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Gravitational heating by shocks

The "cosmic web" today. Left: the projected gas density in a cosmological simulation.

Right: gravitationally heated intracluster medium through cosmological shock waves.
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Observations of cluster shock waves

1E 0657-56 (“Bullet cluster”)
(NASA/SAO/CXC/M.Markevitch et al.)

Abell 3667
(Radio: Austr.TC Array. X-ray: ROSAT/PSPC.)
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Radiative simulations – flowchart
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Radiative simulations with cosmic rays
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Philosophy and description

An accurate description of CRs should follow the evolution of
the spectral energy distribution of CRs as a function of time and
space, and keep track of their dynamical, non-linear coupling
with the hydrodynamics.

We seek a compromise between

capturing as many physical properties as possible

requiring as little computational resources as possible

Assumptions:

protons dominate the CR population

a momentum power-law is a typical spectrum

CR energy & particle number conservation
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Thermal & CR energy spectra

Kinetic energy per logarithmic momentum interval:
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Motivation for studying shock waves:

cosmological shocks dissipate gravitational energy into
thermal gas energy: where and when is the gas heated,
and which shocks are mainly responsible for it?

shocks accelerate cosmic rays through diffusive shock
acceleration at structure formation shocks: what are the
cosmological implications of such a CR component, and
does this influence the cosmic thermal history?

simulating realistic CR distributions within galaxy clusters
provides detailed predictions for the expected radio
synchrotron and γ-ray emission
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Diffusive shock acceleration – Fermi 1 mechanism

Cosmic rays gain energy ∆E/E ∝ υ1 − υ2 through bouncing back and forth

the shock front. Accounting for the loss probability ∝ υ2 of particles leaving

the shock downstream leads to power-law CR population.
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Cosmological Mach numbers: weighted by εdiss
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Cosmological Mach numbers: weighted by εCR
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Cosmological Mach number statistics

more energy is dissipated in weak shocks internal to collapsed
structures than in external strong shocks

more energy is dissipated at later times

mean Mach number decreases with time
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Cosmological statistics: influence of reionization

reionization epoch at zreion = 10 suppresses efficiently strong
shocks at z < zreion due to jump in sound velocity

cosmological constant causes structure formation to cease
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Cosmic rays in galaxy clusters
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Radiative cool core cluster simulation: gas density
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Mach number distribution weighted by εdiss
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Relative CR pressure PCR/Ptotal
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Relative CR pressure PCR/Ptotal
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Phase-space diagram of radiative cluster simulation
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Thermal X-ray emission
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Difference map of SX : SX,CR − SX,th
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Softer effective adiabatic index of composite gas
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Compton y parameter in radiative cluster simulation
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Compton y difference map: yCR − yth
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Pressure profiles with and without CRs
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Models for radio synchrotron (mini-)halos in clusters

Different CR electron populations:

Primary accelerated CR electrons: synchrotron/IC cooling
times too short to account for extended diffuse emission

Re-accelerated CR electrons through resonant interaction
with turbulent Alfvén waves: possibly too inefficient, no first
principle calculations (Jaffe 1977, Schlickeiser 1987, Brunetti 2001)

Hadronically produced CR electrons in inelastic collisions
of CR protons with the ambient gas (Dennison 1980, Vestrad

1982, Miniati 2001, Pfrommer 2004)
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Hadronic cosmic ray proton interaction
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Hadronically induced radio mini-halo emission
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Hadronically induced γ-ray emission
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Summary

CR physics modifies the intracluster medium in cooling core
regions:

Galaxy cluster X-ray emission is enhanced up to 35%,
predominantely in low-mass cooling core clusters.

Integrated Sunyaev-Zel’dovich effect remains largely
unchanged while the Compton-y profile is more peaked.

Huge potential and predictive power of cosmological CR
simulations→ provides detailed γ-ray/radio emission maps

Understanding non-thermal processes is crucial for using
clusters as cosmological probes (high-z scaling relations).
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