1E 0657-56 ("Bullet cluster")

(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl; Magellan/U.Arizona/D.Clowe et al.; Lensing: NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)

Abell 3667

(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)

Christoph Pfrommer

Cosmological simulations of clusters

Modelled physics Structure formation Non-thermal signatures

Giant radio halo & relic in the Coma cluster

thermal X-ray emission

(Snowden/MPE/ROSAT)

radio synchrotron emission

(Deiss/Effelsberg)

Modelled physics Structure formation Non-thermal signatures

Cosmological simulations – flowchart

Modelled physics Structure formation Non-thermal signatures

Cosmological simulations with cosmic ray physics

Christoph Pfrommer Cosmological simulations of clusters

AIP

Modelled physics Structure formation Non-thermal signatures

Cosmological simulations with cosmic ray physics

AIP

Modelled physics Structure formation Non-thermal signatures

Cosmological cluster simulation: gas density

Modelled physics Structure formation Non-thermal signatures

Mass weighted temperature

Modelled physics Structure formation Non-thermal signatures

Shock strengths weighted by dissipated energy

Modelled physics Structure formation Non-thermal signatures

Shock strengths weighted by injected CR energy

Modelled physics Structure formation Non-thermal signatures

Evolved CR pressure

Modelled physics Structure formation Non-thermal signatures

Relative CR pressure P_{CR}/P_{total}

Modelled physics Structure formation Non-thermal signatures

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

★ E → ★ E →

Modelled physics Structure formation Non-thermal signatures

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

(< ≥) < ≥)</p>

Modelled physics Structure formation Non-thermal signatures

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Modelled physics Structure formation Non-thermal signatures

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Physics Radio relics Radio halos

Outline

Introduction

- Modelled physics
- Structure formation
- Non-thermal signatures

2 Major challenges

- Physics
- Radio relics
- Radio halos

3 Cosmological simulations

- Radio relics
- Radio halos
- Conclusions

< 🗇 >

< ∃⇒

Physics Radio relics Radio halos

Major challenges – physics

Temperature, Mach number & turbulence with AMR (credit: Vazza)

- strength and properties of magnetic fields: in ICM and at shocks
- properties of cluster turbulence: MHD to kinetic scales
- cosmic ray transport properties

Physics Radio relics Radio halos

Nature and origin of turbulence and magnetic fields

Gas density, locations of shocks, vorticity = $\nabla \times \vec{v}$ (Ryu+ 2008)

Model for the origin of intra-cluster magnetic fields:

- large scale structure formation → curved shocks → injection of vorticity and turbulent flow motions
- turbulence amplifies weak seed magnetic fields of any origin

イロト イ理ト イヨト イヨト

Physics Radio relics Radio halos

Volume rendered magnetic field strengths

Spatial distribution of the inter-galactic magnetic fields around a cluster and along a filament of groups (Ryu et al. 2008).

Physics Radio relics Radio halos

Problem of magnetic fields at relics

Density, radio intensity, magnetic field strength with AMR (Skillman+ 2013)

- relics trace merger shocks
- simulated $B \lesssim 0.1 \,\mu\text{G}$ at relic position
- observed B ≈ 3 μG at relic position (Finoguenov+ 2010, van Weeren+ 2012)

Physics Radio relics Radio halos

Turbulence properties

Three different density (top) and specific entropy (bottom) slices (Miniati+ 2014)

- r < R_{vir}/3: mostly solenoidal (Kolmogorov) turbulence
- consistent with fully developed, homogeneous and isotropic turbulence
- towards R_{vir}: flow becomes more compressional

Physics Radio relics Radio halos

Major challenges – giant relics

CIZA J2242.8+5301, sausage relic, X-ray and radio X-ray: XMM-Newton; radio: van Weeren

what we know (not contentious):

- trace shocks in cluster outskirts
- energy source: hierarchical growth → cluster mergers
- diffusive shock acceleration at merger shocks

Physics Radio relics Radio halos

Major challenges – giant relics

CIZA J2242.8+5301, sausage relic, X-ray and radio X-ray: XMM-Newton; radio: van Weeren

what we know (not contentious):

- trace shocks in cluster outskirts
- energy source: hierarchical growth → cluster mergers
- diffusive shock acceleration at merger shocks

challenges:

- weak shocks: electron acceleration mechanism?
- explain magnetic properties (strength, orientation)

Physics Radio relics Radio halos

Major challenges – giant halos

Coma cluster, color: X-ray, contours: radio X-ray: Snowden/MPE/ROSAT; radio: Brown/Westerbork

what we know (not contentious):

- energy source: hierarchical growth → cluster mergers
- volume filling synchrotron emission in turbulent fields
- fields have likely grown via small-scale dynamo

Physics Radio relics Radio halos

Major challenges – giant halos

Coma cluster, color: X-ray, contours: radio X-ray: Snowden/MPE/ROSAT; radio: Brown/Westerbork

what we know (not contentious):

- energy source: hierarchical growth \rightarrow cluster mergers
- volume filling synchrotron emission in turbulent fields
- fields have likely grown via small-scale dynamo

challenges:

- $\tau_{syn} \lesssim$ 100 Myr \rightarrow requires efficient in-situ electron acceleration which?
- robust prediction? ways forward to test?

Physics Radio relics Radio halos

Major challenges – mini halos

Perseus cluster, radio mini halo Pedlar+ (1990)

what we know (not contentious):

- occurence in strong cool core clusters (large SFR, cooling radii)
- volume filling synchrotron emission in turbulent fields

Physics Radio relics Radio halos

Major challenges – mini halos

Perseus cluster, radio mini halo Pedlar+ (1990)

what we know (not contentious):

- occurence in strong cool core clusters (large SFR, cooling radii)
- volume filling synchrotron emission in turbulent fields

challenges:

- energy source: AGN feedback or sloshing?
- acceleration mechanism: hadronic or re-acceleration

Radio relics Radio halos Conclusions

Outline

Introduction

- Modelled physics
- Structure formation
- Non-thermal signatures

2 Major challenges

- Physics
- Radio relics
- Radio halos

3 Cosmological simulations

- Radio relics
- Radio halos
- Conclusions

AIP

(1) 王

< 17 ▶

Radio relics Radio halos Conclusions

Radio relics – great tools for studying shock physics

van Weeren+ (2010)

- trace shocks in cluster outskirts
- spectral index: shock Mach number → projection?
- spectral ageing: B-field strength → reacceleration?
- polarization: B-field orientation

Radio relics Radio halos Conclusions

Biggest unknown: shock acceleration efficiency

- merging shocks dominated by low Mach number shocks
- these shocks have low acceleration efficiencies

Radio relics Radio halos Conclusions

Biggest unknown: shock acceleration efficiency

- merging shocks dominated by low Mach number shocks
- these shocks have low acceleration efficiencies

 → electron preheating via shock-drift/-surfing acceleration at
 weak perpendicular shocks possible (Guo+ 2014, Park+ 2015)

Radio relics Radio halos Conclusions

A poster child: A2256

AIP

Radio relics Radio halos Conclusions

Build-up of the fossil electron distribution

Strong structure formation shocks during the era of cluster formation

Radio relics Radio halos Conclusions

Electron cooling times

Christoph Pfrommer Cosmological simulations of clusters

Radio relics Radio halos Conclusions

Build-up of the fossil electron distribution

Strong structure formation shocks during the era of cluster formation

Radio relics Radio halos Conclusions

Build-up of the fossil electron distribution

Strong structure formation shocks during the era of cluster formation

Christoph Pfrommer Cosmological simulations of clusters

Radio relics Radio halos Conclusions

Build-up of the fossil electron distribution

Strong structure formation shocks during the era of cluster formation

Radio relics Radio halos Conclusions

Illuminating radio relics Re-acceleration of fossil electrons vs. primary acceleration

Christoph Pfrommer Cosmological simulations of clusters

Radio relics Radio halos Conclusions

Illuminating radio relics Re-acceleration of fossil electrons vs. primary acceleration

Radio relics Radio halos Conclusions

Illuminating radio relics Re-acceleration of fossil electrons vs. primary acceleration

Christoph Pfrommer Cosmological simulations of clusters

Radio relics Radio halos Conclusions

Time evolution of the fossil electron distribution

Christoph Pfrommer

AIP

Radio relics Radio halos Conclusions

Fossil CR electron population

Christoph Pfrommer

Cosmological simulations of clusters

Radio relics Radio halos Conclusions

Direct acceleration vs. Fermi-I re-acceleration

Pinzke, Oh, C.P. (2013)

the bottom line:

- $\bullet\,$ fossil contribution comparable to direct injection at high ${\cal M}\,$
- $\bullet~$ fossils dominate at low ${\cal M}$

Radio relics Radio halos Conclusions

 \rightarrow the relic luminosity function:

depends on the Mach number dis-

tribution and the $\mathcal{M} - P_{14}$ relation!

 $n(>P_{1.4}) =$

dn

 $\overline{\mathrm{d}P_1}_4$

 $\mathrm{d}P_{1.4} \, \frac{\mathrm{d}n}{\mathrm{d}P_{1.4}}$

 $\frac{\mathrm{d}n}{\mathrm{d}\mathcal{M}}\frac{\mathrm{d}\mathcal{M}}{\mathrm{d}P_{1.4}}$

Radio relics - the future

bright prospects for LOFAR:

- Fermi-I reacceleration predicts a few 1000 radio relics per Gpc³
- direct injection predicts a few 100 luminous radio relics

Radio relics Radio halos Conclusions

Radio vs. X-ray luminosity – two radio populations

Radio relics Radio halos Conclusions

Radio luminosity - X-ray luminosity

Radio relics Radio halos Conclusions

Radio luminosity - X-ray luminosity

Radio relics Radio halos Conclusions

Radio halo theory – (i) hadronic model

$$p_{\mathsf{CR}} + p
ightarrow \pi^{\pm}
ightarrow e^{\pm}$$

< 🗇 🕨

strength:

- all required ingredients available: shocks to inject CRp, gas protons as targets, magnetic fields
- predicted luminosities and overall morphologies match observations without tuning

Radio relics Radio halos Conclusions

Observation – simulation of A2256

Christoph Pfrommer Cosmological simulations of clusters

Radio relics Radio halos Conclusions

Radio halo theory – (i) hadronic model

$$p_{\mathsf{CR}} + p
ightarrow \pi^{\pm}
ightarrow e^{\pm}$$

イロト イポト イヨト イヨト

strength:

- all required ingredients available: shocks to inject CRp, gas protons as targets, magnetic fields
- predicted luminosities and overall morphologies match observations without tuning

weakness:

- all clusters should have radio halos
 → putative solution: super-Alfvénic CR streaming (Enßlin+ 2011, Wiener+ 2013)
- does not explain spectral curvature and steep-spectrum sources \rightarrow putative sol.'n: energy-dependent CR diffusion (EnBlin+ 2011, Wiener+ 2013)

requires increasing CR pressure toward the outskirts of Coma (Brunetti+ 2013, Zandanel+ 2014)

Radio relics Radio halos Conclusions

Coma radio halo: surface brightness profile Challenging the hadronic model with extended radio halo profiles?

Christoph Pfrommer Cosmological simulations of clusters

Radio relics Radio halos Conclusions

Radio halo theory – (ii) re-acceleration model

strength:

- all required ingredients available: radio galaxies & relics to inject CRe, plasma waves to re-accelerate, ...
- reported complex radio spectra emerge naturally
- clusters without halos \leftarrow less turbulent

< 🗇 🕨

Radio relics Radio halos Conclusions

Coma radio halo: re-acceleration model

Good fit to profile and spectrum, but many free parameters and assumptions!

Radio relics Radio halos Conclusions

Rise and fall of re-accelerated radio halos

X-ray/radio surface brightness

radio spectrum

colour: X-rays, contours: radio (Donnert+ 2013)

radio spectral evolution (Donnert+ 2013)

 first idealized merger simulation that demonstrated the success of the re-acceleration model

Radio relics Radio halos Conclusions

Radio halo theory – (ii) re-acceleration model

strength:

- all required ingredients available: radio galaxies & relics to inject CRe, plasma waves to re-accelerate, ...
- reported complex radio spectra emerge naturally
- clusters without halos \leftarrow less turbulent

weakness:

- Fermi II acceleration is inefficient and scales as (v/c)² comparably flat turbulent (Kraichnan) spectrum required
- CRe cool rapidly: seed population for re-acceleration?

イロト 不得 とくほ とくほう

Radio relics Radio halos Conclusions

The physics of turbulent re-acceleration

compressible turbulence can energize particles via gyroresonant interactions

 $\omega - \mathbf{k}_{\parallel} \mathbf{v}_{\parallel} = \mathbf{n} \Omega / \gamma, \qquad \mathbf{n} = \pm 1, \pm 2, \dots$

wave vector k_{\parallel} and particle velocity v_{\parallel} are parallel to *B* and $\Omega = eB/me$

Radio relics Radio halos Conclusions

The physics of turbulent re-acceleration

compressible turbulence can energize particles via gyroresonant interactions

 $\omega - \mathbf{k}_{\parallel} \mathbf{v}_{\parallel} = \mathbf{n} \Omega / \gamma, \qquad \mathbf{n} = \pm 1, \pm 2, \dots$

wave vector k_{\parallel} and particle velocity v_{\parallel} are parallel to *B* and $\Omega = eB/me$

• transit time damping (n = 0):

 $m{v}_{\parallel}=\omega/k_{\parallel}=m{v}_{
m ph,\parallel}\simm{c}_{
m s}$

 \rightarrow only *large* pitch-angle CRs can "surf the waves"

Radio relics Radio halos Conclusions

The physics of turbulent re-acceleration

• compressible turbulence can energize particles via gyroresonant interactions

 $\omega - \mathbf{k}_{\parallel} \mathbf{v}_{\parallel} = \mathbf{n} \Omega / \gamma, \qquad \mathbf{n} = \pm 1, \pm 2, \dots$

wave vector k_{\parallel} and particle velocity v_{\parallel} are parallel to *B* and $\Omega = eB/me$

• transit time damping (n = 0):

 $m{v}_{\parallel}=\omega/m{k}_{\parallel}=m{v}_{
m ph,\parallel}\simm{c}_{
m s}$

 \rightarrow only *large* pitch-angle CRs can "surf the waves"

- only a fraction of c_s/c ~ 0.3% goes into CRs, most energy ends up in thermal electrons
- mechanism: magnetic moment of CRs resonates with the time-varying magnetic field (from the fast modes)

Radio relics Radio halos Conclusions

Turbulent re-acceleration: spectral evolution

Radio relics Radio halos Conclusions

But the re-acceleration model has a missing link

... it needs seed electrons, which have never been calculated

population of seed electrons

Radio halos

\rightarrow integrate Fokker-Planck equation to follow momentum diffusion in a cosmological simulation with CR proton/electron physics:

PCR Ma

0 x [h⁻¹ Mpc] $P_{\rm CB}$ in a cosmological zoom simulation of a galaxy cluster (C.P.+ 2008)

10 15

Method

y [h⁻¹ Mpc]

-15 -10 -5

$$\begin{split} \frac{df_{e}(p,t)}{dt} &= \frac{\partial}{\partial p} \left\{ f_{e}(p,t) \left[\left| \frac{dp}{dt} \right|_{C} + \frac{p}{3} \left(\vec{\nabla} \cdot \vec{v} \right) \right. \right. \\ &+ \left| \frac{dp}{dt} \right|_{r} - \frac{1}{p^{2}} \frac{\partial}{\partial p} \left(p^{2} D_{pp} \right) \right] \right\} - \left(\vec{\nabla} \cdot \vec{v} \right) f_{e}(p,t) \\ &+ \frac{\partial^{2}}{\partial p^{2}} \left[D_{pp} f_{e}(p,t) \right] + Q_{e} \left[p, t; f_{p}(p,t) \right] \end{split}$$

$$D_{pp}(p,t) = \frac{\pi}{16} \frac{p^2}{c \rho} \left\langle \frac{\beta |B_k|^2}{16 \pi W} \right\rangle I_{\theta} \int_{k_{\text{out}}} \mathcal{W}(k) k \, dk,$$
$$\mathcal{W}(k) = \sqrt{2/7 \, I_0 \, \rho \, \langle V_{\text{ph}} \rangle} \, k^{-3/2}$$

AIP

Radio relics Radio halos Conclusions

Coma radio halo: multifrequency profiles

even idealized models (Brunetti+ 2013) have problems:

 \rightarrow spectral steepening with radius seen in observations not reproduced with models

Pinzke, Oh, C.P. (2017)

possibilities:

- 1.4 GHz zero-point too high
- observed *B*-field profile wrong
- new plasma physics

 \rightarrow can we match the more reliable 352 MHz data? (Brown & Rudnick 2011)

Radio relics Radio halos Conclusions

Solution I: changing the turbulent profile

note: in practice we have to separate compressible turbulence from bulk motions!

Christoph Pfrommer Cosmological simulations of clusters

Radio relics Radio halos Conclusions

Solution II: cosmic-ray streaming

Pinzke, Oh, C.P. (2017)

note: in practice we have to simultaneously simulate cosmic-ray streaming and turbulent re-acceleration!

Radio relics Radio halos Conclusions

Solution III: primary fossil electrons as seeds Need high electron acceleration efficiency

recent plasma simulations with PIC codes ...

• ... find electrons efficiently accelerated in perpendicular shocks

(Guo, Sironi, Narayan 2015)

 ...find ions efficiently accelerated in parallel shocks (Caprioli & Spitkovsky 2014)

Pinzke, Oh, C.P. (2017)

Radio relics Radio halos Conclusions

Coma radio spectrum

- all 3 models match the observed radio spectrum
- pure hadronic model fails (only DSA, no turbulent re-acceleration)

Radio halos

How can we disentangle our models?

Gamma-ray observations by Fermi-LAT are the key

Fermi-LAT can probe M-streaming and M-turbulence in near future!

Christoph Pfrommer Cosmological simulations of clusters

Radio relics Radio halos Conclusions

MERGHERS Meerkat Extended Relics, Giant Halos, and Extragalactic Radio Sources survey

Cosmological shocks, C.P.+ (2008)

Statistical diffuse radio emission survey of few hundred SZ-selected galaxy clusters (PI Knowles)

Key questions:

- cosmological evolution
- formation impact of cluster mass/merger properties
- cosmic ray transport & (re-)energising mechanisms
- lots of other radio science (AGN, BCGs, radio galaxies, ...)

Christoph Pfrommer

Cosmological simulations of clusters

Radio relics Radio halos Conclusions

Conclusions on radio halos and relics

- **halos:** producing seed electrons for turbulent reacceleration require modifications to the standard picture:
 - flatter turbulent profile
 - CR streaming
 - high CRe/p injection
- relics: fossil electrons could allow radio relics to be seen at low Mach numbers

Introduction Major challenges Cosmological simulations Radio relics Radio halos Conclusions

CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtioN

Christoph Pfrommer

Cosmological simulations of clusters