Galaxy Clusters as Laboratories for Astroparticle Physics

Christoph Pfrommer¹

in collaboration with

Torsten Enßlin, Volker Springel, Anders Pinzke, Lars Bergstrom

¹Heidelberg Institute for Theoretical Studies, Germany

Sep 28, 2012 / AG 2012: Astroparticle Physics

Outline

Cosmological simulations

- Introduction
- Physics in simulations
- Cosmic rays in galaxy clusters
- 2 Non-thermal signatures
 - Overview
 - Radio emission
 - Gamma-ray emission
- 3 Dark matter signatures
 - Indirect detection
 - Boost factors
 - Constraining models

Christoph Pfrommer

4 王

ntroduction Physics in simulations Cosmic rays in galaxy clusters

Outline

Cosmological simulations

- Introduction
- Physics in simulations
- Cosmic rays in galaxy clusters
- 2 Non-thermal signatures
 - Overview
 - Radio emission
 - Gamma-ray emission
- 3 Dark matter signatures
 - Indirect detection
 - Boost factors
 - Constraining models

Introduction Physics in simulations Cosmic rays in galaxy clusters

Cluster mergers: the most energetic cosmic events

1E 0657-56 ("Bullet cluster")

(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl; Magellan/U.Arizona/D.Clowe et al.; Lensing: NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)

Abell 3667

(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.) 🤜

Christoph Pfrommer

Introduction Physics in simulations Cosmic rays in galaxy clusters

Giant radio halo in the Coma cluster

thermal X-ray emission

(Snowden/MPE/ROSAT)

radio synchrotron emission

< 🗇

(Deiss/Effelsberg)

프 🖌 🖌 프

Introduction Physics in simulations Cosmic rays in galaxy clusters

High-Energy Astrophysics in Galaxy Clusters Understanding non-thermal emission (from radio to γ-rays)

• plasma astrophysics:

- \rightarrow shock and particle acceleration
- \rightarrow large-scale magnetic fields
- \rightarrow turbulence
- structure formation and galaxy cluster cosmology:
 - \rightarrow illuminating the process of structure formation
 - \rightarrow history of individual clusters: cluster archeology
 - \rightarrow calibrating thermal cluster observables: cluster cosmology
- indirect detection of dark matter:
 - \rightarrow cosmic ray vs. DM annihilation γ -rays

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction Physics in simulations Cosmic rays in galaxy clusters

Cosmological simulations – flowchart

Introduction Physics in simulations Cosmic rays in galaxy clusters

Cosmological simulations with cosmic ray physics

Introduction Physics in simulations Cosmic rays in galaxy clusters

Cosmological simulations with cosmic ray physics

Introduction Physics in simulations Cosmic rays in galaxy clusters

Cosmological cluster simulation: gas density

Introduction Physics in simulations Cosmic rays in galaxy clusters

Mass weighted temperature

Introduction Physics in simulations Cosmic rays in galaxy clusters

Shock strengths weighted by dissipated energy

Introduction Physics in simulations Cosmic rays in galaxy clusters

Shock strengths weighted by injected CR energy

Introduction Physics in simulations Cosmic rays in galaxy clusters

Evolved CR pressure

Introduction Physics in simulations Cosmic rays in galaxy clusters

Relative CR pressure P_{CR}/P_{total}

Radio emission

Outline

- - Physics in simulations
 - Cosmic rays in galaxy clusters
- Non-thermal signatures
 - Overview
 - Radio emission
 - Gamma-ray emission
- Dark matter signatures

Christoph Pfrommer

★ Ξ > ★ Ξ >

Overview Radio emission Gamma-ray emission

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Overview Radio emission Gamma-ray emission

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

・ロト ・ 同ト ・ ヨト ・ ヨト

Overview Radio emission Gamma-ray emission

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Overview Radio emission Gamma-ray emission

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Overview Radio emission Gamma-ray emission

Structure formation shocks

Overview Radio emission Gamma-ray emission

Radio gischt: shock-accelerated CRe

Overview Radio emission Gamma-ray emission

Radio gischt + central hadronic halo = giant radio halo

Overview Radio emission Gamma-ray emission

Which one is the simulation/observation of A2256?

red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic

Christoph Pfrommer Astropa

Overview Radio emission Gamma-ray emission

Observation – simulation of A2256

red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic

∃ → < ∃</p>

Overview Radio emission Gamma-ray emission

Universal CR spectrum in clusters (Pinzke & C.P. 2010)

Normalized CR spectrum shows universal concave shape \rightarrow governed by hierarchical structure formation and the implied distribution of Mach numbers that a fluid element had to pass through in cosmic history.

Overview Radio emission Gamma-ray emission

CR proton and gamma-ray spectra (Pinzke & C.P. 2010)

Christoph Pfrommer

Overview Radio emission Gamma-ray emission

CR proton and gamma-ray spectra (Pinzke & C.P. 2010),

Christoph Pfrommer

Overview Radio emission Gamma-ray emission

CR proton and gamma-ray spectra (Pinzke & C.P. 2010)

Christoph Pfrommer

Overview Radio emission Gamma-ray emission

Hadronic gamma-ray emission, $E_{\gamma} > 100 \text{ GeV}$

Christoph Pfrommer

Overview Radio emission Gamma-ray emission

Inverse Compton emission, $E_{\rm IC} > 100 \, {\rm GeV}$

Christoph Pfrommer Astropa

Overview Radio emission Gamma-ray emission

Total gamma-ray emission, $E_{\gamma} > 100 \text{ GeV}$

Christoph Pfrommer As

Overview Radio emission Gamma-ray emission

An analytic model for the cluster gamma-ray emission Comparison: simulation vs. analytic model, $M_{vir} \simeq (10^{14}, 10^{15}) M_{\odot}$

Spatial gamma-ray emission profile

Christoph Pfrommer

 Cosmological simulations
 Overview

 Non-thermal signatures
 Radio emission

 Dark matter signatures
 Gamma-ray emission

Gamma-ray flux predictions (Pinzke, C.P., Bergström 2011)

Using CR model to predict gamma-ray emission from a sample of the brightest 107 X-ray clusters (extended HIFLUGCS)

High central target densities for pion production in *Perseus.* Brightest cluster in gamma-rays! Cosmological simulations Overview Non-thermal signatures Radio emission Dark matter signatures Gamma-ray emission

Flux predictions vs. observations (Pinzke, C.P., Bergström 2011)

Upper limits set by Fermi-LAT after \sim 18 months of operation vs. predicted gamma-ray fluxes; in the coming years we can probe the gamma-ray emission models with Fermi-LAT.

Cosmological simulations Overview Non-thermal signatures Radio emission Dark matter signatures Gamma-ray emission

Relative CR pressure constraints (Pinzke, C.P., Bergström 2011)

The best limits on relative CR pressure $X_{CR} = P_{CR}/P_{th}$ are derived for Norma, Coma, Ophiuchus, A2319 (and Virgo) of the order of a few percent, with typical limits around 10%.

Overview Radio emission Gamma-ray emission

Perseus cluster observations by MAGIC

Magic - Imaging Air Cerenkov Telescope Observation time: 85 h (effective hours); *deepest observation of a cluster ever* Flux upper limits: 1.4×10^{-13} [ph cm⁻² s⁻¹] for Γ =-2.2 (E > 1 TeV) Aleksic et al. 2012; Aleksic et al. 2010

Overview Radio emission Gamma-ray emission

Perseus cluster observations by MAGIC

Magic - Imaging Air Cerenkov Telescope *Observation time*: 85 h (effective hours); *deepest observation of a cluster ever Flux upper limits*: 1.4×10^{-13} [ph cm⁻² s⁻¹] for Γ =-2.2 (E > 1 TeV) *Aleksic et al.* 2012; *Aleksic et al.* 2010

Constraining the average cosmic rayto-thermal pressure to < 1.7% for the entire cluster

Overview Radio emission Gamma-ray emission

Conclusions on high-energy astrophysics in clusters Exploring the memory of structure formation

- primary, shock-accelerated CR electrons resemble current accretion and merging shock waves
- CR protons/hadronically produced CR electrons trace the time integrated non-equilibrium activities of clusters that is modulated by the recent dynamical activities
- \rightarrow Multi-messenger approach from the radio to $\gamma\text{-ray}$ regime

→ E → < E →</p>

Overview Radio emission Gamma-ray emission

Conclusions on high-energy astrophysics in clusters New generation of observatories

How can we read out this information about non-thermal populations? \rightarrow new era of multi-frequency experiments:

- LOFAR, GMRT, MWA, LWA, SKA: interferometric array of radio telescopes at low frequencies ($\nu \simeq (15 240)$ MHz)
- NuSTAR: hard X-ray satellite ($E \simeq (1 100)$ keV)
- Fermi γ -ray space telescope ($E \simeq (0.1 300)$ GeV)
- MAGIC, H.E.S.S., Veritas, CTA: imaging air Čerenkov telescopes (*E* ~ (0.1 – 100) TeV)

イロト イポト イヨト イヨト

Indirect detection Boost factors Constraining models

Outline

- Cosmological simulations
 - Introduction
 - Physics in simulations
 - Cosmic rays in galaxy clusters
- 2 Non-thermal signatures
 - Overview
 - Radio emission
 - Gamma-ray emission
- 3 Dark matter signatures
 - Indirect detection
 - Boost factors
 - Constraining models

Indirect detection Boost factors Constraining models

Indirect DM searches: modeling

supersymmetric particles are Majorana particles
 → annihilate and produce gamma rays

$$\mathbf{N}_{\gamma} = \left[\int_{\text{LOS}} \rho_{\chi}^2 \, \mathrm{d}I_{\chi} \right] \frac{\langle \sigma \upsilon \rangle}{2M_{\chi}^2} \left[\int_{E_{\text{th}}}^{M_{\chi}} \left(\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E} \right)_{\text{SUSY}} \mathbf{A}_{\text{eff}}(E) \, \mathrm{d}E \right] \frac{\Delta \Omega}{4\pi} \, \tau_{\text{exp}}$$

- astrophysics: contains the uncertainty about the DM profile with its central behavior and the substructure distribution
- particle physics: assuming DM is supersymmetric, there is the uncertainty about the cross section, neutralino mass, and decay channels
- detector properties: energy dependent effective area, detector response, scanning strategy, ...

3 1 4 3

Indirect detection Boost factors Constraining models

Indirect DM searches: sources

Very good statistics, but astrophysics and galactic diffuse foregrounds

Indirect detection Boost factors Constraining models

DM searches in clusters vs. dwarfs

Galaxy clusters:

Dwarf galaxies:

イロト イポト イヨト イヨト

- combined limits for dwarf galaxies ~ 20 times more constraining
- high-resolution CDM simulations predict substructures that boost the γ-ray flux → clusters should outshine dwarfs by ≥ 10 (e.g., Pinzke, C.P., Bergström 2011; Gao et al. 2011)

Indirect detection Boost factors Constraining models

Enhancement from DM substructures

Constant offset in the luminosity from substructures between different mass resolutions in the simulation (M_{res}).

Norm $\propto M_{res}^{-0.226}$

Extrapolate to the minimal mass of dark matter halos (M_{min}) that can form.

The cold dark matter scenario suggests $M_{min} \sim 10^6 M_{\odot}$.

Hofmann, Schwarz and Stöcker, 2008 Green, Hofmann and Schwarz, 2005

 $L_{\rm sub}(< r) \propto (M_{200} / M_{\rm res})^{0.226}$

Indirect detection Boost factors Constraining models

Spatial DM distribution

- form of smooth density profile only important for central region, majority of smooth flux accumulates around r ~ r_s/3
- emission from substructures dominated by outer regions
 → spatially extended
- large boost in clusters (~ 1000); smaller boost in dwarf satellites (~ 20), much smaller if outskirts are tidally stripped

Indirect detection Boost factors Constraining models

DM searches in clusters vs. dwarfs

Clusters with substructures:

Dwarf galaxies:

Huang et al. 2011 (see also Ando & Nagai 2012)

Ackermann et al. (Fermi-LAT) 2011

 galaxy clusters ~ 10 times more constraining than dwarf satellites when accounting for substructures!

Indirect detection Boost factors Constraining models

Sommerfeld enhancement

- DM annihilating into leptons can explain the excess of e^+/e^- seen by PAMELA/Fermi-LAT
- need enhancement of cross-section over standard value \rightarrow Sommerfeld enhancement: $\langle \sigma v \rangle \sim C/v$ (Arkani-Hamed et al. 2009)

Indirect detection Boost factors Constraining models

Sommerfeld enhancement

Indirect detection Boost factors Constraining models

DM-induced gamma rays: leptophilic models

Annihilation rate in these models enhanced by **Sommerfeld effect** as well as **DM substructures**.

Gamma-ray emission components:

Final state radiation

• IC on background radiation fields (CMB, starlight and dust)

Indirect detection Boost factors Constraining models

DM-induced gamma rays: SUSY benchmark models

Representation of high mass (~1 TeV) DM models with high gamma-ray emission.

Luminosity **boosted by substructures** in the smooth DM halo.

Gamma-ray emission components:

- Annihilating neutralinos emitting continuum emission
- Final state radiation
- IC on background radiation fields (CMB, starlight and dust)

★ E → ★ E →

Cosmological simulations Indire Non-thermal signatures Boos Dark matter signatures Cons

Indirect detection Boost factors Constraining models

Gamma-ray spectrum: benchmark DM model vs. CRs

Indirect detection Boost factors Constraining models

Comparing clusters and emission processes

Pinzke, C.P., Bergström 2011

- Fornax: comparably high DM-induced gamma-ray flux and low CR-induced emission → tight limits on DM properties
- Coma: CR-induced emission soon in reach for Fermi

Indirect detection Boost factors Constraining models

DM flux predictions vs. observations

Emission from leptophilic models in most clusters detectable with Fermi-LAT after 18 months of operation.

Supersymmetric DM models will start being probed in coming years. Brightest clusters: Fornax, Ophiuchus, M49, Centaurus (and Virgo).

Indirect detection Boost factors Constraining models

Constraining boost factors (leptophilic models)

Indirect detection Boost factors Constraining models

Constraining boost factors (leptophilic models)

 Fornax and M49 constrain the saturated boost from Sommerfeld enhancement (SFE) to < 5

Indirect detection Boost factors Constraining models

Constraining boost factors (leptophilic models)

• Alternatively, if SFE is realized in Nature, this would limit the substructure mass to $M_{\rm lim} > 10^4 {\rm M}_{\odot}$ – a challenge for structure formation and most particle physics models (van den Aarssen et al. 2012)

Conclusions on dark matter searches in clusters

Galaxy clusters are competitive sources for constraining dark matter:

- cluster luminosity boosted by ~ 1000 (for $\textit{M}_{min} \simeq 10^{-6}\, M_{\odot})$
- flat brightness profiles and spatially extended \rightarrow challenging for IACTs, better probed by Fermi-LAT

Leptophilic DM models:

- Fermi-LAT data constrains the Sommerfeld enhancement to < 5
- if DM interpretation of lepton excess seen by PAMELA/Fermi is correct, then smallest subhalos have M > 10⁴ M_☉

SUSY benchmark models:

• accounting for substructure boost allows to constrain interesting DM parameter space ($\langle \sigma v \rangle \lesssim 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$, $m_{\chi} \gtrsim 100 \text{ GeV}$)

(本間) (本語) (本語)

Indirect detection Boost factors Constraining models

Literature for the talk

Non-thermal signatures:

- Pinzke & Pfrommer, Simulating the gamma-ray emission from galaxy clusters: a universal cosmic ray spectrum and spatial distribution, 2010, MNRAS, 409, 449.
- Pfrommer, Simulating cosmic rays in clusters of galaxies III. Non-thermal scaling relations and comparison to observations, 2008, MNRAS, 385, 1242.
- Pfrommer, Enßlin, Springel, Simulating cosmic rays in clusters of galaxies II. A unified scheme for radio halos and relics with predictions of the γ-ray emission, 2008, MNRAS, 385, 1211.
- Pfrommer, Enßlin, Springel, Jubelgas, Dolag, Simulating cosmic rays in clusters of galaxies – I. Effects on the Sunyaev-Zel'dovich effect and the X-ray emission, 2007, MNRAS, 378, 385.

Dark matter signatures:

- Pinzke, Pfrommer, Bergström, Prospects of detecting gamma-ray emission from galaxy clusters: cosmic rays and dark matter annihilations, 2011, Phys. Rev. D 84, 123509.
- Pinzke, Pfrommer, Bergström, Gamma-rays from dark matter annihilations strongly constrain the substructure in halos, 2009, Phys. Rev. Lett., 103, 181302.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

HITS