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The TeV gamma-ray sky
There are several classes of TeV sources:

Galactic - pulsars, BH binaries, supernova remnants

Extragalactic - mostly blazars, two starburst galaxies
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Unified model of active galactic nuclei

broad line region

dusty torus

relativistic jetnarrow line region

central SMBH
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The blazar sequence

Ghisellini (2011), arXiv:1104.0006

continuous sequence
from LBL–IBL–HBL

TeV blazars are dim
(very sub-Eddington)

TeV blazars have
rising spectra in the
Fermi band (α < 2)

define TeV blazar =
hard IBL + HBL
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Propagation of TeV photons

1 TeV photons can pair produce with 1 eV EBL photons:

γTeV + γeV → e+ + e−

mean free path for this depends on the density of 1 eV photons:
→ λγγ ∼ (35 . . . 700) Mpc for z = 1 . . . 0
→ pairs produced with energy of 0.5 TeV (γ = 106)

these pairs inverse Compton scatter off the CMB photons:
→ mean free path is λIC ∼ λγγ/1000
→ producing gamma-rays of ∼ 1 GeV

E ∼ γ2ECMB ∼ 1 GeV

each TeV point source should also be a GeV point source
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What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray
halo – not seen!

expected cascade

Fermi
constraints

TeV spectra

TeV detections

Neronov & Vovk (2010)

emission
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Measuring IGM B-fields from TeV/GeV observations

TeV beam of e+/e− are deflected out of the line of sight
reducing the GeV IC flux → lower limit on B

Larmor radius

rL =
E
eB

∼ 30
(

E
3 TeV

) (
B

10−16 G

)−1

Mpc

IC mean free path

xIC ∼ 0.1
(

E
3 TeV

)−1

Mpc

for the associated 10 GeV IC photons the Fermi angular
resolution is 0.2◦ or θ ∼ 3× 10−3 rad

xIC

rL
> θ → B & 10−16 G
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Missing plasma physics?
How do beams of e+/e− propagate through the IGM?

plasma processes are important

interpenetrating beams of charged particles are unstable

consider the two-stream instability:

one frequency (timescale) and one length in the problem:

ωp

γ
=

√
4πe2ne

γ2me
, λp =

γc
ωp

∼ 1014 cm×
( γ

106

)∣∣∣
ρ̄(z=0)
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Two-stream instability: mechanism
wave-like perturbation with k ||vbeam, longitudinal charge oscillations
in background plasma (Langmuir wave):

initially homogeneous beam-e−:
attractive (repulsive) force by potential maxima (minima)

e− attain lowest velocity in potential minima → bunching up

e+ attain lowest velocity in potential maxima → bunching up

p

Φ

e e− −

p

Christoph Pfrommer Blazar heating



Physics of blazar heating
The intergalactic medium

Structure formation

TeV emission from blazars
Plasma instabilities and magnetic fields
Extragalactic gamma-ray background

Two-stream instability: mechanism
wave-like perturbation with k ||vbeam, longitudinal charge oscillations
in background plasma (Langmuir wave):

beam-e+/e− couple in phase with the background perturbation:
enhances background potential

stronger forces on beam-e+/e− → positive feedback

exponential wave-growth → instability

p

Φ

e−

e+

e−

+e

e e− −

p
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Two-stream instability: energy transfer

particles with v & vphase:
pair energy → plasma waves → growing modes

particles with v . vphase:
plasma wave energy → pairs → damped modes
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Oblique instability

k oblique to vbeam: real word perturbations don’t choose “easy”
alignment =

∑
all orientations

Bret (2009), Bret+ (2010)
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Beam physics – growth rates

IC

ob
liq

ue

plasma phenomena
excluded for collective

Broderick, Chang, C.P. (2011)

consider a light beam
penetrating into
relatively dense
plasma

maximum growth rate

∼ 0.4 γ
nbeam

nIGM
ωp

oblique instability
beats IC by two orders
of magnitude
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Beam physics – complications . . .

non-linear saturation:

non-linear evolution of these instabilities at these density
contrasts is not known

expectation from PIC simulations suggest substantial
isotropization of the beam

assume that they grow at linear rate up to saturation

→ plasma instabilities dissipate the beam’s energy, no (little) energy
left over for inverse Compton scattering off the CMB
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TeV emission from blazars – a new paradigm

γTeV + γeV → e+ + e− →

 IC off CMB → γGeV

plasma instabilities → heating IGM

absence of γGeV’s has significant implications for . . .

intergalactic B-field estimates

γ-ray emission from blazars: spectra, background

additional IGM heating has significant implications for . . .

thermal history of the IGM: Lyman-α forest

late time structure formation: dwarfs, galaxy clusters
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Implications for B-field measurements
Fraction of the pair energy lost to inverse-Compton on the CMB: fIC = ΓIC/(ΓIC + Γoblique)

Broderick, Chang, C.P. (2011)
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Conclusions on B-field constraints from blazar spectra

it is thought that TeV blazar spectra might constrain IGM B-fields

this assumes that cooling mechanism is IC off the CMB +
deflection from magnetic fields

beam instabilities may allow high-energy e+/e− pairs to self
scatter and/or lose energy

isotropizes the beam – no need for B-field

. 1–10% of beam energy to IC CMB photons

→ TeV blazar spectra are not suitable to measure IGM B-fields!
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TeV blazar luminosity density: today

Broderick, Chang, C.P. (2011)

collect luminosity of all 23
TeV blazars with good
spectral measurements

account for the selection
effects (sky coverage,
duty cycle, galactic
occultation, TeV flux limit)

TeV blazar luminosity
density is a scaled
version (ηB ∼ 0.2%) of
that of quasars!
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Unified TeV blazar-quasar model

Broderick, Chang, C.P. (2011)

Quasars and TeV blazars are:

regulated by the same
mechanism

contemporaneous
elements of a single AGN
population: TeV-blazar
activity does not lag
quasar activity

→ assume that they trace
each other for all redshifts!
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How many TeV blazars are there?

Hopkins+ (2007)
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Fermi number count of “TeV blazars”

η = 0.8, 1.6, 3.1

number evolution of TeV
blazars that are
expected to have been
observed by Fermi vs.
observed evolution

colors: different flux
(luminosity) limits
connecting the Fermi
and the TeV band:

LTeV,min(z) = η LFermi,min(z)

Broderick, Chang, C.P. (2011)

→ evolving (increasing) blazar population consistent with
observed declining evolution (Fermi flux limit)!
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How many TeV blazars are there at high-z?

Hopkins+ (2007)
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Fermi probes “dragons” of the gamma-ray sky
Diffuse Background Intensity
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Extragalactic gamma-ray background

assume all TeV blazars have identical intrinsic spectra:

FE = LF̂E ∝
1

(E/Eb)
αL−1 + (E/Eb)

α−1 ,

Eb is break energy,

αL < α are low and high-energy spectral indexes

extragalactic gamma-ray background (EGRB):

E2 dN
dE

(E , z) =
1

4π

∫ ∞

z
dV (z ′)

ηB Λ̃Q(z ′)F̂E′

4πD2
L

e−τE (E′,z′),

E ′ = E(1 + z′) is gamma-ray energy at emission,
Λ̃Q is physical quasar luminosity density,

ηB ∼ 0.2% is blazar fraction, τ is optical depth
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Extragalactic gamma-ray background: varying α

Broderick, Chang, C.P. (2011)

dotted: unabsorbed
EGRB due to TeV
blazars

dashed: absorbed
EGRB due to TeV
blazars

solid: absorbed EGRB,
after subtracting the
resolved TeV blazars
(z < 0.25)
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Extragalactic gamma-ray background: varying αL

Broderick, Chang, C.P. (2011)

dotted: unabsorbed
EGRB due to TeV
blazars

dashed: absorbed
EGRB due to TeV
blazars

solid: absorbed EGRB,
after subtracting the
resolved TeV blazars
(z < 0.25)
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Extragalactic gamma-ray background: varying Eb

Broderick, Chang, C.P. (2011)

dotted: unabsorbed
EGRB due to TeV
blazars

dashed: absorbed
EGRB due to TeV
blazars

solid: absorbed EGRB,
after subtracting the
resolved TeV blazars
(z < 0.25)
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Conclusions on extragalactic gamma-ray background

the TeV blazar luminosity density is a scaled version of the
quasar luminosity density at z = 0.1

assuming that quasars trace TeV blazars for all z and adopting
typical spectra, we can match the Fermi-LAT blazar number
counts and the EGRB!

evolving blazars do not overproduce EGRB since the absorbed
energy is not reprocessed to GeV energies

fraction of absorbed energy is greater at higher energies

Christoph Pfrommer Blazar heating



Physics of blazar heating
The intergalactic medium

Structure formation

Properties of blazar heating
Thermal history of the IGM
The Lyman-α forest

Evolution of the heating rates
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Chang, Broderick, C.P. (2011)
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Blazar heating vs. photoheating

total power from AGN/stars vastly exceeds the TeV power of blazars

TIGM ∼ 104 K (1 eV) at mean density (z ∼ 2)

εth =
kT

mpc2 ∼ 10−9

radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)

εrad = η Ωbh ∼ 0.1× 10−4 ∼ 10−5

fraction of the energy energetic enough to ionize H I is ∼ 0.1:

εUV ∼ 0.1εrad ∼ 10−6 → kT ∼ keV

photoheating efficiency ηph ∼ 10−3 → kT ∼ ηph εUV mpc2 ∼ eV
(limited by the abundance of H I/He II due to the small recombination rate)

blazar heating efficiency ηbh ∼ 10−3 → kT ∼ ηbh εrad mpc2 ∼ 10 eV
(limited by the total power of TeV sources)
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Thermal history of the IGM
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Chang, Broderick, C.P. (2011)
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Evolution of the temperature-density relation

no blazar heating with blazar heating

Chang, Broderick, C.P. (2011)

blazars and extragalactic background light are uniform:
→ blazar heating rate independent of density
→ makes low density regions hot
→ causes inverted temperature-density relation, T ∝ 1/δ
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Blazars cause hot voids

no blazar heating with blazar heating

Chang, Broderick, C.P. (2011)

blazars completely change the thermal history of the diffuse
IGM and late-time structure formation
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Simulations with blazar heating

Puchwein, C.P., Springel, Broderick, Chang (2011):

L = 15h−1Mpc boxes with 2× 3843 particles

one reference run without blazar heating

three with blazar heating at different levels of efficiency
(address uncertainty)

used an up-to-date model of the UV background (Faucher-Giguère+ 2009)
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Temperature-density relation
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Ly-α spectra
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The end of fudged Ly-α simulations?
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Puchwein+ (2011)

Redshift evolutions of effective optical depth and IGM temperature
match data only with additional heating, e.g., provided by blazars!
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Ly-α flux PDFs and power spectra

10−1

100

101

z = 2.52

no blazar heating
weak blazar heating
intermediate blazar heating
strong blazar heating
Kim et al. 2007

0.0 0.2 0.4 0.6 0.8 1.0
transmitted flux fraction

10−1

100

101

z = 2.94

PD
F

of
tr

an
sm

itt
ed

flu
x

fr
ac

tio
n

self-consistent UV background

Puchwein+ (2011)

Christoph Pfrommer Blazar heating



Physics of blazar heating
The intergalactic medium

Structure formation

Properties of blazar heating
Thermal history of the IGM
The Lyman-α forest

Voigt profile decomposition

decomposing Lyman-α forest into individual Voigt profiles

allows studying the thermal broadening of absorption lines
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Voigt profile decomposition – line width distribution
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Lyman-α forest in a blazar heated Universe

improvement in modelling the Lyman-α forest is a direct consequence
of the peculiar properties of blazar heating:

heating rate independent of IGM density → naturally produces
the inverted T–ρ relation that Lyman-α forest data demand

recent and continuous nature of the heating needed to match
the redshift evolutions of all Lyman-α forest statistics

magnitude of the heating rate required by Lyman-α forest data
∼ the total energy output of TeV blazars (or equivalently ∼ 0.2%
of that of quasars)
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Entropy evolution

temperature evolution
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C.P., Chang, Broderick (2011)

evolution of entropy, Ke = kTn−2/3
e , governs structure formation

blazar heating: late-time, evolving, modest entropy floor
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Dwarf galaxy formation – Jeans mass

thermal pressure opposes gravitational collapse on small scales

characteristic length/mass scale below which objects do not form

hotter IGM → higher IGM pressure → higher Jeans mass:

MJ ∝
c3

s

ρ1/2 ∝

(
T 3

IGM

ρ

)1/2

→ MJ,blazar

MJ,photo
≈
(

Tblazar

Tphoto

)3/2

& 30

→ depends on instantaneous value of cs

“filtering mass” depends on full thermal history of the gas:
accounts for delayed response of pressure in counteracting
gravitational collapse in the expanding universe

apply corrections for non-linear collapse
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Dwarf galaxy formation – Filtering mass
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Peebles’ void phenomenon explained?

mean density
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C.P., Chang, Broderick (2011)

blazar heating efficiently suppresses the formation of void dwarfs
within existing DM halos of masses < 3× 1011 M� (z = 0)

may reconcile the number of void dwarfs in simulations and the
paucity of those in observations

Christoph Pfrommer Blazar heating



Physics of blazar heating
The intergalactic medium

Structure formation

Formation of dwarf galaxies
Puzzles in galaxy formation
Bimodality of galaxy clusters

“Missing satellite” problem in the Milky Way

Springel+ (2008)

Dolphin+ (2005)

Substructures in cold DM simulations much more numerous than
observed number of Milky Way satellites!
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When do dwarfs form?

10 Myr

100 Myr

1 Gyr

M110

Dolphin+ (2005)

10 Gyr

isochrone fitting for different metallicities → star formation histories
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When do dwarfs form?

τ formred:          > 10 Gyr, z > 2

Dolphin+ (2005)
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Milky Way satellites: formation history and abundance

satellite formation time

not observed!
late forming satellites (< 10 Gyr)

Maccio & Fontanot (2010)

satellite luminosity function

linear theory

non−linear theory

no blazar heating:

Maccio+ (2010)

blazar heating suppresses late satellite formation, may reconcile
low observed dwarf abundances with CDM simulations
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Galactic H I-mass function
Mo+ (2005)

H I-mass function is too flat (i.e., gas version of missing dwarf problem!)

photoheating and SN feedback too inefficient

IGM entropy floor of K ∼ 15 keV cm2 at z ∼ 2− 3 successful!
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When do clusters form?

mass accretion history
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C.P., Chang, Broderick (2011)

most cluster gas accretes after z = 1, when blazar heating can
have a large effect (for late forming objects)!
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Entropy floor in clusters

Cluster entropy profiles

Cavagnolo+ (2009)

Planck stacking of optical clusters

Planck Collaboration (2011)

Do optical and X-ray/Sunyaev-Zel’dovich cluster observations
probe the same population? (Hicks+ 2008, Planck Collaboration 2011)
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Entropy profiles: effect of blazar heating

varying formation time
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C.P., Chang, Broderick (2011)

assume big fraction of intra-cluster medium collapses from IGM:

redshift-dependent entropy excess in cores

greatest effect for late forming groups/small clusters
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Gravitational reprocessing of entropy floors

no preheating + floor

preheated

no preheating

K  = 25 keV cm0

Borgani+ (2005) 

2

Borgani+ (2005)

greater initial entropy K0
→ more shock heating
→ greater increase in K0
over entropy floor

net K0 amplification of 3-5

expect:

median Ke,0 ∼ 150 keV cm2

max. Ke,0 ∼ 600 keV cm2
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Cool-core versus non-cool core clusters

hotcool

Cavagnolo+ (2009)

time-dependent preheating + gravitational reprocessing
→ CC-NCC bifurcation (two attractor solutions)

need hydrodynamic simulations to confirm this scenario
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Cool-core versus non-cool core clusters

hotcool

t          < tmerger

late forming,

merger coolt          > t
cool

Cavagnolo+ (2009)

early forming,

time-dependent preheating + gravitational reprocessing
→ CC-NCC bifurcation (two attractor solutions)

need hydrodynamic simulations to confirm this scenario
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How efficient is heating by AGN feedback?

1 10 100

10-2

100

102

104

Eb, 2500(kTX = 0.7 keV)

Eb, 2500(kTX = 1.2 keV)

Eb, 2500(kTX = 2.0 keV)

Eb, 2500(kTX = 3.5 keV)

Eb, 2500(kTX = 5.9 keV)

cool cores non-cool cores

E
ca

v
=

4P
V

to
t
[1

058
er

g]

Ke,0 [keV cm2]

C.P., Chang, Broderick (2011)

AGNs cannot transform CC to NCC clusters (on a buoyancy timescale)

Christoph Pfrommer Blazar heating



Physics of blazar heating
The intergalactic medium

Structure formation

Formation of dwarf galaxies
Puzzles in galaxy formation
Bimodality of galaxy clusters

How efficient is heating by AGN feedback?

1 10 100

10-2

100

102

104

Eb, 2500(kTX = 0.7 keV)

Eb, 2500(kTX = 1.2 keV)

Eb, 2500(kTX = 2.0 keV)

Eb, 2500(kTX = 3.5 keV)

Eb, 2500(kTX = 5.9 keV)

cool cores non-cool cores

E
ca

v
=

4P
V

to
t
[1

058
er

g]

Ke,0 [keV cm2]

C.P., Chang, Broderick (2011)

AGNs cannot transform CC to NCC clusters (on a buoyancy timescale)
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AGNs cannot transform CC to NCC clusters (on a buoyancy timescale)
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Conclusions on blazar heating

explains puzzles in high-energy astrophysics:

lack of GeV bumps in blazar spectra without IGM B-fields
unified TeV blazar-quasar model explains Fermi source
counts and extragalactic gamma-ray background

novel mechanism; dramatically alters thermal history of the IGM:

uniform and z-dependent preheating
rate independent of density → inverted T–ρ relation
quantitative self-consistent picture of high-z Lyman-α forest

significantly modifies late-time structure formation:

suppresses late dwarf formation (in accordance with SFHs):
“missing satellites”, void phenomenon, H I-mass function
group/cluster bimodality of core entropy values
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Ly-α flux PDFs and power spectra
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