The Physics and Cosmology of TeV Blazars

Christoph Pfrommer¹

in collaboration with

Avery E. Broderick², Phil Chang³, Ewald Puchwein¹, Volker Springel¹

¹Heidelberg Institute for Theoretical Studies, Germany ²Perimeter Institute/University of Waterloo, Canada ³University of Wisconsin-Milwaukee, USA

Sep 23, 2013 / GRAPPA Seminar, Amsterdam

The Hitchhiker's Guide to ... Blazar Heating

Blazar Physics

- black holes and jets
- TeV photon propagation
- plasma physics

The Hitchhiker's Guide to ... Blazar Heating

Blazar Physics

- black holes and jets
- TeV photon propagation
- plasma physics
- Cosmological Consequences for
 - intergalactic magnetic fields
 - gamma-ray background

The Hitchhiker's Guide to ... Blazar Heating

Blazar Physics

- black holes and jets
- TeV photon propagation
- plasma physics

Cosmological Consequences for

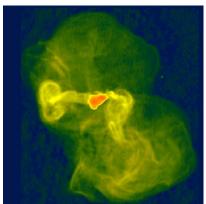
- intergalactic magnetic fields
- gamma-ray background
- thermal history of the Universe
- Lyman- α forest
- formation of dwarf galaxies
- galaxy cluster thermodynamics

Outline

- Physics of blazar heating
 - Black hole jets
 - Plasma instabilities
 - Gamma-ray sky
- 2 The intergalactic medium
 - Properties of blazar heating
 - Thermal history of the IGM
 - The Lyman- α forest
- Structure formation
 - Formation of dwarf galaxies
 - Galaxy cluster thermodynamics
 - Conclusions

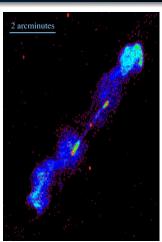
Black hole jets Plasma instabilities Gamma-ray sky

Black hole



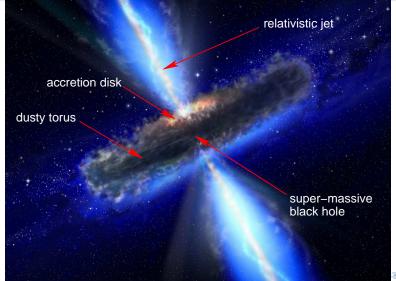
Black hole jets - nearby

Centaurus A in X-rays: closest active galaxy with a super-massive black hole

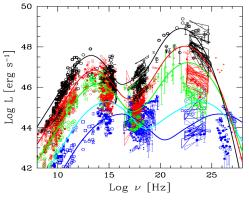


Messier 87 in the radio: closest active cluster galaxy in the Virgo cluster: $M_{bh} \simeq 6 \times 10^9 M_{\odot}$

Black hole jets - at cosmological distances



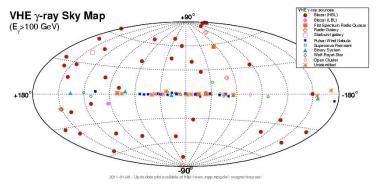
Quasar 3C175: 1 million light years across


Giant radio galaxy B1545-321: relic radio plasma and new jet activity

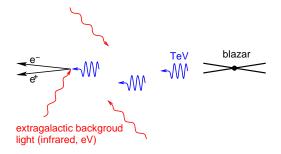
Unified model of active galactic nuclei

The blazar sequence

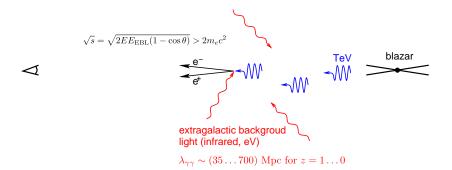
Ghisellini (2011), arXiv:1104.0006

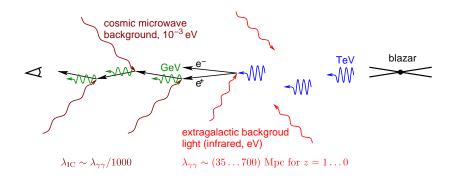

- continuous sequence from LBL-IBL-HBL
- TeV blazars are dim (very sub-Eddington)
- TeV blazars have rising spectra in the Fermi band (α < 2)
- define TeV blazar = hard IBL + HBL

The TeV gamma-ray sky

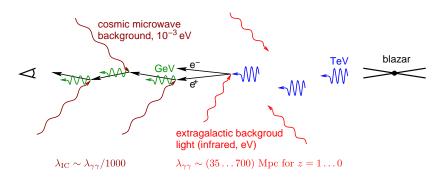

There are several classes of TeV sources:

- Galactic pulsars, BH binaries, supernova remnants
- Extragalactic mostly blazars, two starburst galaxies


Annihilation and pair production

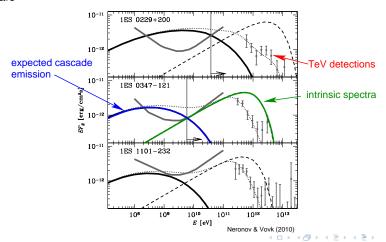


Annihilation and pair production

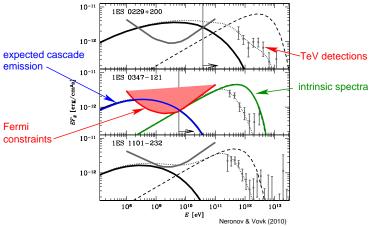


Inverse Compton cascades

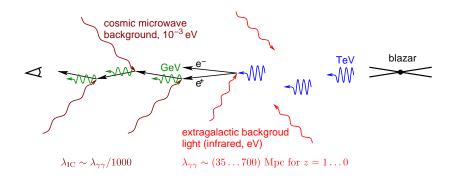
Inverse Compton cascades



→ each TeV point source should also be a GeV point source!

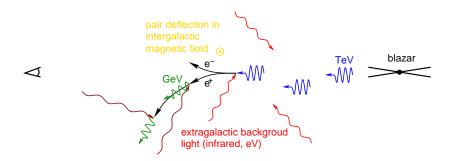

What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray halo

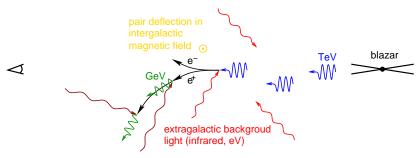


What about the cascade emission?

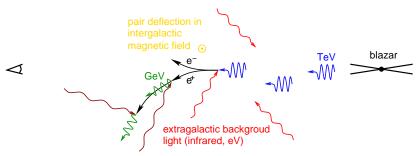
Every TeV source should be associated with a 1-100 GeV gamma-ray halo – **not seen!**



Inverse Compton cascades

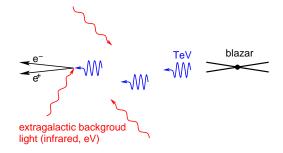


Magnetic field deflection

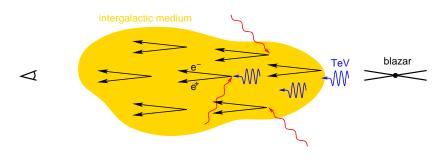

Magnetic field deflection

- GeV point source diluted → weak "pair halo"
- stronger B–field implies more deflection and dilution, gamma–ray non–detection \longrightarrow $B\gtrsim 10^{-16}\,\mu{\rm G}$ primordial fields?

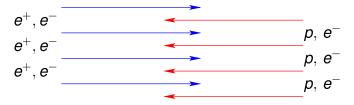
Magnetic field deflection



 problem for unified AGN model: blazars and quasars apparently do not share the same cosmological evolution (as otherwise, evolving blazars would overproduce the gamma-ray background)!


What else could happen?

Plasma beam instabilities


pair plasma beam propagating through the intergalactic medium

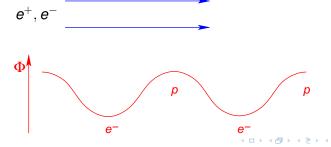
Interlude: plasma physics

How do e^+/e^- beams propagate through the intergalactic medium?

- interpenetrating beams of charged particles are unstable to plasma instabilities
- consider the two-stream instability:

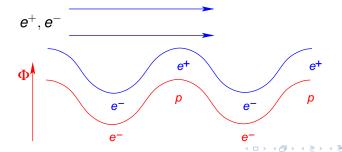
• one frequency (timescale) and one length in the problem:

$$\omega_p = \sqrt{rac{4\pi e^2 n_e}{m_e}}, \qquad \lambda_p = \left. rac{c}{\omega_p}
ight|_{ar{
ho}(z=0)} \sim 10^8 \, \mathrm{cm}$$



Two-stream instability: mechanism

consider wave-like perturbation in background plasma along the beam direction (Langmuir wave):

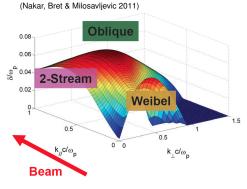

- initially homogeneous beam-e⁻: attractive (repulsive) force by potential maxima (minima)
- ullet e^- attain lowest velocity in potential minima o bunching up
- ullet e^+ attain lowest velocity in potential maxima o bunching up

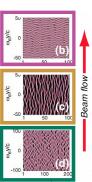
Two-stream instability: mechanism

consider wave-like perturbation in background plasma along the beam direction (Langmuir wave):

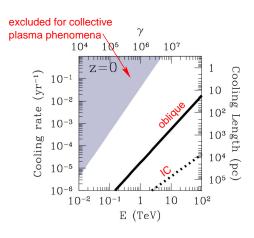
- beam- e^+/e^- couple in phase with the background perturbation: enhances background potential
- stronger forces on beam- $e^+/e^- \rightarrow$ positive feedback
- exponential wave-growth → instability

Two-stream instability: momentum transfer



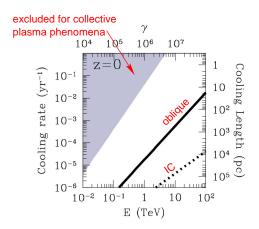

- particles with $v \gtrsim v_{\text{phase}}$: pair momentum \rightarrow plasma waves \rightarrow growing modes: instability
- particles with $v \lesssim v_{\text{phase}}$: plasma wave momentum \rightarrow pairs \rightarrow Landau damping

Oblique instability


- k oblique to v_{beam} : real word perturbations don't choose "easy" alignment = \sum all orientations
- oblique grows faster than two-stream: E-fields can easier deflect ultra-relativistic particles than change their parallel velocities

Bret (2009), Bret+ (2010)

Beam physics – growth rates


- consider a light beam penetrating into relatively dense plasma
- maximum growth rate

$$\Gamma \simeq 0.4 \, \gamma \, \frac{n_{
m beam}}{n_{
m IGM}} \, \omega_p$$

Broderick, Chang, C.P. (2012), also Schlickeiser+ (2012)

Beam physics – growth rates

Broderick, Chang, C.P. (2012), also Schlickeiser+ (2012)

- consider a light beam penetrating into relatively dense plasma
- maximum growth rate

$$\Gamma \simeq 0.4 \, \gamma \, rac{n_{
m leam}}{n_{
m lGM}} \, \omega_{
m p}$$

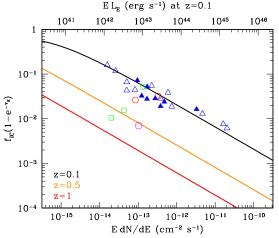
- oblique instability beats inverse Compton cooling by factor 10-100
- assume that instability grows at linear rate up to saturation

TeV emission from blazars – a new paradigm

$$\gamma_{\rm TeV} + \gamma_{\rm eV} \ \to \ e^+ + e^- \ \to \ \left\{ \begin{array}{ll} {\rm inv. \ Compton \ cascades} \ \to \ \gamma_{\rm GeV} \\ \\ {\rm plasma \ instabilities} \ \to \ {\rm IGM \ heating} \end{array} \right.$$

TeV emission from blazars – a new paradigm

$$\gamma_{\rm TeV} + \gamma_{\rm eV} \ \to \ e^+ + e^- \ \to \ \left\{ \begin{array}{ll} {\rm inv. \ Compton \ cascades} \ \to \ \gamma_{\rm GeV} \\ \\ {\rm plasma \ instabilities} \ \to \ {\rm IGM \ heating} \end{array} \right.$$


absence of $\gamma_{\rm GeV}$'s has significant implications for . . .

- intergalactic magnetic field estimates
- unified picture of TeV blazars and quasars

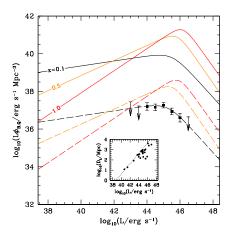
Implications for *B*-field measurements

Fraction of the pair energy lost to inverse-Compton on the CMB: $f_{\rm IC} = \Gamma_{\rm IC}/(\Gamma_{\rm IC} + \Gamma_{\rm oblique})$

Conclusions on B-field constraints from blazar spectra

- it is thought that TeV blazar spectra might constrain IGM B-fields
- this assumes that cooling mechanism is IC off the CMB + deflection from magnetic fields
- ullet beam instabilities allow high-energy e^+/e^- pairs to self scatter and/or lose energy
- isotropizes the beam no need for B-field
- ullet \lesssim 1–10% of beam energy to IC CMB photons

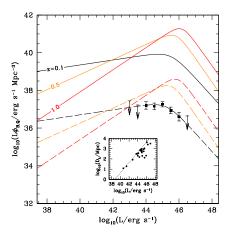
Conclusions on B-field constraints from blazar spectra


- it is thought that TeV blazar spectra might constrain IGM B-fields
- this assumes that cooling mechanism is IC off the CMB + deflection from magnetic fields
- ullet beam instabilities allow high-energy e^+/e^- pairs to self scatter and/or lose energy
- isotropizes the beam no need for B-field
- $\bullet \lesssim 1-10\%$ of beam energy to IC CMB photons
- \rightarrow TeV blazar spectra are not suitable to measure IGM *B*-fields (if plasma instabilities saturate close to linear rate)!

Broderick, Chang, C.P. (2012), Schlickeiser, Krakau, Supsar (2013), Chang+ (in prep.)

→ 3 → 4 3 →

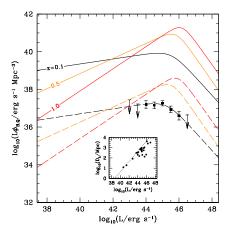
TeV blazar luminosity density: today



- collect luminosity of all 23 TeV blazars with good spectral measurements
- account for the selection effects (sky coverage, duty cycle, galactic occultation, TeV flux limit)
- TeV blazar luminosity density is a scaled version ($\eta_B \sim 0.2\%$) of that of quasars!

Broderick, Chang, C.P. (2012)

Unified TeV blazar-quasar model


Quasars and TeV blazars are:

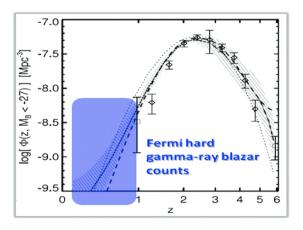
- regulated by the same mechanism
- contemporaneous elements of a single AGN population: TeV-blazar activity does not lag quasar activity

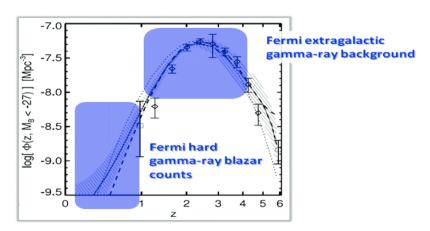
Broderick, Chang, C.P. (2012)

Unified TeV blazar-quasar model

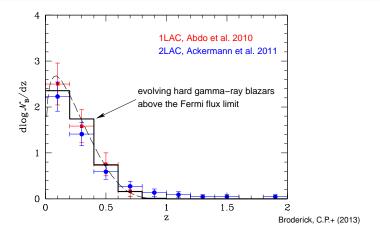
Quasars and TeV blazars are:

- regulated by the same mechanism
- contemporaneous elements of a single AGN population: TeV-blazar activity does not lag quasar activity
- \rightarrow assume that they trace each other for all redshifts!

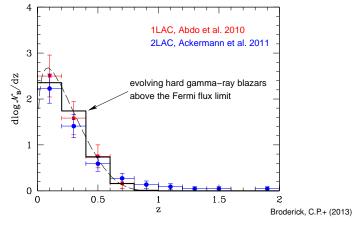

Broderick, Chang, C.P. (2012)


Hopkins+ (2007)

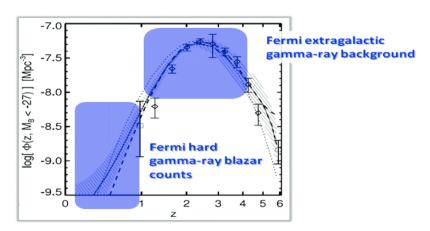
Hopkins+ (2007)



Hopkins+ (2007)



Redshift distribution of *Fermi* hard γ -ray blazars



Redshift distribution of *Fermi* hard γ -ray blazars

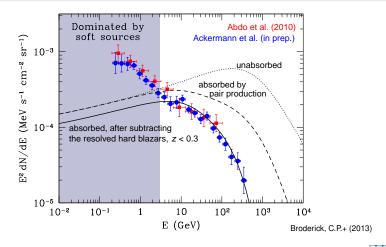
→ evolving (increasing) blazar population consistent with observed declining evolution (*Fermi* flux limit)!

Hopkins+ (2007)

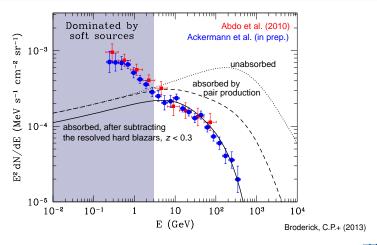
intrinsic spectrum for a TeV blazar:

$$\frac{dN}{dE} = f\hat{F}_E = f\left[\left(\frac{E}{E_b}\right)^{\Gamma_I} + \left(\frac{E}{E_b}\right)^{\Gamma_b}\right]^{-1},$$

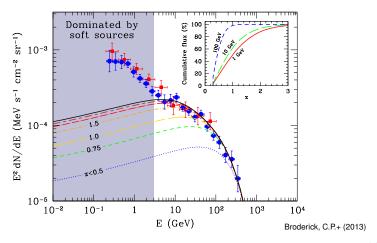
 $E_b=1$ TeV is break energy, $\Gamma_h=3$ is high-energy spectral index, Γ_I related to Γ_F , which is drawn from observed distribution


extragalactic gamma-ray background (EGRB):

$$E^2 \frac{dN}{dE}(E,z) = \frac{1}{4\pi} \int_0^2 d\Gamma_I \int_z^\infty dV(z') \frac{\eta_B \, \tilde{\Lambda}_Q(z') \hat{F}_{E'}}{4\pi D_L^2} e^{-\tau_E(E',z')},$$


E' = E(1 + z') is gamma-ray energy at *emission*, $\tilde{\Lambda}_{O}$ is physical quasar luminosity density,

 $\eta_B \sim$ 0.2% is blazar fraction, au is optical depth



ightarrow evolving population of hard blazars provides excellent match to latest EGRB by *Fermi* for $E \gtrsim 3$ GeV

 \rightarrow the signal at 10 (100) GeV is dominated by redshifts $z\sim$ 1.2

(z ∼ 0.6)

Outline

- Physics of blazar heating
 - Black hole jets
 - Plasma instabilities
 - Gamma-ray sky
- The intergalactic medium
 - Properties of blazar heating
 - Thermal history of the IGM
 - ullet The Lyman-lpha forest
- Structure formation
 - Formation of dwarf galaxies
 - Galaxy cluster thermodynamics
 - Conclusions

TeV emission from blazars – a new paradigm

$$\gamma_{\rm TeV} + \gamma_{\rm eV} \ \to \ {\it e}^+ + {\it e}^- \ \to \ \left\{ \begin{array}{ll} {\rm inv. \ Compton \ cascades} & \to & \gamma_{\rm GeV} \\ \\ {\rm plasma \ instabilities} & \to & {\rm IGM \ heating} \end{array} \right.$$

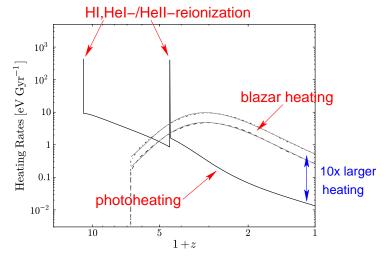
absence of $\gamma_{\rm GeV}$'s has significant implications for . . .

- intergalactic magnetic field estimates
- unified picture of TeV blazars and quasars: explains Fermi's γ-ray background and blazar number counts

TeV emission from blazars – a new paradigm

$$\gamma_{\mathsf{TeV}} + \gamma_{\mathsf{eV}} \ o \ e^+ + e^- \ o \ \left\{ egin{array}{ll} \mathsf{inv.} \ \mathsf{Compton} \ \mathsf{cascades} & o & \gamma_{\mathsf{GeV}} \\ \mathsf{plasma} \ \mathsf{instabilities} & o & \mathsf{IGM} \ \mathsf{heating} \end{array}
ight.$$

absence of $\gamma_{\rm GeV}$'s has significant implications for . . .


- intergalactic magnetic field estimates
- unified picture of TeV blazars and quasars: explains $Fermi's \gamma$ -ray background and blazar number counts

additional IGM heating has significant implications for ...

- ullet thermal history of the IGM: Lyman-lpha forest
- late time structure formation: dwarf galaxies, galaxy clusters

Evolution of the heating rates

total power from AGN/stars vastly exceeds the TeV power of blazars

- total power from AGN/stars vastly exceeds the TeV power of blazars
- $T_{\rm IGM} \sim 10^4$ K (1 eV) at mean density ($z \sim 2$)

$$arepsilon_{
m th} = rac{kT}{m_{
m p}c^2} \sim 10^{-9}$$

- total power from AGN/stars vastly exceeds the TeV power of blazars
- $T_{\rm IGM} \sim 10^4$ K (1 eV) at mean density ($z \sim 2$)

$$arepsilon_{
m th} = rac{kT}{m_{
m p}c^2} \sim 10^{-9}$$

radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)

$$arepsilon_{
m rad} = \eta \, \Omega_{
m bh} \sim 0.1 imes 10^{-4} \sim 10^{-5}$$

- total power from AGN/stars vastly exceeds the TeV power of blazars
- $T_{\rm IGM} \sim 10^4$ K (1 eV) at mean density ($z \sim 2$)

$$arepsilon_{
m th} = rac{kT}{m_{
m p}c^2} \sim 10^{-9}$$

radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)

$$\varepsilon_{\rm rad} = \eta \, \Omega_{\rm bh} \sim 0.1 \times 10^{-4} \sim 10^{-5}$$

• fraction of the energy energetic enough to ionize H $\scriptstyle\rm I$ is \sim 0.1:

$$\varepsilon_{\text{LIV}} \sim 0.1 \varepsilon_{\text{rad}} \sim 10^{-6} \rightarrow kT \sim \text{keV}$$

4 D > 4 D > 4 E > 4 E >

- total power from AGN/stars vastly exceeds the TeV power of blazars
- $T_{\rm IGM} \sim 10^4$ K (1 eV) at mean density ($z \sim 2$)

$$\varepsilon_{\rm th} = \frac{kT}{m_{\rm p}c^2} \sim 10^{-9}$$

radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)

$$\varepsilon_{\rm rad} = \eta \, \Omega_{\rm bh} \sim 0.1 \times 10^{-4} \sim 10^{-5}$$

• fraction of the energy energetic enough to ionize H $\scriptstyle\rm I$ is \sim 0.1:

$$\varepsilon_{\rm LIV} \sim 0.1 \varepsilon_{\rm rad} \sim 10^{-6} \rightarrow kT \sim \text{keV}$$

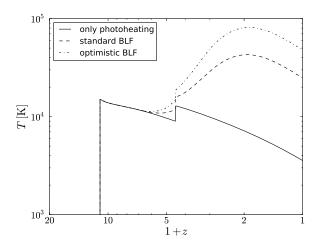
• photoheating efficiency $\eta_{\rm ph}\sim 10^{-3}$ \rightarrow $kT\sim\eta_{\rm ph}\,\varepsilon_{\rm UV}\,m_{\rm p}c^2\sim {\rm eV}$ (limited by the abundance of H $_{\rm l}/{\rm He}$ $_{\rm ll}$ due to the small recombination rate)

- total power from AGN/stars vastly exceeds the TeV power of blazars
- $T_{\rm IGM} \sim 10^4$ K (1 eV) at mean density ($z \sim 2$)

$$arepsilon_{
m th} = rac{kT}{m_{
m p}c^2} \sim 10^{-9}$$

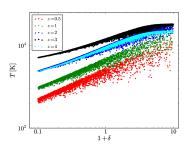
radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)

$$arepsilon_{
m rad} = \eta \, \Omega_{
m bh} \sim 0.1 imes 10^{-4} \sim 10^{-5}$$

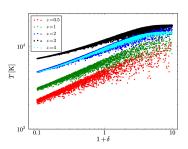

• fraction of the energy energetic enough to ionize H $\scriptstyle\rm I$ is \sim 0.1:

$$\varepsilon_{\rm UV} \sim 0.1 \varepsilon_{\rm rad} \sim 10^{-6} \quad \rightarrow \quad kT \sim {\rm keV}$$

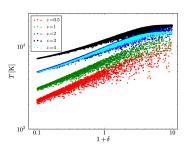
- photoheating efficiency $\eta_{\rm ph}\sim 10^{-3}$ \rightarrow $kT\sim\eta_{\rm ph}\,\varepsilon_{\rm UV}\,m_{\rm p}c^2\sim {\rm eV}$ (limited by the abundance of H $l/{\rm He}$ II due to the small recombination rate)
- blazar heating efficiency $\eta_{\rm bh}\sim 10^{-3}$ \to $kT\sim\eta_{\rm bh}\,\varepsilon_{\rm rad}\,m_{\rm p}c^2\sim 10\,{\rm eV}$ (limited by the total power of TeV sources)



Thermal history of the IGM

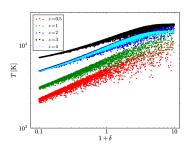


no blazar heating

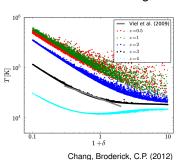

no blazar heating

- blazars and extragalactic background light are uniform:
 - → blazar heating rate independent of density

no blazar heating

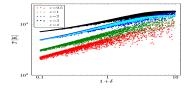


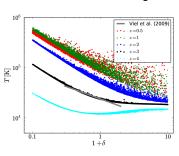
- blazars and extragalactic background light are uniform:
 - → blazar heating rate independent of density
 - → makes low density regions hot
 - ightarrow causes inverted temperature-density relation, $T \propto 1/\delta$



no blazar heating

with blazar heating

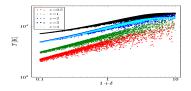

- onang, Brodonok, C.I. (2012
- blazars and extragalactic background light are uniform:
 - → blazar heating rate independent of density
 - → makes low density regions hot
 - \rightarrow causes inverted temperature-density relation, $T \propto 1/\delta$



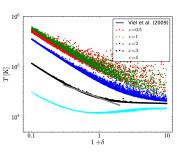
Blazars cause hot voids

no blazar heating

with blazar heating



Chang, Broderick, C.P. (2012)



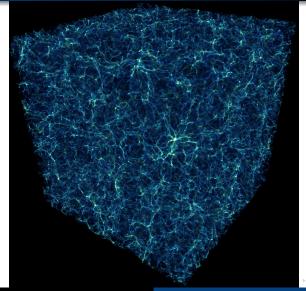
Blazars cause hot voids

no blazar heating

with blazar heating

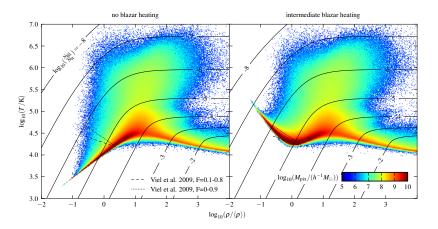
Chang, Broderick, C.P. (2012)

 blazars completely change the thermal history of the diffuse IGM and late-time structure formation

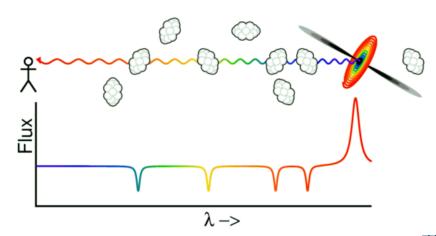

Simulations with blazar heating

Puchwein, C.P., Springel, Broderick, Chang (2012):

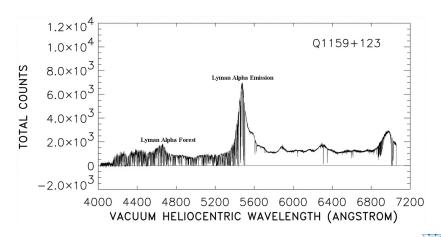
- $L = 15h^{-1}$ Mpc boxes with 2×384^3 particles
- one reference run without blazar heating
- three with blazar heating at different levels of efficiency (address uncertainty)
- used an up-to-date model of the UV background (Faucher-Giguère+ 2009)



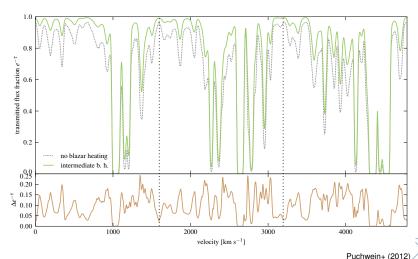
The intergalactic medium


Temperature-density relation

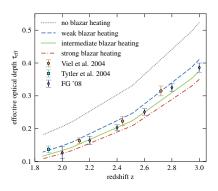
Puchwein, C.P., Springel, Broderick, Chang (2012)



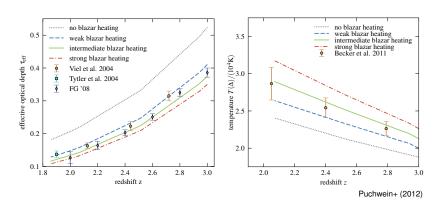
The Lyman- α forest



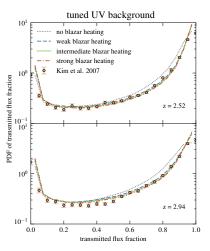
The observed Lyman- α forest

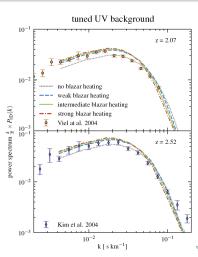


The simulated Ly- α forest

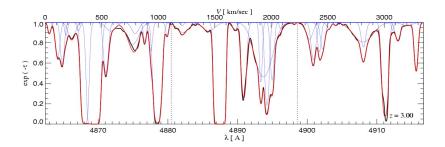


Optical depths and temperatures

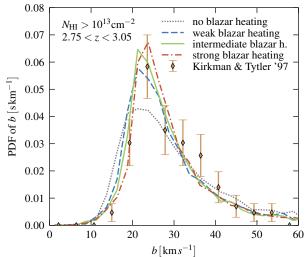

Optical depths and temperatures


Redshift evolutions of effective optical depth and IGM temperature match data only with additional heating, e.g., provided by blazars!

Ly- α flux PDFs and power spectra



Puchwein+ (2012)


Voigt profile decomposition

- decomposing Lyman- α forest into individual Voigt profiles
- allows studying the thermal broadening of absorption lines

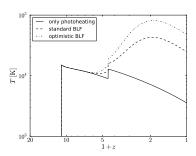
Voigt profile decomposition – line width distribution

Lyman- α forest in a blazar heated Universe

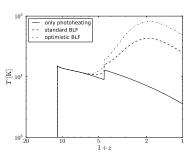
improvement in modelling the Lyman- α forest is a direct consequence of the peculiar properties of blazar heating:

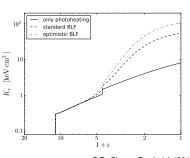
- heating rate independent of IGM density \rightarrow naturally produces the inverted $T-\rho$ relation that Lyman- α forest data demand
- recent and continuous nature of the heating needed to match the redshift evolutions of all Lyman- α forest statistics
- magnitude of the heating rate required by Lyman- α forest data \sim the total energy output of TeV blazars (or equivalently \sim 0.2% of that of quasars)

Outline


- Physics of blazar heating
 - Black hole jets
 - Plasma instabilities
 - Gamma-ray sky
- 2 The intergalactic medium
 - Properties of blazar heating
 - Thermal history of the IGM
 - The Lyman- α forest
- Structure formation
 - Formation of dwarf galaxies
 - Galaxy cluster thermodynamics
 - Conclusions

Entropy evolution


temperature evolution



Entropy evolution

temperature evolution

entropy evolution

- C.P., Chang, Broderick (2012)
- evolution of entropy, $K_e = kTn_e^{-2/3}$, governs structure formation
- blazar heating: late-time, evolving, modest entropy floor

Dwarf galaxy formation

- thermal pressure opposes gravitational collapse on small scales
- characteristic length/mass scale below which objects do not form

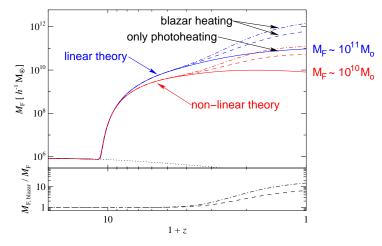
Dwarf galaxy formation

- thermal pressure opposes gravitational collapse on small scales
- characteristic length/mass scale below which objects do not form
- hotter intergalactic medium → higher thermal pressure
 - → higher Jeans mass:

$$M_J \propto \frac{c_s^3}{
ho^{1/2}} \propto \left(\frac{T_{\text{IGM}}^3}{
ho}\right)^{1/2} \quad o \quad \frac{M_{J,\text{blazar}}}{M_{J,\text{photo}}} \approx \left(\frac{T_{\text{blazar}}}{T_{\text{photo}}}\right)^{3/2} \gtrsim 30$$

 \rightarrow blazar heating increases M_J by 30 over pure photoheating!

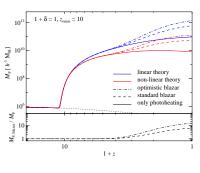
Dwarf galaxy formation

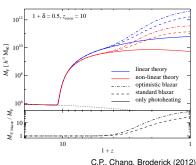

- thermal pressure opposes gravitational collapse on small scales
- characteristic length/mass scale below which objects do not form
- hotter intergalactic medium → higher thermal pressure
 → higher Jeans mass:

$$M_J \propto \frac{c_s^3}{
ho^{1/2}} \propto \left(\frac{T_{\text{IGM}}^3}{
ho}\right)^{1/2} \quad o \quad \frac{M_{J,\text{blazar}}}{M_{J,\text{photo}}} \approx \left(\frac{T_{\text{blazar}}}{T_{\text{photo}}}\right)^{3/2} \gtrsim 30$$

- \rightarrow blazar heating increases M_J by 30 over pure photoheating!
- complications: non-linear collapse, delayed pressure response in expanding universe → concept of "filtering mass"

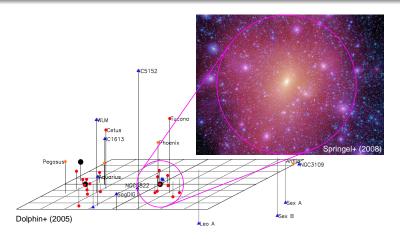
Dwarf galaxy formation - Filtering mass



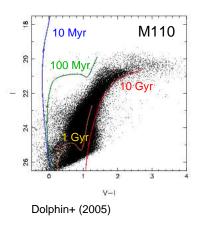


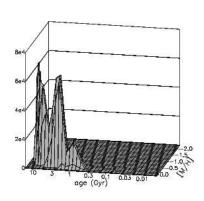
Peebles' void phenomenon explained?

mean density


void, $1 + \delta = 0.5$

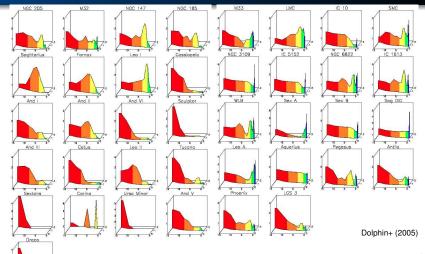
- on i, onding, production (2012)
- blazar heating efficiently suppresses the formation of void dwarfs within existing DM halos of masses $< 3 \times 10^{11} \, M_\odot \, (z=0)$
- may reconcile the number of void dwarfs in simulations and the paucity of those in observations


"Missing satellite" problem in the Milky Way



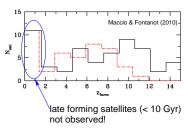
Substructures in cold DM simulations much more numerous than observed number of Milky Way satellites!

When do dwarfs form?

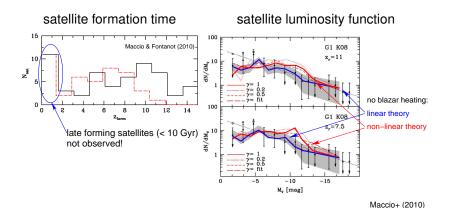


isochrone fitting for different metallicities \rightarrow star formation histories

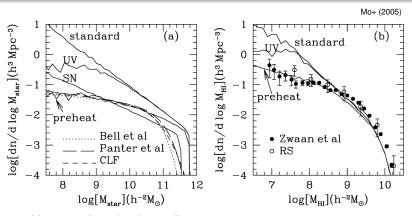
When do dwarfs form?



red: $\tau_{form} > 10 \text{ Gyr}, z > 2$

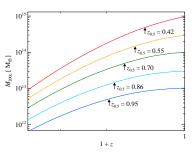

Milky Way satellites: formation history and abundance

satellite formation time

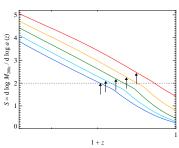

Milky Way satellites: formation history and abundance

 blazar heating suppresses late satellite formation, may reconcile low observed dwarf abundances with CDM simulations

Galactic H I-mass function



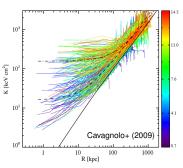
- H I-mass function is too flat (i.e., gas version of missing dwarf problem!)
- photoheating and SN feedback too inefficient
- IGM entropy floor of $K\sim 15\,\text{keV}\ \text{cm}^2$ at $z\sim 2-3$ successful!



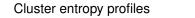
When do clusters form?

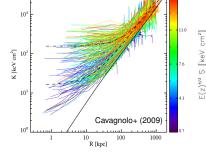
mass accretion history

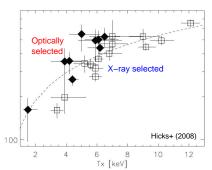
mass accretion rates


C.P., Chang, Broderick (2012)

• most cluster gas accretes after z = 1, when blazar heating can have a large effect (for late forming objects)!

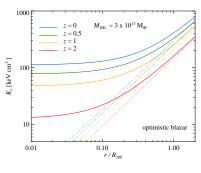

Entropy floor in clusters


Cluster entropy profiles

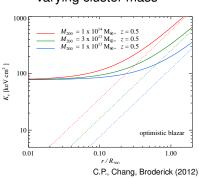


Entropy floor in clusters

ICM entropy at 0.1 R₂₀₀:

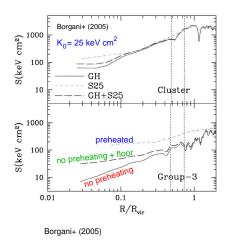


 Do optical and X-ray/Sunyaev-Zel'dovich cluster observations probe the same population? (Hicks+ 2008)



Entropy profiles: effect of blazar heating

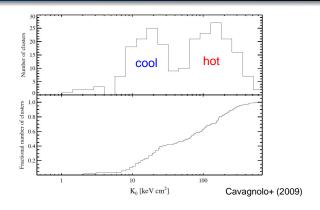
varying cluster mass



assume big fraction of intra-cluster medium collapses from IGM:

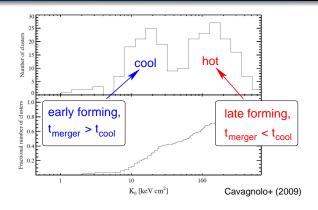
- redshift-dependent entropy excess in cores
- greatest effect for late forming groups/small clusters

Gravitational reprocessing of entropy floors

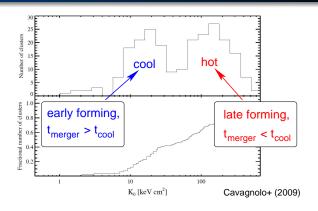


- greater initial entropy K₀
 → more shock heating
 - \rightarrow greater increase in K_0 over entropy floor
- net K_0 amplification of 3-5
- expect:

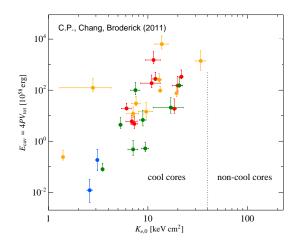
median $K_{\rm e,0}\sim 150\,{\rm keV\,cm^2}$ max. $K_{\rm e,0}\sim 600\,{\rm keV\,cm^2}$



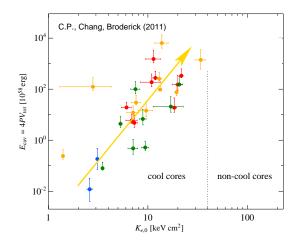
Cool-core versus non-cool core clusters



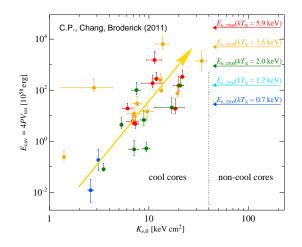
Cool-core versus non-cool core clusters

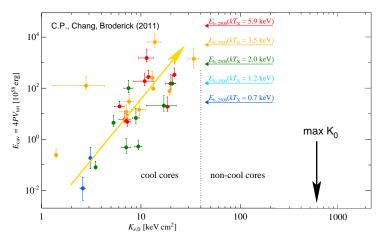


Cool-core versus non-cool core clusters



- time-dependent preheating + gravitational reprocessing
 → CC-NCC bifurcation (two attractor solutions)
- need hydrodynamic simulations to confirm this scenario





AGNs cannot transform CC to NCC clusters (on a buoyancy timescale)

Blazar heating: TeV photons are attenuated by EBL; their kinetic energy → heating of the IGM; it is *not* cascaded to GeV energies

Blazar heating: TeV photons are attenuated by EBL; their kinetic energy → heating of the IGM; it is *not* cascaded to GeV energies

- explains puzzles in gamma-ray astrophysics:
 - lack of GeV bumps in blazar spectra without IGM B-fields
 - unified TeV blazar-quasar model explains Fermi source counts and extragalactic gamma-ray background

Blazar heating: TeV photons are attenuated by EBL; their kinetic energy \rightarrow heating of the IGM; it is *not* cascaded to GeV energies

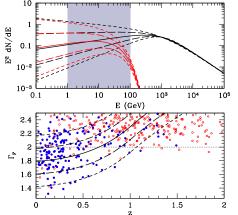
- explains puzzles in gamma-ray astrophysics:
 - lack of GeV bumps in blazar spectra without IGM B-fields
 - unified TeV blazar-quasar model explains Fermi source counts and extragalactic gamma-ray background
- novel mechanism; dramatically alters thermal history of the IGM:
 - uniform and z-dependent preheating
 - ullet quantitative self-consistent picture of high-z Lyman-lpha forest

Blazar heating: TeV photons are attenuated by EBL; their kinetic energy \rightarrow heating of the IGM; it is *not* cascaded to GeV energies

- explains puzzles in gamma-ray astrophysics:
 - lack of GeV bumps in blazar spectra without IGM B-fields
 - unified TeV blazar-quasar model explains Fermi source counts and extragalactic gamma-ray background
- novel mechanism; dramatically alters thermal history of the IGM:
 - uniform and z-dependent preheating
 - ullet quantitative self-consistent picture of high-z Lyman-lpha forest
- significantly modifies late-time structure formation:
 - suppresses late dwarf formation (in accordance with SFHs): void phenomenon, "missing satellites" (?)
 - group/cluster bimodality of core entropy values

Literature for the talk

- Broderick, Chang, Pfrommer, The cosmological impact of luminous TeV blazars
 I: implications of plasma instabilities for the intergalactic magnetic field and
 extragalactic gamma-ray background, ApJ, 752, 22, 2012.
- Chang, Broderick, Pfrommer, The cosmological impact of luminous TeV blazars II: rewriting the thermal history of the intergalactic medium, ApJ, 752, 23, 2012.
- Pfrommer, Chang, Broderick, The cosmological impact of luminous TeV blazars III: implications for galaxy clusters and the formation of dwarf galaxies, ApJ, 752, 24, 2012.
- Puchwein, Pfrommer, Springel, Broderick, Chang, *The Lyman-* α *forest in a blazar-heated Universe*, MNRAS, 423, 149, 2012.
- Broderick, Pfrommer, Chang, Puchwein, Implications of plasma beam instabilities for the statistics of the Fermi hard gamma-ray blazars and the origin of the extragalactic gamma-ray background, ApJ, subm., 2013.
- Broderick, Pfrommer, Chang, Puchwein, Lower limits upon the anisotropy of the extragalactic gamma-ray background implied by the 2FGL and 1FHL catalogs, ApJ, subm., 2013.



Additional slides

TeV photon absorption by pair production

top: intrinsic and observed SEDs of blazars at z = 1; bottom: inferred Γ_F for the spectra in the top panel; Fermi data on BL Lacs and non-BL Lacs (mostly FSRQs)

Challenges to the Challenge

Challenge #1 (known unknowns): non-linear saturation

- we assume that the non-linear damping rate = linear growth rate
- effect of wave-particle and wave-wave interactions need to be resolved
- using slow collisional scattering (reactive regime), Miniati & Elyiv (2012) claim that the nonlinear Landau damping rate is ≪ linear growth rate
- also accounting for much faster *collisionless scattering* (kinetic regime)
 - → powerful instability, faster than IC cooling (Schlickeiser+ 2013, Chang+ in prep.)

Challenges to the Challenge

Challenge #1 (known unknowns): non-linear saturation

- we assume that the non-linear damping rate = linear growth rate
- effect of wave-particle and wave-wave interactions need to be resolved
- using slow collisional scattering (reactive regime), Miniati & Elyiv (2012) claim that the nonlinear Landau damping rate is ≪ linear growth rate
- also accounting for much faster collisionless scattering (kinetic regime)
 → powerful instability, faster than IC cooling (Schlickeiser+ 2013, Chang+ in prep.)

Challenge #2 (unknown unknowns): inhomogeneous universe

- universe is inhomogeneous and hence density of electrons change as function of position
- could lead to loss of resonance over length scale
 ≪ spatial growth length scale (Miniati & Elyiv 2012)
- growth length in oblique kinetic regime appears to be shorter than gradient → no instability quenching! (Chang+ in prep.)

