Non-thermal Emission from Galaxy Clusters: Cosmic Rays and Dark Matter

Christoph Pfrommer¹

in collaboration with

Torsten Enßlin, Volker Springel, Anders Pinzke, Lars Bergström

¹Heidelberg Institute for Theoretical Studies, Germany

Sep 27, 2013 / Anisotropic Universe, GRAPPA Amsterdam

Outline

Cosmological simulations

- Introduction
- Physics in simulations
- Cosmic rays in galaxy clusters
- 2 Non-thermal signatures
 - Radio emission
 - Gamma rays
 - AGN feedback

3 Dark matter searches

- Models
- Sources
- Constraints

(1) 王

ntroduction Physics in simulations Cosmic rays in galaxy clusters

Outline

Cosmological simulations

- Introduction
- Physics in simulations
- Cosmic rays in galaxy clusters
- Non-thermal signatures
 - Radio emission
 - Gamma rays
 - AGN feedback
- 3 Dark matter searches
 - Models
 - Sources
 - Constraints

★ E → < E →</p>

Introduction Physics in simulations Cosmic rays in galaxy clusters

Cluster mergers: the most energetic cosmic events

1E 0657-56 ("Bullet cluster")

(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl; Magellan/U.Arizona/D.Clowe et al.; Lensing: NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)

Abell 3667

(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)

Christoph Pfrommer

Introduction Physics in simulations Cosmic rays in galaxy clusters

Giant radio halo in the Coma cluster

thermal X-ray emission

(Snowden/MPE/ROSAT)

radio synchrotron emission

(Deiss/Effelsberg)

프 🖌 🖌 프

Introduction Physics in simulations Cosmic rays in galaxy clusters

High-Energy Astrophysics in Galaxy Clusters Understanding non-thermal emission (from radio to γ rays)

• plasma astrophysics:

- \rightarrow shock and particle acceleration
- \rightarrow large-scale magnetic fields
- \rightarrow turbulence
- structure formation and galaxy cluster cosmology:
 - \rightarrow illuminating the process of structure formation
 - \rightarrow cosmic ray feedback: shaping the thermal cluster history
 - \rightarrow calibrating thermal cluster observables: cluster cosmology
- indirect detection of dark matter:
 - \rightarrow cosmic ray vs. DM annihilation γ rays

프 🖌 🖌 프

Introduction Physics in simulations Cosmic rays in galaxy clusters

Cosmological simulations – flowchart

Introduction Physics in simulations Cosmic rays in galaxy clusters

Cosmological simulations with cosmic ray physics

Introduction Physics in simulations Cosmic rays in galaxy clusters

Cosmological simulations with cosmic ray physics

Introduction Physics in simulations Cosmic rays in galaxy clusters

Cosmological cluster simulation: gas density

Introduction Physics in simulations Cosmic rays in galaxy clusters

Mass weighted temperature

Introduction Physics in simulations Cosmic rays in galaxy clusters

Shock strengths weighted by dissipated energy

Introduction Physics in simulations Cosmic rays in galaxy clusters

Shock strengths weighted by injected CR energy

Cosmic rays in galaxy clusters

Evolved CR pressure

Christoph Pfrommer

Introduction Physics in simulations Cosmic rays in galaxy clusters

Relative CR pressure P_{CR}/P_{total}

Radio emission Gamma rays AGN feedback

Outline

- Cosmological simulations
 - Introduction
 - Physics in simulations
 - Cosmic rays in galaxy clusters
- 2 Non-thermal signatures
 - Radio emission
 - Gamma rays
 - AGN feedback
 - 3 Dark matter searches
 - Models
 - Sources
 - Constraints

프 🖌 🛪 프 🕨

Cosmological simulations Radio Non-thermal signatures Game Dark matter searches AGN

Radio emission Gamma rays AGN feedback

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

★ E → ★ E →

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

★ Ξ → ★ Ξ → .

Radio emission Gamma rays AGN feedback

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Cosmological simulations Radio Non-thermal signatures Game Dark matter searches AGN

Radio emission Gamma rays AGN feedback

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Radio emission Gamma rays AGN feedback

Structure formation shocks

Radio emission Gamma rays AGN feedback

Radio gischt: shock-accelerated CRe

Radio emission Gamma rays AGN feedback

Radio gischt + central hadronic halo = giant radio halo

Radio emission Gamma rays AGN feedback

Which one is the simulation/observation of A2256?

red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic

Radio emission Gamma rays AGN feedback

Observation – simulation of A2256

red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic

프 🖌 🖌 프

Christoph Pfrommer

Radio emission Gamma rays AGN feedback

Universal CR spectrum in clusters (Pinzke & C.P. 2010)

Normalized CR spectrum shows universal concave shape \rightarrow governed by hierarchical structure formation and the implied distribution of Mach numbers that a fluid element had to pass through in cosmic history.

Radio emission Gamma rays AGN feedback

CR proton and γ -ray spectra (Pinzke & C.P. 2010)

Christoph Pfrommer

Radio emission Gamma rays AGN feedback

CR proton and γ -ray spectra (Pinzke & C.P. 2010)

Christoph Pfrommer

Radio emission Gamma rays AGN feedback

CR proton and γ -ray spectra (Pinzke & C.P. 2010)

Christoph Pfrommer

Radio emission Gamma rays AGN feedback

An analytic model for the cluster γ -ray emission Comparison: simulation vs. analytic model, $M_{vir} \simeq (10^{14}, 10^{15}) M_{\odot}$

Christoph Pfrommer

Radio emission Gamma rays AGN feedback

Constraining CR physics with γ -ray observations

- non-detections constrain $P_{CR}/P_{th} < 1.7\%$ in Coma and Perseus and to $\lesssim 1\%$ in a stacked sample of 50 *Fermi* clusters
- constrains maximum shock acceleration efficiency to < 50%
- hydrostatic cluster masses not significantly biased by CRs: important for cluster cosmology!

Radio emission Gamma rays AGN feedback

Conclusions on non-thermal signatures in clusters Exploring the memory of structure formation

- primary, shock-accelerated CR electrons resemble current accretion and merging shock waves
- CR protons/hadronically produced CR electrons trace the time integrated non-equilibrium activities of clusters that is modulated by the recent dynamical activities
- Fermi, MAGIC, VERITAS non-detections of γ rays from clusters start to limit CR acceleration efficiencies to < 50% (or tell us about CR transport processes)
- \rightarrow Multi-messenger approach from the radio to γ -ray regime!

프 🖌 🖌 프

Radio emission Gamma rays AGN feedback

Virgo cluster cooling flow: M87 at radio wavelengths

 $[\]nu =$ 1.4 GHz (Owen+ 2000)

• expectation: low frequencies sensitive to fossil electrons $(E \sim 100 \text{ MeV}) \rightarrow \text{time-integrated activity of AGN feedback!}$

3 1 4 3

Radio emission Gamma rays AGN feedback

Virgo cluster cooling flow: M87 at radio wavelengths

 $\nu = 1.4 \text{ GHz} (\text{Owen+ 2000})$

 $\nu =$ 140 MHz (LOFAR/de Gasperin+ 2012)

・ 同 ト ・ ヨ ト ・ ヨ ト

- expectation: low frequencies sensitive to fossil electrons $(E \sim 100 \text{ MeV}) \rightarrow \text{time-integrated activity of AGN feedback!}$
- LOFAR: halo confined to same region at all frequencies and no low-ν spectral steepening → puzzle of "missing fossil electrons"

Radio emission Gamma rays AGN feedback

Solutions to the "missing fossil electrons" problem

solutions:

special time: M87 turned on

 40 Myr ago after long
 silence
 ⇔ conflicts order unity duty
 cycle inferred from stat. AGN
 feedback studies (Birzan+ 2012)

Radio emission Gamma rays AGN feedback

Solutions to the "missing fossil electrons" problem

solutions:

 special time: M87 turned on ~ 40 Myr ago after long silence

⇔ conflicts order unity duty cycle inferred from stat. AGN feedback studies (Birzan+ 2012)

 Coulomb cooling removes fossil electrons

 → efficient mixing of CR electrons and protons with dense cluster gas
 → predicts γ rays from CRp-p interactions

C.P. (2013)

Radio emission Gamma rays AGN feedback

The γ -ray picture of M87

- high state is time variable
 → jet emission
- low state:(1) steady flux
 - (2) γ -ray spectral index (2.2)
 - = CRp index
 - CRe injection index as probed by LOFAR

(3) spatial extension is under investigation (?)

Rieger & Aharonian (2012)

★ Ξ → < Ξ</p>

 \rightarrow confirming this triad would be smoking gun for first γ -ray signal from a galaxy cluster!

Radio emission Gamma rays AGN feedback

Estimating the CR pressure in M87

• X-ray data \rightarrow *n* and *T* profiles • assume $X_{CR} = P_{CR}/P_{th}$ (self-consistency requirement) • $F_{\gamma} \propto \int dV P_{CR} n$ enables to estimate $X_{CR} = 0.31$ (allowing for Coulomb cooling with $\tau_{Coul} = 40$ Myr)

Rieger & Aharonian (2012)

 \rightarrow in agreement with non-thermal pressure constraints from dynamical potential estimates $_{(Churazov+\ 2010)}$

Radio emission Gamma rays AGN feedback

Cosmic-ray heating vs. radiative cooling (1)

CR Alfvén-wave heating:

$$\mathcal{H}_{\mathsf{CR}} = -\boldsymbol{v}_{\mathsf{A}} \cdot \nabla \boldsymbol{P}_{\mathsf{CR}} = -\boldsymbol{v}_{\mathsf{A}} \left(\boldsymbol{X}_{\mathsf{CR}} \nabla_{\boldsymbol{r}} \langle \boldsymbol{P}_{\mathsf{th}} \rangle_{\Omega} + \frac{\delta \boldsymbol{P}_{\mathsf{CR}}}{\delta I} \right)$$

- Alfvén velocity v_A = B/√4πρ with B ~ B_{eq} from LOFAR and ρ from X-ray data
- X_{CR} calibrated to γ rays
- P_{th} from X-ray data
- pressure fluctuations $\delta P_{\rm CR}/\delta I$ (e.g., due to weak shocks of $\mathcal{M}\simeq$ 1.1)

★ E → ★ E →

Radio emission Gamma rays AGN feedback

Cosmic-ray heating vs. radiative cooling (1)

CR Alfvén-wave heating:

$$\mathcal{H}_{\mathsf{CR}} = -\boldsymbol{v}_{\mathsf{A}} \cdot \nabla \boldsymbol{P}_{\mathsf{CR}} = -\boldsymbol{v}_{\mathsf{A}} \left(\boldsymbol{X}_{\mathsf{CR}} \nabla_r \langle \boldsymbol{P}_{\mathsf{th}} \rangle_{\Omega} + \frac{\delta \boldsymbol{P}_{\mathsf{CR}}}{\delta I} \right)$$

- Alfvén velocity v_A = B/√4πρ with B ~ B_{eq} from LOFAR and ρ from X-ray data
- X_{CR} calibrated to γ rays
- P_{th} from X-ray data
- pressure fluctuations $\delta P_{CR}/\delta I$ (e.g., due to weak shocks of $\mathcal{M}\simeq$ 1.1)

radiative cooling:

$$C_{rad} = n_e n_t \Lambda_{cool}(T, Z)$$

• cooling function Λ_{cool} with $Z \simeq Z_{\odot}$ determined from X-ray data

Radio emission Gamma rays AGN feedback

Cosmic-ray heating vs. radiative cooling (2) Global thermal equilibrium on all scales in M87

Radio emission Gamma rays AGN feedback

- isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations

Radio emission Gamma rays AGN feedback

Local stability analysis (2) Theory predicts observed temperature floor at $kT \simeq 1$ keV

Christoph Pfrommer Non-thermal Emission from Galaxy Clusters

Radio emission Gamma rays AGN feedback

Virgo cluster cooling flow: temperature profile X-ray observations confirm temperature floor at $kT \simeq 1 \text{ keV}$

Radio emission Gamma rays AGN feedback

Conclusions on AGN feedback by cosmic-ray heating

- LOFAR puzzle of "missing fossil electrons" solved by mixing with dense cluster gas and Coulomb cooling
- predicted γ rays identified with low state of M87 \rightarrow estimate CR-to-thermal pressure of $X_{CR} = 0.31$
- CR Alfvén wave heating balances radiative cooling on all scales
- local thermal stability analysis predicts observed temperature floor at $kT \simeq 1 \text{ keV}$

outlook: simulate steaming CRs coupled to MHD, cosmological cluster simulations, ...

★ E → ★ E →

Models Sources Constraints

Outline

- Cosmological simulations
 - Introduction
 - Physics in simulations
 - Cosmic rays in galaxy clusters
- 2 Non-thermal signatures
 - Radio emission
 - Gamma rays
 - AGN feedback
- 3 Dark matter searches
 - Models
 - Sources
 - Constraints

∃ → < ∃ →</p>

Models Sources Constraints

Searching for dark matter (DM)

correct relic density \rightarrow DM annihilation in the Early Universe

Models Sources Constraints

1. "Standard" supersymmetric DM

consider benchmark models of supersymmetric DM

Models Sources Constraint

2. DM with Yukawa-type interactions

- heavy DM interacts through light force carrier ϕ
- repeated exchange of ϕ \rightarrow Sommerfeld effect
- multiply cross-section by enhancement factor S

- 王

Models Sources Constraints

2. DM with Yukawa-type interactions

- heavy DM interacts through light force carrier ϕ
- repeated exchange of ϕ \rightarrow Sommerfeld effect
- multiply cross-section by enhancement factor S
- near bound state resonances expected:
 - off resonance: $S \propto v^{-1}$
 - on resonance: ${m S} \propto v^{-2}$

Models Sources Constraints

2. DM with Yukawa-type interactions

- heavy DM interacts through light force carrier ϕ
- repeated exchange of ϕ \rightarrow Sommerfeld effect
- multiply cross-section by enhancement factor S
- near bound state resonances expected:
 - off resonance: $\mathcal{S} \propto v^{-1}$
 - on resonance: ${\it S} \propto v^{-2}$
- for m_φ ≤ 100 MeV, φ can only decay into leptons (e, μ)
 → leptophilic DM

Models Sources Constraints

Indirect DM searches: sources

Very good statistics, but astrophysics and galactic diffuse foregrounds

・ロト ・ 同ト ・ ヨト ・ ヨト

Models Sources Constraints

DM searches in clusters vs. dwarfs

Galaxy clusters:

Dwarf galaxies:

- combined limits for dwarf galaxies ~ 20 times more constraining
- is this really true? → consider substructure!

三 🕨 🔸

Models Sources Constraints

Enhancement from DM substructures

Constant offset in the luminosity from substructures between different mass resolutions in the simulation (M_{res}).

Norm $\propto M_{res}^{-0.226}$

Extrapolate to the minimal mass of dark matter halos (M_{min}) that can form.

The cold dark matter scenario suggests $M_{min} \sim 10^6 M_{\odot}$.

Hofmann, Schwarz and Stöcker, 2008 Green, Hofmann and Schwarz, 2005

 $L_{\rm sub}(<\mathbf{r}) \propto (M_{200} / M_{\rm res})^{0.226}$

イロト イポト イヨト イヨ

Models Sources Constraints

Galaxy clusters vs. dwarf galaxies

• DM annihilation flux of smooth (unresolved) halo:

$$F \propto \int \mathrm{d} \, V rac{
ho^2}{D^2} \sim f(c) \, rac{M}{D^2}$$

Models Sources Constraints

Galaxy clusters vs. dwarf galaxies

• DM annihilation flux of smooth (unresolved) halo:

$$F \propto \int {
m d} \, V {
ho^2 \over D^2} \sim f(c) \, {M \over D^2}$$

 \rightarrow smooth component of best dwarf and cluster targets are equally bright!

Models Sources Constraints

Galaxy clusters vs. dwarf galaxies

• DM annihilation flux of smooth (unresolved) halo:

$${\sf F} \propto \int {\sf d} \, V rac{
ho^2}{D^2} \sim f(m{c}) \, rac{M}{D^2}$$

 \rightarrow smooth component of best dwarf and cluster targets are equally bright!

- DM substructure is less concentrated compared to the smooth halo (dynamical friction, tidal heating and disruption): the DM luminosity is dominated by substructure at the virial radius, *if* present!
 - \rightarrow these regions are tidally stripped in dwarf galaxies
 - \rightarrow in cluster, subhalos enhance DM luminosity by up to 1000

(e.g., Pinzke, C.P., Bergström 2011; Gao et al. 2011)

Models Sources Constraints

Spatial DM distribution

- form of smooth density profile only important for central region, majority of smooth flux accumulates around r ~ r_s/3
- emission from substructures dominated by outer regions
 → spatially extended
- large boost in clusters (~ 1000); smaller boost in dwarf satellites (~ 20) → much smaller if outskirts are tidally stripped

Models Sources Constraints

DM searches in clusters vs. dwarfs

Clusters with substructures:

Dwarf galaxies:

Huang et al. 2012 (see also Ando & Nagai 2012)

Ackermann et al. (Fermi-LAT) 2011

 galaxy clusters ~ 10 times more constraining than dwarf satellites when accounting for substructures!

Models Sources Constraints

DM-induced γ rays: *leptophilic models*

Annihilation rate in these models enhanced by **Sommerfeld effect** as well as **DM substructures**.

Gamma-ray emission components:

Final state radiation

• IC on background radiation fields (CMB, starlight and dust)

Models Sources Constraints

Gamma-ray spectrum: leptophilic DM vs. CRs

Models Sources Constraints

DM-induced γ rays: SUSY benchmark models

Representation of high mass (~1 TeV) DM models with high gamma-ray emission.

Luminosity **boosted by substructures** in the smooth DM halo.

Gamma-ray emission components:

- Annihilating neutralinos emitting continuum emission
- Final state radiation
- IC on background radiation fields (CMB, starlight and dust)

프 🖌 🛪 프 🕨

Models Sources Constraints

Gamma-ray spectrum: benchmark DM vs. CRs

Models Sources Constraints

Comparing clusters and emission processes

Pinzke, C.P., Bergström 2011

- Fornax: comparably high DM-induced γ-ray flux and low CR-induced emission → tight limits on DM properties
- Coma: CR-induced emission soon in reach for Fermi

Models Sources Constraints

Constraining boost factors (leptophilic models)

Models Sources Constraints

Constraining boost factors (leptophilic models)

 Fornax and M49 constrain the saturated boost from Sommerfeld enhancement (SFE) to < 5

Models Sources Constraints

Constraining boost factors (leptophilic models)

• Alternatively, if SFE is realized in Nature, this would limit the substructure mass to $M_{\rm lim} > 10^4 {\rm M}_{\odot}$ – a challenge for structure formation and most particle physics models (van den Aarssen et al. 2012)

Models Sources Constraints

Conclusions on dark matter searches in clusters

Galaxy clusters are competitive sources for constraining dark matter:

- cluster luminosity boosted by ~ 1000 (for $\textit{M}_{min} \simeq 10^{-6}\,M_{\odot})$
- flat brightness profiles and spatially extended \rightarrow challenging for IACTs, better probed by Fermi-LAT

Conclusions on dark matter searches in clusters

Galaxy clusters are competitive sources for constraining dark matter:

- cluster luminosity boosted by ~ 1000 (for $\textit{M}_{min} \simeq 10^{-6}\, M_{\odot})$
- flat brightness profiles and spatially extended \rightarrow challenging for IACTs, better probed by Fermi-LAT
- Leptophilic DM models:
 - Fermi-LAT data constrains the Sommerfeld enhancement to < 5
 - if DM interpretation of lepton excess seen by PAMELA/Fermi is correct, then smallest subhalos have $M > 10^4 M_{\odot}$

→ E → < E →</p>
Conclusions on dark matter searches in clusters

Galaxy clusters are competitive sources for constraining dark matter:

- cluster luminosity boosted by ~ 1000 (for $\textit{M}_{min} \simeq 10^{-6}\, M_{\odot})$
- flat brightness profiles and spatially extended \rightarrow challenging for IACTs, better probed by Fermi-LAT

Leptophilic DM models:

- Fermi-LAT data constrains the Sommerfeld enhancement to < 5
- if DM interpretation of lepton excess seen by PAMELA/Fermi is correct, then smallest subhalos have $M > 10^4 M_{\odot}$

SUSY benchmark models:

• accounting for substructure boost allows to constrain interesting DM parameter space ($\langle \sigma v \rangle \lesssim 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$, $m_{\chi} \gtrsim 100 \text{ GeV}$)

・ 同 ト ・ ヨ ト ・ ヨ ト

Cosmological simulations Non-thermal signatures Dark matter searches Models Sources Constraints

Literature for the talk

Cosmic rays in clusters:

- Pfrommer, Enßlin, Springel, Jubelgas, Dolag, Simulating cosmic rays in clusters of galaxies – I. Effects on the Sunyaev-Zel'dovich effect and the X-ray emission, 2007, MNRAS, 378, 385.
- Pfrommer, Enßlin, Springel, Simulating cosmic rays in clusters of galaxies II. A unified scheme for radio halos and relics with predictions of the γ-ray emission, 2008, MNRAS, 385, 1211.
- Pinzke & Pfrommer, Simulating the gamma-ray emission from galaxy clusters: a universal cosmic ray spectrum and spatial distribution, 2010, MNRAS, 409, 449.
- Pfrommer, Toward a comprehensive model for feedback by active galactic nuclei: new insights from M87 observations by LOFAR, Fermi and H.E.S.S., 2013, ApJ, in print, arXiv:1303.5443.

Dark matter signatures:

- Pinzke, Pfrommer, Bergström, Prospects of detecting gamma-ray emission from galaxy clusters: cosmic rays and dark matter annihilations, 2011, Phys. Rev. D 84, 123509.
- Pinzke, Pfrommer, Bergström, Gamma-rays from dark matter annihilations strongly constrain the substructure in halos, 2009, Phys. Rev. Lett., 103, 181302.

イロト イポト イヨト イヨト