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Cluster mergers: the most energetic cosmic events

1E 0657-56 (“Bullet cluster”)
(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical:
NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing:
NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)

Abell 3667
(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)
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Giant radio halo in the Coma cluster

thermal X-ray emission
(Snowden/MPE/ROSAT)

radio synchrotron emission
(Deiss/Effelsberg)
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High-Energy Astrophysics in Galaxy Clusters
Understanding non-thermal emission (from radio to γ rays)

plasma astrophysics:
→ shock and particle acceleration
→ large-scale magnetic fields
→ turbulence

structure formation and galaxy cluster cosmology:
→ illuminating the process of structure formation
→ cosmic ray feedback: shaping the thermal cluster history
→ calibrating thermal cluster observables: cluster cosmology

indirect detection of dark matter:
→ cosmic ray vs. DM annihilation γ rays
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Cosmological simulations – flowchart

Cluster observables: Physical processes in clusters:

thermal
energy
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cooling

stellar 
populations
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Cosmological simulations with cosmic ray physics
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Cosmological simulations with cosmic ray physics

Cluster observables: Physical processes in clusters:

cosmic ray
energy

thermal
energy

shockssupernovae Coulomb
losses

radiative
cooling

hadronic
losses

stellar 
populations

Sunyaev-
Zeldovich effect

X-ray
emission

galaxy 
spectra

radio
synchrotron

gamma-ray
emission loss processes

gain processes
observables
populationsC.P., Enßlin, Springel (2008)
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Cosmological cluster simulation: gas density
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Mass weighted temperature
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Shock strengths weighted by dissipated energy
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Shock strengths weighted by injected CR energy
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Evolved CR pressure
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Relative CR pressure PCR/Ptotal
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Structure formation shocks

1

10

-15 -10 -5 0 5 10 15-15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15
x [ h-1 Mpc ]

-15

-10

-5

0

5

10

15

y 
[ h

-1
 M

pc
 ]

-15 -10 -5 0 5 10 15-15

-10

-5

0

5

10

15

〈M
ε̇

di
ss
/
〈ε̇

di
ss
〉

Christoph Pfrommer Non-thermal Emission from Galaxy Clusters



Cosmological simulations
Non-thermal signatures

Dark matter searches

Radio emission
Gamma rays
AGN feedback

Radio gischt: shock-accelerated CRe
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Radio gischt + central hadronic halo = giant radio halo
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Which one is the simulation/observation of A2256?

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
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Observation – simulation of A2256

Clarke & Enßlin (2006) C.P. (in prep.)

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
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Universal CR spectrum in clusters (Pinzke & C.P. 2010)

Fermi:        ~ 2.5

IACT:       ~ 2.2αp

α p
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Normalized CR spectrum shows universal concave shape→ governed by
hierarchical structure formation and the implied distribution of Mach numbers
that a fluid element had to pass through in cosmic history.
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CR proton and γ-ray spectra (Pinzke & C.P. 2010)
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CR proton and γ-ray spectra (Pinzke & C.P. 2010)
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An analytic model for the cluster γ-ray emission
Comparison: simulation vs. analytic model, Mvir ' (1014, 1015) M�
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Constraining CR physics with γ-ray observations

MAGIC

VERITAS Fermi

non-detections constrain PCR/Pth < 1.7% in Coma and Perseus
and to . 1% in a stacked sample of 50 Fermi clusters

constrains maximum shock acceleration efficiency to < 50%

hydrostatic cluster masses not significantly biased by CRs:
important for cluster cosmology!
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Conclusions on non-thermal signatures in clusters
Exploring the memory of structure formation

primary, shock-accelerated CR electrons resemble current
accretion and merging shock waves

CR protons/hadronically produced CR electrons trace the time
integrated non-equilibrium activities of clusters that is modulated
by the recent dynamical activities

Fermi, MAGIC, VERITAS non-detections of γ rays from clusters
start to limit CR acceleration efficiencies to < 50%
(or tell us about CR transport processes)

→ Multi-messenger approach from the radio to γ-ray regime!
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Virgo cluster cooling flow: M87 at radio wavelengths

ν = 1.4 GHz (Owen+ 2000)

ν = 140 MHz (LOFAR/de Gasperin+ 2012)

expectation: low frequencies sensitive to fossil electrons
(E ∼ 100 MeV) → time-integrated activity of AGN feedback!

LOFAR: halo confined to same region at all frequencies and no
low-ν spectral steepening → puzzle of “missing fossil electrons”
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Virgo cluster cooling flow: M87 at radio wavelengths

ν = 1.4 GHz (Owen+ 2000) ν = 140 MHz (LOFAR/de Gasperin+ 2012)

expectation: low frequencies sensitive to fossil electrons
(E ∼ 100 MeV) → time-integrated activity of AGN feedback!

LOFAR: halo confined to same region at all frequencies and no
low-ν spectral steepening → puzzle of “missing fossil electrons”
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Solutions to the “missing fossil electrons” problem

solutions:

special time: M87 turned on
∼ 40 Myr ago after long
silence
⇔ conflicts order unity duty
cycle inferred from stat. AGN
feedback studies (Birzan+ 2012)

Coulomb cooling removes
fossil electrons
→ efficient mixing of CR
electrons and protons with
dense cluster gas
→ predicts γ rays from
CRp-p interactions
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The γ-ray picture of M87

high state is time variable
→ jet emission

low state:
(1) steady flux

(2) γ-ray spectral index (2.2)
= CRp index
= CRe injection index as

probed by LOFAR

(3) spatial extension is under
investigation (?) Rieger & Aharonian (2012)

→ confirming this triad would be smoking gun for first γ-ray
signal from a galaxy cluster!
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Estimating the CR pressure in M87

X-ray data → n and T profiles

assume XCR = PCR/Pth
(self-consistency requirement)

Fγ ∝
∫

dV PCRn enables to
estimate XCR = 0.31
(allowing for Coulomb cooling
with τCoul = 40 Myr)

Rieger & Aharonian (2012)

→ in agreement with non-thermal pressure constraints from
dynamical potential estimates (Churazov+ 2010)
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Cosmic-ray heating vs. radiative cooling (1)

CR Alfvén-wave heating:

HCR = −υA · ∇PCR = −υA

(
XCR∇r 〈Pth〉Ω +

δPCR

δl

)
Alfvén velocity υA = B/

√
4πρ with

B ∼ Beq from LOFAR and ρ from X-ray data

XCR calibrated to γ rays

Pth from X-ray data

pressure fluctuations δPCR/δl (e.g., due to weak shocks ofM' 1.1)

radiative cooling:
Crad = nentΛcool(T , Z )

cooling function Λcool with Z ' Z� determined from X-ray data
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Cosmic-ray heating vs. radiative cooling (2)
Global thermal equilibrium on all scales in M87

1 10 100

10-28

10-27

10-26

10-25

10-24

radius [kpc]

C
ra

d
,H

C
R

[e
rg

s
cm
−

3
s−

1
]

HCR, Psmooth + δP
HCR, Psmooth

Crad(0.7 Z⊙ . Z . 1.3 Z⊙)

radial extent of radio halo:
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Local stability analysis (1)

heating

kT

cooling

isobaric perturbations to global thermal equilibrium

CRs are adiabatically trapped by perturbations
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isobaric perturbations to global thermal equilibrium

CRs are adiabatically trapped by perturbations
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Local stability analysis (1)

cooling

kT

unstable FP

heating

stable FP

isobaric perturbations to global thermal equilibrium

CRs are adiabatically trapped by perturbations
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Local stability analysis (1)

cooling

unstable FP

region of stability region of instability

separatrix

heating

stable FP

kT
isobaric perturbations to global thermal equilibrium

CRs are adiabatically trapped by perturbations
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Local stability analysis (2)
Theory predicts observed temperature floor at kT ' 1 keV
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Virgo cluster cooling flow: temperature profile
X-ray observations confirm temperature floor at kT ' 1 keV

(Matsushita+ 2002)
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Conclusions on AGN feedback by cosmic-ray heating

LOFAR puzzle of “missing fossil electrons” solved by mixing with
dense cluster gas and Coulomb cooling

predicted γ rays identified with low state of M87
→ estimate CR-to-thermal pressure of XCR = 0.31

CR Alfvén wave heating balances radiative cooling on all scales

local thermal stability analysis predicts observed temperature
floor at kT ' 1 keV

outlook: simulate steaming CRs coupled to MHD, cosmological
cluster simulations, . . .
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Searching for dark matter (DM)

correct relic density → DM annihilation in the Early Universe
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1. “Standard” supersymmetric DM

consider benchmark models of supersymmetric DM
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2. DM with Yukawa-type interactions

heavy DM interacts through
light force carrier φ

repeated exchange of φ
→ Sommerfeld effect

multiply cross-section by
enhancement factor S

near bound state
resonances expected:

off resonance: S ∝ υ−1

on resonance: S ∝ υ−2

for mφ . 100 MeV, φ can
only decay into leptons (e, µ)
→ leptophilic DM

Lattanzi, Silk (2009)
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light force carrier φ

repeated exchange of φ
→ Sommerfeld effect

multiply cross-section by
enhancement factor S

near bound state
resonances expected:
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for mφ . 100 MeV, φ can
only decay into leptons (e, µ)
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Indirect DM searches: sources
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DM searches in clusters vs. dwarfs

Galaxy clusters:

Huang et al. 2011 (see also Ando & Nagai 2012)

Dwarf galaxies:

Ackermann et al. (Fermi-LAT) 2011

combined limits for dwarf galaxies ∼ 20 times more constraining

is this really true? → consider substructure!
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Enhancement from DM substructures
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Galaxy clusters vs. dwarf galaxies

DM annihilation flux of smooth (unresolved) halo:

F ∝
∫

dV
ρ2

D2 ∼ f (c)
M
D2

→ smooth component of best dwarf and cluster targets are
equally bright!

DM substructure is less concentrated compared to the smooth
halo (dynamical friction, tidal heating and disruption):
the DM luminosity is dominated by substructure at the virial
radius, if present!
→ these regions are tidally stripped in dwarf galaxies
→ in cluster, subhalos enhance DM luminosity by up to 1000
(e.g., Pinzke, C.P., Bergström 2011; Gao et al. 2011)
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Spatial DM distribution
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Pinzke, C.P., Bergström 2011

form of smooth density profile only important for central region,
majority of smooth flux accumulates around r ' rs/3

emission from substructures dominated by outer regions
→ spatially extended

large boost in clusters (∼ 1000); smaller boost in dwarf satellites
(∼ 20) → much smaller if outskirts are tidally stripped
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DM searches in clusters vs. dwarfs

Clusters with substructures:

Huang et al. 2012 (see also Ando & Nagai 2012)

Dwarf galaxies:

Ackermann et al. (Fermi-LAT) 2011

galaxy clusters ∼ 10 times more constraining than dwarf
satellites when accounting for substructures!
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DM-induced γ rays: leptophilic models
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Gamma-ray spectrum: leptophilic DM vs. CRs
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Pinzke, C.P., Bergström 2011
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DM-induced γ rays: SUSY benchmark models

Christoph Pfrommer Non-thermal Emission from Galaxy Clusters



Cosmological simulations
Non-thermal signatures

Dark matter searches

Models
Sources
Constraints

Gamma-ray spectrum: benchmark DM vs. CRs
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Comparing clusters and emission processes

Pinzke, C.P., Bergström 2011

Fornax: comparably high DM-induced γ-ray flux and low
CR-induced emission → tight limits on DM properties

Coma: CR-induced emission soon in reach for Fermi
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Constraining boost factors (leptophilic models)
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Constraining boost factors (leptophilic models)
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5
Pinzke, C.P., Bergström 2011

Fornax and M49 constrain the saturated boost from Sommerfeld
enhancement (SFE) to < 5
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Constraining boost factors (leptophilic models)

104Mo
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Pinzke, C.P., Bergström 2011

Alternatively, if SFE is realized in Nature, this would limit the
substructure mass to Mlim > 104M� – a challenge for structure
formation and most particle physics models (van den Aarssen et al. 2012)
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Conclusions on dark matter searches in clusters

Galaxy clusters are competitive sources for constraining dark matter:

cluster luminosity boosted by ∼ 1000 (for Mmin ' 10−6 M�)

flat brightness profiles and spatially extended → challenging for
IACTs, better probed by Fermi-LAT

Leptophilic DM models:

Fermi-LAT data constrains the Sommerfeld enhancement to < 5

if DM interpretation of lepton excess seen by PAMELA/Fermi is
correct, then smallest subhalos have M > 104 M�

SUSY benchmark models:

accounting for substructure boost allows to constrain interesting
DM parameter space (〈συ〉 . 3×10−26 cm3 s−1, mχ & 100 GeV)
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Literature for the talk

Cosmic rays in clusters:
Pfrommer, Enßlin, Springel, Jubelgas, Dolag, Simulating cosmic rays in clusters
of galaxies – I. Effects on the Sunyaev-Zel’dovich effect and the X-ray emission,
2007, MNRAS, 378, 385.

Pfrommer, Enßlin, Springel, Simulating cosmic rays in clusters of galaxies – II. A
unified scheme for radio halos and relics with predictions of the γ-ray emission,
2008, MNRAS, 385, 1211.

Pinzke & Pfrommer, Simulating the gamma-ray emission from galaxy clusters: a
universal cosmic ray spectrum and spatial distribution, 2010, MNRAS, 409, 449.

Pfrommer, Toward a comprehensive model for feedback by active galactic nuclei:
new insights from M87 observations by LOFAR, Fermi and H.E.S.S., 2013, ApJ,
in print, arXiv:1303.5443.

Dark matter signatures:
Pinzke, Pfrommer, Bergström, Prospects of detecting gamma-ray emission from
galaxy clusters: cosmic rays and dark matter annihilations, 2011, Phys. Rev. D
84, 123509.

Pinzke, Pfrommer, Bergström, Gamma-rays from dark matter annihilations
strongly constrain the substructure in halos, 2009, Phys. Rev. Lett., 103, 181302.
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