Cosmological shock waves and cosmic rays in hydrodynamical cluster simulations

Christoph Pfrommer¹

in collaboration with

Volker Springel², Torsten Enßlin², Martin Jubelgas²

¹Canadian Institute for Theoretical Astrophysics, Canada

²Max-Planck Institute for Astrophysics, Germany

August, 10 2006 Heating versus cooling conference, MPA Garching

イロト イポト イヨト イヨ

Outline

Introduction

- Violent structure formation
- Cosmic rays in GADGET
- 2 Cosmological shock waves
 - Motivation
 - Cosmological simulations
- Cosmic rays in coooling core clusters
 - Radiative high-resolution cluster simulations
 - Modified X-ray emission and Sunyaev-Zel'dovic effect
 - Cosmic ray induced emission processes

Violent structure formation Cosmic rays in GADGET

Gravitational heating by shocks

The "cosmic web" today. *Left:* the projected gas density in a cosmological simulation. *Right:* gravitationally heated intracluster medium through cosmological shock waves.

イロト イポト イヨト イヨト

Violent structure formation Cosmic rays in GADGET

Observations of cluster shock waves

1E 0657-56 ("Bullet cluster")

(NASA/SAO/CXC/M.Markevitch et al.)

Abell 3667

(Radio: Austr.TC Array. X-ray: ROSAT/PSPC.)

Violent structure formation Cosmic rays in GADGET

Radiative simulations – flowchart

(日) (四) (日) (日) (日)

Violent structure formation Cosmic rays in GADGET

Radiative simulations with cosmic rays

Violent structure formation Cosmic rays in GADGET

Philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as possible

Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

3 1 4 3

Violent structure formation Cosmic rays in GADGET

Philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as possible

Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

イロト イポト イヨト イヨト

Violent structure formation Cosmic rays in GADGET

Philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as possible

Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

< < >> < </>

Violent structure formation Cosmic rays in GADGET

Thermal & CR energy spectra

Kinetic energy per logarithmic momentum interval:

< ∃⇒

Motivation for studying shock waves:

- cosmological shocks dissipate gravitational energy into thermal gas energy: where and when is the gas heated, and which shocks are mainly responsible for it?
- shocks accelerate cosmic rays through diffusive shock acceleration at structure formation shocks: what are the cosmological implications of such a CR component, and does this influence the cosmic thermal history?
- simulating realistic CR distributions within galaxy clusters provides detailed predictions for the expected radio synchrotron and γ-ray emission

イロト イポト イヨト イヨト

Diffusive shock acceleration – Fermi 1 mechanism

Cosmic rays gain energy $\Delta E/E \propto v_1 - v_2$ through bouncing back and forth the shock front. Accounting for the loss probability $\propto v_2$ of particles leaving the shock downstream leads to power-law CR population.

Motivation Cosmological simulations

Cosmological Mach numbers: weighted by *E*diss

Motivation Cosmological simulations

Cosmological Mach numbers: weighted by ECR

Motivation Cosmological simulations

Cosmological Mach number statistics

- more energy is dissipated in weak shocks internal to collapsed structures than in external strong shocks
- more energy is dissipated at later times
- mean Mach number decreases with time

Motivation Cosmological simulations

Cosmological statistics: influence of reionization

- reionization epoch at z_{reion} = 10 suppresses efficiently strong shocks at z < z_{reion} due to jump in sound velocity
- cosmological constant causes structure formation to cease

Radiative cluster simulations Modified X-ray emission and SZ effect Cosmic ray induced emission

Cosmic rays in galaxy clusters

Radiative cluster simulations Modified X-ray emission and SZ effect Cosmic ray induced emission

Radiative cool core cluster simulation: gas density

Radiative cluster simulations Modified X-ray emission and SZ effect Cosmic ray induced emission

Mass weighted temperature

Christoph Pfrommer Cosmic rays in

Cosmic rays in hydrodynamical cluster simulations

Radiative cluster simulations Modified X-ray emission and SZ effect Cosmic ray induced emission

Mach number distribution weighted by ε_{diss}

Radiative cluster simulations Modified X-ray emission and SZ effect Cosmic ray induced emission

Relative CR pressure P_{CR}/P_{total}

Radiative cluster simulations Modified X-ray emission and SZ effect Cosmic ray induced emission

Relative CR pressure P_{CR}/P_{total}

Radiative cluster simulations Modified X-ray emission and SZ effect Cosmic ray induced emission

Phase-space diagram of radiative cluster simulation

Christoph Pfrommer Cosmic rays in hy

Cosmic rays in hydrodynamical cluster simulations

Radiative cluster simulations Modified X-ray emission and SZ effect Cosmic ray induced emission

Thermal X-ray emission

Radiative cluster simulations Modified X-ray emission and SZ effect Cosmic ray induced emission

Difference map of S_X : $S_{X,CR} - \overline{S}_{X,th}$

Radiative cluster simulations Modified X-ray emission and SZ effect Cosmic ray induced emission

Softer effective adiabatic index of composite gas

CITA-ICAT

Radiative cluster simulations Modified X-ray emission and SZ effect Cosmic ray induced emission

Compton y parameter in radiative cluster simulation

Radiative cluster simulations Modified X-ray emission and SZ effect Cosmic ray induced emission

Compton y difference map: y_{CR} - y_{th}

Christoph Pfrommer Cosmic rays in hydrodynamical cluster simulations

CITA-ICAT

Radiative cluster simulations Modified X-ray emission and SZ effect Cosmic ray induced emission

Pressure profiles with and without CRs

Radiative cluster simulations Modified X-ray emission and SZ effect Cosmic ray induced emission

Models for radio synchrotron (mini-)halos in clusters

Different CR electron populations:

- Primary accelerated CR electrons: synchrotron/IC cooling times too short to account for extended diffuse emission
- Re-accelerated CR electrons through resonant interaction with turbulent Alfvén waves: possibly too inefficient, no first principle calculations (Jaffe 1977, Schlickeiser 1987, Brunetti 2001)
- Hadronically produced CR electrons in inelastic collisions of CR protons with the ambient gas (Dennison 1980, Vestrad 1982, Miniati 2001, Pfrommer 2004)

Radiative cluster simulations Modified X-ray emission and SZ effect Cosmic ray induced emission

Hadronic cosmic ray proton interaction

Christoph Pfrommer

Cosmic rays in hydrodynamical cluster simulations

CITA-ICAT

Radiative cluster simulations Modified X-ray emission and SZ effect Cosmic ray induced emission

Hadronically induced radio mini-halo emission

Radiative cluster simulations Modified X-ray emission and SZ effect Cosmic ray induced emission

Hadronically induced γ -ray emission

Radiative cluster simulations Modified X-ray emission and SZ effect Cosmic ray induced emission

Summary

CR physics modifies the intracluster medium in cooling core regions:

- Galaxy cluster X-ray emission is enhanced up to 35%, predominantely in low-mass cooling core clusters.
- Integrated Sunyaev-Zel'dovich effect remains largely unchanged while the Compton-y profile is more peaked.
- Huge potential and predictive power of cosmological CR simulations → provides detailed γ-ray/radio emission maps
- Understanding non-thermal processes is crucial for using clusters as cosmological probes (high-z scaling relations).

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A