Non-thermal processes in galaxy clusters (1)

Christoph Pfrommer

Canadian Institute for Theoretical Astrophysics, Canada

August 2008, Cosmology with the CMB and LSS, Pune

Plan of the lectures

- Thermal plasma in clusters: simulations, observables
- Cosmic rays: acceleration, transport, cooling
- Magnetic fields: generation, transport, MHD turbulence
- Non-thermal radiative processes in clusters

Emphasis on theory, simulations with a connection to observations.

www.cita.utoronto.ca/~pfrommer/Talks

Outline

Thermal plasma in galaxy clusters

- Introduction and simulations
- Structure formation shock waves
- Thermal cluster observables

2 Cosmic rays in galaxy clusters

- Cosmic ray physics
- Simulating cosmic rays
- Particle acceleration processes

Thermal plasma in galaxy clusters

Cosmic rays in galaxy clusters

Introduction and simulations Structure formation shock waves Thermal cluster observables

Outline

Thermal plasma in galaxy clustersIntroduction and simulations

- Structure formation shock waves
- Thermal cluster observables
- 2 Cosmic rays in galaxy clusters
 - Cosmic ray physics
 - Simulating cosmic rays
 - Particle acceleration processes

Dynamical picture of cluster formation

- structure formation in the ACDM universe predicts the hierarchical build-up of dark matter halos from small scales to successively larger scales
- clusters of galaxies currently sit atop this hierarchy as the largest objects that have had time to collapse under the influence of their own gravity
- cluster are dynamically evolving systems that have not finished forming and equilibrating, $\tau_{\rm dyn} \sim 1~{\rm Gyr}$

 \rightarrow two extreme dynamical states of galaxy clusters: **merging clusters** and **cool core clusters**, which are relaxed systems where the central gas develops a dense cooling core due to the short thermal cooling times

Introduction and simulations Structure formation shock waves Thermal cluster observables

A theorist's perspective of a galaxy cluster ...

Galaxy clusters are dynamically evolving dark matter potential wells:

< < > < < > <

Introduction and simulations Structure formation shock waves Thermal cluster observables

... and how the observer's Universe looks like

1E 0657-56 ("Bullet cluster")

(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl; Magellan/U.Arizona/D.Clowe et al.; Lensing: NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)

Abell 3667

(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)

< □ > < 同 > < 三 > <

Christoph Pfrommer

Non-thermal processes (1)

Numerically modeling clusters – Dark matter (DM)

 Non-interacting DM is described by the collisionless Boltzmann equation coupled to the Poisson equation in an expanding background Universe:

$$\frac{\mathrm{d}}{\mathrm{d}t}f(\mathbf{r},\mathbf{v},t) \equiv \dot{f} + (\mathbf{v}\nabla)f - \nabla\Phi\nabla_{\mathbf{v}}f = 0,$$

$$\nabla^{2}\Phi(\mathbf{r},t) = 4\pi G \int f(\mathbf{r},\mathbf{v},t)\mathrm{d}\mathbf{v},$$

 $f(\mathbf{r}, \mathbf{v}, t)$ denotes the distribution function in phase space.

 N-body simulations are particularly suited to solve these equations since phase space density is sampled by a large number N of tracer particles which are integrated along characteristic curves of the collisionless Boltzmann equation. The accuracy of this approach depends on a sufficiently high number of particles.

Numerically modeling clusters – Dark matter (DM)

 Non-interacting DM is described by the collisionless Boltzmann equation coupled to the Poisson equation in an expanding background Universe:

$$\frac{\mathrm{d}}{\mathrm{d}t} f(\mathbf{r}, \mathbf{v}, t) \equiv \dot{f} + (\mathbf{v}\nabla)f - \nabla\Phi\nabla_{\mathbf{v}}f = 0,$$

$$\nabla^{2}\Phi(\mathbf{r}, t) = 4\pi G \int f(\mathbf{r}, \mathbf{v}, t)\mathrm{d}\mathbf{v},$$

 $f(\mathbf{r}, \mathbf{v}, t)$ denotes the distribution function in phase space.

• *N-body simulations* are particularly suited to solve these equations since phase space density is sampled by a large number *N* of tracer particles which are integrated along characteristic curves of the collisionless Boltzmann equation. The accuracy of this approach depends on a sufficiently high number of particles.

A B > A
 B > A
 B
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A

Numerically modeling clusters – gas (1)

WMAP-5y: $\frac{\Omega_b}{\Omega_m} = 0.165$: why bothering about the gas?

- Gas has different dynamics compared to collisionless fluid:
 - Gas can shock and convert bulk kinetic energy into thermal energy.
 - Gas pressure is isotropic; hence gas can not have anisotropic support.
 - Gas flows can not interpenetrate.
- Gas can cool or heat through radiative processes.
- We observe gas directly!

 \rightarrow In the simplest form, the intra-cluster medium (ICM) is modeled as an ideal inviscid gas which is coupled to dark matter through its gravitational interaction.

Numerically modeling clusters – gas (2)

• The hydrodynamics of the gas is governed by the continuity equation (mass conservation), the Euler equation (momentum conservation), and the conservation equation for the thermal energy *u*:

$$\begin{aligned} \frac{\mathrm{d}\rho}{\mathrm{d}t} + \rho \nabla \mathbf{v} &= \mathbf{0}, \\ \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} &= -\frac{\nabla P}{\rho} - \nabla \Phi, \\ \frac{\mathrm{d}u}{\mathrm{d}t} &= -\frac{P}{\rho} \nabla \mathbf{v} - \frac{\Lambda(u,\rho)}{\rho}, \qquad \text{and } \frac{\mathrm{d}}{\mathrm{d}t} \equiv \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla \\ \Lambda(u,\rho) \text{ describes external sinks or sources of heat for the gas.} \end{aligned}$$

• The equation of state and the Poisson equation close the above system of coupled differential equations: $P = (\gamma - 1)\rho u$, $\nabla^2 \Phi = 4\pi G \rho_{\text{tot}}$.

Numerically modeling clusters – gas (2)

• The hydrodynamics of the gas is governed by the continuity equation (mass conservation), the Euler equation (momentum conservation), and the conservation equation for the thermal energy *u*:

$$\begin{split} & \frac{\mathrm{d}\rho}{\mathrm{d}t} + \rho \nabla \mathbf{v} = \mathbf{0}, \\ & \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = -\frac{\nabla P}{\rho} - \nabla \Phi, \\ & \frac{\mathrm{d}u}{\mathrm{d}t} = -\frac{P}{\rho} \nabla \mathbf{v} - \frac{\Lambda(u,\rho)}{\rho}, \\ & \text{and } \frac{\mathrm{d}}{\mathrm{d}t} \equiv \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla \\ & \Lambda(u,\rho) \text{ describes external sinks or sources of heat for the gas.} \end{split}$$

The equation of state and the Poisson equation close the above system of coupled differential equations:
 P = (γ − 1)ρu,
 ∇²Φ = 4πGρ_{tot}.

Numerically modeling clusters – gas (3)

- Cluster are dynamically evolving, non-linear objects → requires 3D simulations of the hydrodynamics coupled with N-body techniques for the DM.
- Numerical discretization requires compromises to solve for the hydrodynamics:

1) Discretizing space to calculate fluid properties on regular grid of points using finite differences \rightarrow Eulerian approach: adaptive mesh refinement (AMR) simulations

2) Discretizing mass to model the fluid as a collection of fluid elements represented by N particles \rightarrow Lagrangian approach: smoothed particle hydrodynamics (SPH) simulations

- Each method has its drawbacks and limitations → choose the better suited method for the problem under consideration!
- None of these methods is 'better' or superior over the other!

Introduction and simulations Structure formation shock waves Thermal cluster observables

Outline

- Introduction and simulations
- Structure formation shock waves
- Thermal cluster observables
- 2 Cosmic rays in galaxy clusters
 - Cosmic ray physics
 - Simulating cosmic rays
 - Particle acceleration processes

Introduction and simulations Structure formation shock waves Thermal cluster observables

Gravitational heating by shocks

The "cosmic web" today. *Left:* the projected gas density in a cosmological simulation. *Right:* gravitationally heated intra-cluster medium through cosmological shock waves.

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction and simulations Structure formation shock waves Thermal cluster observables

Cosmological Mach numbers: weighted by *e*diss

Christoph Pfrommer Non-thermal processes (1)

Introduction and simulations Structure formation shock waves Thermal cluster observables

Volume rendered shock surfaces

Introduction and simulations Structure formation shock waves Thermal cluster observables

Cosmological Mach number statistics

- more energy is dissipated in weak shocks internal to collapsed structures than in external strong shocks
- more energy is dissipated at later times
- mean Mach number decreases with time

Introduction and simulations Structure formation shock waves Thermal cluster observables

Cosmological statistics: influence of reionization

- re-ionisation epoch at z_{reion} = 10 suppresses efficiently strong shocks at z < z_{reion} due to jump in sound velocity
- cosmological constant causes structure formation to cease

< • • • • •

Introduction and simulations Structure formation shock waves Thermal cluster observables

Outline

Thermal plasma in galaxy clusters

- Introduction and simulations
- Structure formation shock waves
- Thermal cluster observables

Cosmic rays in galaxy clusters

- Cosmic ray physics
- Simulating cosmic rays
- Particle acceleration processes

Introduction and simulations Structure formation shock waves Thermal cluster observables

Radiative processes in simulations – flowchart

loss processes gain processes observables populations

イロン イロン イヨン イヨン

Introduction and simulations Structure formation shock waves Thermal cluster observables

Cluster scaling relations

- Observable-mass relations are one of the key ingredients for deriving cosmological constraints using upcoming large cluster surveys.
- X-ray and SZE observable-mass relations ($\Delta = 200$):

$$\begin{split} T_{\text{gas}} &\propto & M_{\Delta}/R_{\Delta} \propto M_{\Delta}^{2/3} \, E(z)^{2/3}, \\ SZ \ \text{flux} &\propto & \int P_{\text{gas}} \, \text{d} I \, \text{d} \Omega \propto f_{\text{gas}} \, M_{\Delta}^{5/3} \, E(z)^{-2/3}, \end{split}$$

using $M_{\Delta} \equiv (4\pi/3) R_{\Delta}^3 \Delta
ho_{
m crit}(z), \, E(z) \equiv H(z)/H_0$

Questions:

How does galaxy formation affect global cluster properties? How do simulations compare to observations?

Introduction and simulations Structure formation shock waves Thermal cluster observables

Chandra mock observations

- Generate 'Chandra data' for clusters from high-resolution simulations and reduce with real data analysis pipeline (Rasia et al. 2005, Nagai et al. 2006)
- Results:
 - ightarrow hydrostatic mass biased low at R_{500} due to turbulent pressure
 - \rightarrow temperatures accurate to $\sim 10\%$

unrelaxed versus relaxed cluster (Nagai, Kravtsov, & Vikhlinin 2006)

Christoph Pfrommer

Non-thermal processes (1)

Introduction and simulations Structure formation shock waves Thermal cluster observables

Profiles of the intra-cluster medium

- red line: mean profile for relaxed clusters in non-radiative simulations
- blue band: mean profile for relaxed clusters in simulations with cooling and star formation
- thin dashed lines: profiles of Chandra clusters of different temperatures

(Nagai, Kravtsov, & Vikhlinin 2006)

Thermal plasma in galaxy clusters

Cosmic rays in galaxy clusters

Introduction and simulations Structure formation shock waves Thermal cluster observables

X-ray scaling relations

Scatter in $M - T_X$ is ~ 20% in mass at a given T_X (driven by unrelaxed systems).

Scatter in $M - Y_X$ is $\sim 8\% \rightarrow$ why is there an anti-correlation between $M_{gas,500}$ and T_X ?

イロン イロン イヨン イヨン

Introduction and simulations Structure formation shock waves Thermal cluster observables

Problems

Current Lagrangian (SPH) as well as Adaptive Eulerian (AMR) approaches face the same problems \rightarrow lack of our physical understanding

- over-cooled cluster core regions out to $r \simeq 0.2 R_{200}$
- too numerous gaseous substructures
- external regions: non-thermal pressure support (CRs, turbulence)
- influence of the clusters dynamical state on the scaling properties (especially the nature of the scatter)

Cluster self-calibration in its most general approach won't allow us to improve on statistical uncertainties of cosmological parameters.

Introduction and simulations Structure formation shock waves Thermal cluster observables

Solution

Hybrid self-calibration:

- Combining thermal and non-thermal observables simultaneously in observation space to solve for the virial mass.
- Imposing Bayesian priors on the functional properties of the scaling relations and the non-cosmological redshift evolution derived from hydrodynamical simulations.

 \rightarrow cosmological motivation to study and understand feedback processes

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Outline

- Thermal plasma in galaxy clusters
 - Introduction and simulations
 - Structure formation shock waves
 - Thermal cluster observables

2 Cosmic rays in galaxy clusters

- Cosmic ray physics
- Simulating cosmic rays
- Particle acceleration processes

Why should we care about cosmic rays in clusters? It allows us to explore complementary windows to cluster cosmology

- Is high-precision cosmology possible using clusters?
 - Non-equilibrium processes such as cosmic ray pressure and turbulence possibly modify thermal X-ray emission and Sunyaev-Zel'dovich effect.
 - Cosmic ray pressure can modify the scaling relations → bias of cosmological parameters, or increase of the uncertainties if we marginalize over the 'unknown cluster physics' (cluster self-calibration)

What can we learn from non-thermal cluster emission?

- Estimating the cosmic ray pressure contribution.
- Constructing a 'gold sample' for cosmology using orthogonal information on the dynamical cluster activity.
- Fundamental physics: diffusive shock acceleration, large scale magnetic fields, and turbulence.

Why should we care about cosmic rays in clusters? It allows us to explore complementary windows to cluster cosmology

- Is high-precision cosmology possible using clusters?
 - Non-equilibrium processes such as cosmic ray pressure and turbulence possibly modify thermal X-ray emission and Sunyaev-Zel'dovich effect.
 - Cosmic ray pressure can modify the scaling relations → bias of cosmological parameters, or increase of the uncertainties if we marginalize over the 'unknown cluster physics' (cluster self-calibration)

What can we learn from non-thermal cluster emission?

- Estimating the cosmic ray pressure contribution.
- Constructing a 'gold sample' for cosmology using orthogonal information on the dynamical cluster activity.
- Fundamental physics: diffusive shock acceleration, large scale magnetic fields, and turbulence.

Quasilinear theory for cosmic ray transport (1)

Starting point: relativistic Vlasov equation for a particle population described by its distribution function, $f(t, \mathbf{x}, \mathbf{p})$ and the equations of motion:

$$\begin{split} &\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \nabla f + \dot{\boldsymbol{p}} \cdot \nabla_{\boldsymbol{p}} t = \boldsymbol{s}(t, \boldsymbol{x}, \boldsymbol{p}), \\ &\dot{\boldsymbol{p}} = q \left[\boldsymbol{E}(\boldsymbol{x}, t) + \frac{\boldsymbol{v}}{c} \times \boldsymbol{B}(\boldsymbol{x}, t) \right], \\ &\dot{\boldsymbol{x}} = \boldsymbol{v} = \frac{\boldsymbol{p}}{\gamma m}, \end{split}$$

s denotes sources/sinks of particles.

 \rightarrow particles in a collisionless plasma interact with collective electromagnetic forces and waves!

Image: A matrix

Quasilinear theory for cosmic ray transport (2)

Fokker-Planck equation describes the transport of the isotropic part of the comic ray distribution F(x, p, t), assuming weak anisotropy:

$$\frac{\partial}{\partial t}F - s(x, p, t) = \frac{\partial}{\partial z} \left[D_{\parallel}(x, p) \frac{\partial}{\partial x}F - uF \right] - \frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \Gamma(x, p) \frac{\partial}{\partial p}F + \frac{p^3}{3} \frac{\partial u}{\partial x}F - p^2 \dot{p} F \right] - \frac{F}{T_0}$$

rhs: spatial diffusion and advection, momentum diffusion (Fermi II), momentum advection (Fermi I), continuous and catastrophic loss processes.

def: *x* along the mean magnetic field, u = u(x, p, t) is the CR bulk speed, D_{\parallel} and Γ are the spatial/momentum diffusion coefficients.

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

CR protons vs. CR electrons

CR protons:

- acceleration by shocks, MHD wave interactions
- can potentially provide substantial pressure support → hydrodynamic interaction with gas, modified shocks
- radiative losses negligible suppressed by $(m_e/m_p)^2$,
- $\bullet~$ Coulomb/MHD wave interactions $\rightarrow~$ modifies thermal gas content

CR electrons:

- acceleration by shocks, MHD wave interactions, hadronic injection
- negligible pressure support
- radiative losses important: we can observe them!

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Cooling time scales of CR electrons

э

Equilibrium distribution of CR electrons

- CR electron injection balances IC/synchrotron cooling: $\frac{\partial}{\partial E_{e}} \left[\dot{E}_{e}(E_{e}) f_{e}(E_{e}) \right] = s_{e}(E_{e}).$
- For $\dot{E}_{e}(p) < 0$, this equation is solved by $f_{e}(E_{e}) = \frac{1}{|\dot{E}_{e}(E_{e})|} \int_{E_{e}}^{\infty} dE'_{e}s_{e}(E'_{e}).$
- At high energies, IC/synchrotron losses dominate:

$$-\dot{E}_{
m e}(E_{
m e}) = rac{4\,\sigma_{
m T}\,c}{3\,m_{
m e}^2\,c^4}\left[arepsilon_{B}+arepsilon_{
m ph}
ight]\,E_{
m e}^2.$$

 CR electrons can either be produced by structure formation shocks, or in hadronic CR proton interactions
 → source function s_e.

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Synchrotron versus IC emissivity

IC cooling regime: leftwards of $B_{CMB} \simeq 3.2 (1 + z)^2 \mu G$, synchrotron cooling regime: rightwards of B_{CMB} .
Cosmic ray physics Simulating cosmic rays Particle acceleration processes

CR electron versus CR proton pressure

Relative pressure of primary CR electrons.

Relative pressure of CR protons.

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Primary versus secondary CR electrons

Relative pressure of primary CR electrons.

Rel. pressure of secondary CR electrons.

CITA-ICAT

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Outline

- Thermal plasma in galaxy clusters
 - Introduction and simulations
 - Structure formation shock waves
 - Thermal cluster observables

2 Cosmic rays in galaxy clusters

- Cosmic ray physics
- Simulating cosmic rays
- Particle acceleration processes

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Radiative simulations – flowchart

イロン イロン イヨン イヨン

Radiative simulations with cosmic ray (CR) physics

Radiative simulations with extended CR physics

Philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as necessary

Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

Philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as necessary

Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

Philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as necessary

Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

CR spectral description

$$f(p) = rac{dN}{dp\,dV} = C\,p^{-lpha} heta(p-q)$$

$$egin{aligned} q(
ho) &= \left(rac{
ho}{
ho_0}
ight)^rac{1}{3} q_0 \ C(
ho) &= \left(rac{
ho}{
ho_0}
ight)^rac{lpha+2}{3} C_0 \end{aligned}$$

$$n_{\rm CR} = \int_0^\infty \mathrm{d}p \, f(p) = \frac{C \, q^{1-\alpha}}{\alpha-1}$$

$$p=P_{
m p}/m_{
m p}\,c$$

$${\cal P}_{
m CR}=rac{m_{
m p}c^2}{3}\int_0^\infty\!{
m d}p\,f(p)\,eta(p)\,p$$

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

★ E → ★ E →

$$= \frac{C m_{\rm p} c^2}{6} \mathcal{B}_{\frac{1}{1+q^2}}\left(\frac{\alpha-2}{2}, \frac{3-\alpha}{2}\right)$$

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Thermal & CR energy spectra

Kinetic energy per logarithmic momentum interval:

▶ < ⊒ >

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Cooling time scales of CR protons

Cooling of primordial gas:

Cooling of cosmic rays:

≣ ► < ≣ →

Radiative simulations with CR physics

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Radiative cool core cluster simulation: gas density

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

CITA-ICAT

Mass weighted temperature

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Mach number distribution weighted by ε_{diss}

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Mach number distribution weighted by *creation*

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Mach number distribution weighted by $\varepsilon_{CR,inj}(q > 30)$

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

CITA-ICAT

CR pressure P_{CR}

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Relative CR pressure P_{CR}/P_{total}

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Relative CR pressure P_{CR}/P_{total}

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

CR phase-space diagram: final distribution @ z = 0

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Outline

- Thermal plasma in galaxy clusters
 - Introduction and simulations
 - Structure formation shock waves
 - Thermal cluster observables

2 Cosmic rays in galaxy clusters

- Cosmic ray physics
- Simulating cosmic rays
- Particle acceleration processes

Particle acceleration processes

particles are accelerated via:

- adiabatic compression
- diffusive shock acceleration (Fermi I)
- stochastic acceleration by plasma waves (Fermi II)
- particle reactions (pp $\rightarrow \pi \rightarrow \mu \nu \rightarrow e \nu \nu$)

particles are decelerated via:

- adiabatic expansion
- radiative cooling (synchrotron, inverse Compton, bremsstrahlung, hadronic interactions)
- non-radiative cooling (Coulomb interactions)

イロト イポト イヨト イヨト

Particle acceleration processes

particles are accelerated via:

- adiabatic compression
- diffusive shock acceleration (Fermi I)
- stochastic acceleration by plasma waves (Fermi II)
- particle reactions (pp $\rightarrow \pi \rightarrow \mu \nu \rightarrow e \nu \nu$)

particles are decelerated via:

- adiabatic expansion
- radiative cooling (synchrotron, inverse Compton, bremsstrahlung, hadronic interactions)
- non-radiative cooling (Coulomb interactions)

イロト イポト イヨト イヨト

Diffusive shock acceleration – Fermi 1 mechanism (1)

conditions:

- a collisionless shock wave
- magnetic fields to confine energetic particles
- $\bullet\,$ plasma waves to scatter energetic particles \rightarrow particle diffusion
- supra-thermal particles

mechanism:

- supra-thermal particles diffuse upstream across shock wave
- each shock crossing energizes particles through momentum transfer from recoil-free scattering off the macroscopic scattering agents
- momentum increases exponential with number of shock crossings
- number of particles decreases exponential with number of crossings
- → power-law CR distribution

→ E → < E →</p>

Diffusive shock acceleration – Fermi 1 mechanism (1)

conditions:

- a collisionless shock wave
- magnetic fields to confine energetic particles
- $\bullet\,$ plasma waves to scatter energetic particles \rightarrow particle diffusion
- supra-thermal particles

mechanism:

- supra-thermal particles diffuse upstream across shock wave
- each shock crossing energizes particles through momentum transfer from recoil-free scattering off the macroscopic scattering agents
- momentum increases exponential with number of shock crossings
- number of particles decreases exponential with number of crossings
- \rightarrow power-law CR distribution

Diffusive shock acceleration – Fermi 1 mechanism (2)

Spectral index depends on the Mach number of the shock, $\mathcal{M} = v_{shock}/c_s$:

Diffusive shock acceleration – efficiency (3)

CR proton energy injection efficiency, $\zeta_{inj} = \varepsilon_{CR} / \varepsilon_{diss}$:

CITA-ICAT

Christoph Pfrommer Non-therr

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Radiative cool core cluster simulation: gas density

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Cosmic web: Mach number

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Radio web: primary CRe (1.4 GHz)

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Radio web: primary CRe (150 MHz)

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

CITA-ICAT

Radio web: primary CRe (15 MHz)

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Radio web: primary CRe (15 MHz), slower magnetic decline

Christoph Pfrommer Non-thermal processes (1)

CITA-ICAT

Stochastic acceleration: recipe (1)

conditions:

- super-thermal or better relativistic particles
- magnetic fields to confine them
- high level of plasma waves to scatter them via gyro-resonances

mechanism:

- head on wave-particle collision energises particle
- tail on wave-particle collision de-energise particle
- statistically more head-on than tail-on collisions

 \rightarrow net energy gain due to diffusion in momentum space advantage: plasma waves are everywhere!

(신문) (신문)
Stochastic acceleration: recipe (1)

conditions:

- super-thermal or better relativistic particles
- magnetic fields to confine them
- high level of plasma waves to scatter them via gyro-resonances

mechanism:

- head on wave-particle collision energises particle
- tail on wave-particle collision de-energise particle
- statistically more head-on than tail-on collisions

 \rightarrow net energy gain due to diffusion in momentum space advantage: plasma waves are everywhere!

< < > < </>

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Stochastic acceleration: cartoon (2)

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Stochastic acceleration: cartoon (2)

Christoph Pfrommer Non-thermal processes (1)

CITA-ICAT

★ E → ★ E →

 $\langle \Box \rangle \langle \Box \rangle$

Stochastic acceleration: problems (3)

problems:

- low efficiency (2nd order in ratio of wave to particle velocity)
- waves like to cascade to small scales
- small-scale waves dissipate into the thermal pool
- wave energy budget is usually tight
- at locations with high wave density (e.g. shocks), more efficient acceleration mechanism may be in operation (e.g. DSA)

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Particle reactions

relativistic proton populations can often be expected, since

- acceleration mechanisms work for protons ...
 - ... as efficient as for electrons (adiabatic compression) or
 - ... more efficient than for electrons (DSA, stochastic acc.)
- galactic CR protons are observed to have 100 times higher energy density than electrons
- CR protons are very inert against radiative losses and therefore long-lived (~ Hubble time in galaxy clusters, longer outside)
- \rightarrow an energetic CR proton population should exist in clusters

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

CITA-ICAT

Hadronic cosmic ray proton interaction

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Cluster radio emission by hadronically produced CRe

Christoph Pfrommer Non-thermal processes (1)

Cosmic ray physics Simulating cosmic rays Particle acceleration processes

Thermal X-ray emission

Christoph Pfrommer Non-thermal processes (1)

Literature for the CR part of the lectures

- Pfrommer, 2008, MNRAS, 385, 1242 Simulating cosmic rays in clusters of galaxies – III. Non-thermal scaling relations and comparison to observations
- Pfrommer, Enßlin, Springel, 2008, MNRAS, 385, 1211, Simulating cosmic rays in clusters of galaxies – II. A unified scheme for radio halos and relics with predictions of the γ-ray emission
- Pfrommer, Enßlin, Springel, Jubelgas, and Dolag, 2007, MNRAS, 378, 385, Simulating cosmic rays in clusters of galaxies – I. Effects on the Sunyaev-Zel'dovich effect and the X-ray emission
- Pfrommer, Springel, Enßlin, Jubelgas 2006, MNRAS, 367, 113, Detecting shock waves in cosmological smoothed particle hydrodynamics simulations
- Enßlin, Pfrommer, Springel, and Jubelgas, 2007, A&A, 473, 41, Cosmic ray physics in calculations of cosmological structure formation
- Jubelgas, Springel, Enßlin, and Pfrommer, A&A, in print, astro-ph/0603485, Cosmic ray feedback in hydrodynamical simulations of galaxy formation

イロト イポト イヨト イヨト