Blazar heating: physical mechanism and cosmological consequences

Christoph Pfrommer¹

in collaboration with

Avery E. Broderick², Phil Chang³, Ewald Puchwein¹, Volker Springel¹

¹Heidelberg Institute for Theoretical Studies, Germany ²Perimeter Institute/University of Waterloo, Canada ³University of Wisconsin-Milwaukee, USA

Jun 18, 2013 / ENIGMA workshop, MPIA Heidelberg

Outline

The physics of blazar heating

- Introduction and motivation
- Propagation of TeV photons
- Plasma instabilities

2 Cosmological consequences

- Unifying blazars and quasars
- The intergalactic medium
- Formation of dwarf galaxies

Introduction and motivation Propagation of TeV photons Plasma instabilities

Outline

The physics of blazar heating

- Introduction and motivation
- Propagation of TeV photons
- Plasma instabilities
- 2 Cosmological consequences
 - Unifying blazars and quasars
 - The intergalactic medium
 - Formation of dwarf galaxies

Introduction and motivation Propagation of TeV photons Plasma instabilities

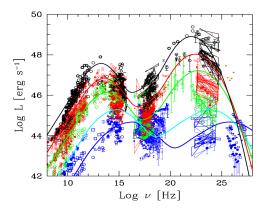
relativistic jet

Unified model of active galactic nuclei

accretion disk

dusty torus

super-massive black hole



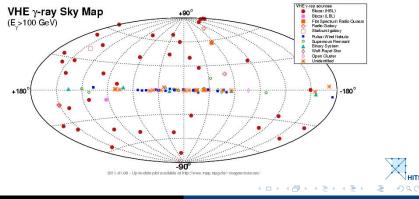
The physics of blazar heating

Cosmological consequences

Introduction and motivation Propagation of TeV photons Plasma instabilities

The blazar sequence

Ghisellini (2011), arXiv:1104.0006


- continuous sequence from LBL–IBL–HBL
- TeV blazars are dim (very sub-Eddington)
- TeV blazars have rising spectra in the Fermi band (α < 2)
- define TeV blazar = hard IBL + HBL

Introduction and motivation Propagation of TeV photons Plasma instabilities

The TeV gamma-ray sky

There are several classes of TeV sources:

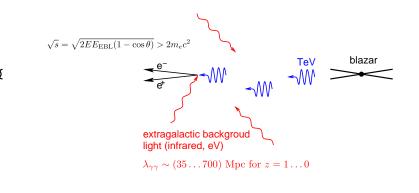
- Galactic pulsars, BH binaries, supernova remnants
- Extragalactic mostly blazars, two starburst galaxies

Christoph Pfrommer

Blazar heating

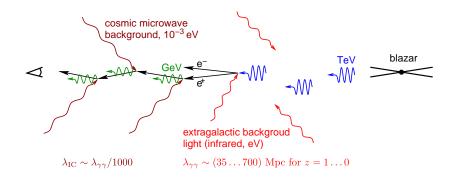
Introduction and motivation Propagation of TeV photons Plasma instabilities

Annihilation and pair production

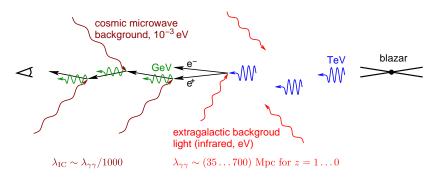


Introduction and motivation Propagation of TeV photons Plasma instabilities

イロト イポト イヨト イヨト

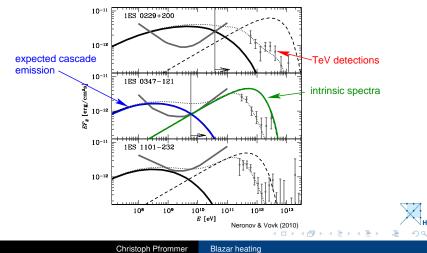

Annihilation and pair production

Introduction and motivation Propagation of TeV photons Plasma instabilities

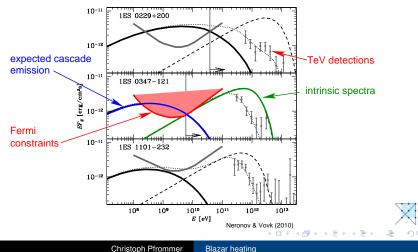

イロト イポト イヨト イヨト

Inverse Compton cascades

Introduction and motivation Propagation of TeV photons Plasma instabilities

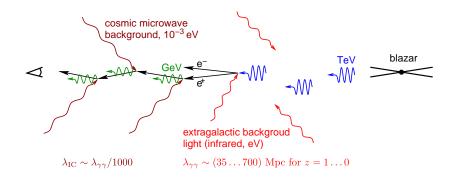

Inverse Compton cascades

each TeV point source should also be a GeV point source!


What about the cascade emission?

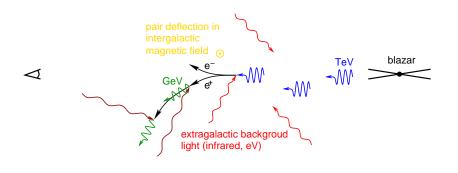
Every TeV source should be associated with a 1-100 GeV gamma-ray halo

What about the cascade emission?

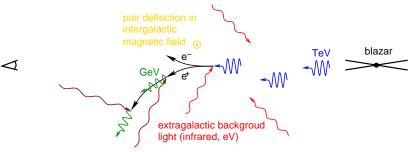

Every TeV source should be associated with a 1-100 GeV gamma-ray halo – **not seen!**

Introduction and motivation Propagation of TeV photons Plasma instabilities

イロト イポト イヨト イヨト

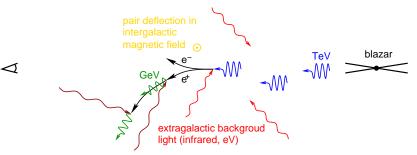

Inverse Compton cascades

Introduction and motivation Propagation of TeV photons Plasma instabilities


イロト イポト イヨト イヨト

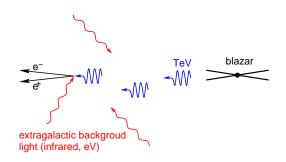
Magnetic field deflection

Introduction and motivation Propagation of TeV photons Plasma instabilities


Magnetic field deflection

- GeV point source diluted
 — weak "pair halo"
- stronger B-field implies more deflection and dilution, gamma-ray non-detection $\longrightarrow B \gtrsim 10^{-16} \,\mu\text{G}$ primordial fields?

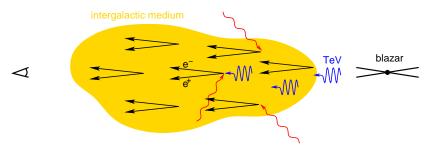
Introduction and motivation Propagation of TeV photons Plasma instabilities


Magnetic field deflection

• problem for unified AGN model: blazars and quasars apparently do not share the same cosmological evolution (as otherwise, evolving blazars would overproduce the gamma-ray background)!

Introduction and motivation Propagation of TeV photons Plasma instabilities

What else could happen?

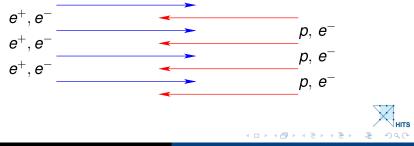


Introduction and motivation Propagation of TeV photons Plasma instabilities

ъ

Plasma beam instabilities

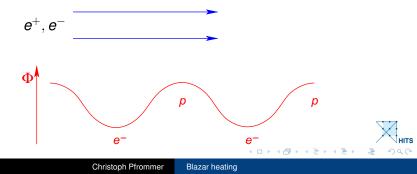
 pair plasma beam propagating through the intergalactic medium


Christoph Pfrommer Blazar heating

Introduction and motivation Propagation of TeV photons Plasma instabilities

Interlude: plasma physics

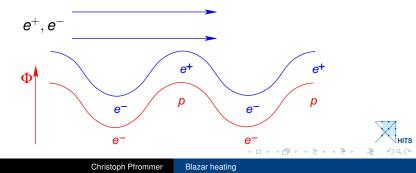
How do e^+/e^- beams propagate through the intergalactic medium (IGM)?


- interpenetrating beams of charged particles are unstable to plasma instabilities
- consider the two-stream instability:

Two-stream instability: mechanism

consider wave-like perturbation in background plasma along the beam direction (Langmuir wave):

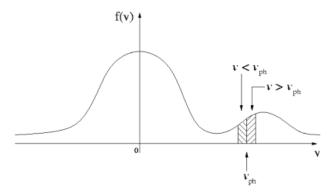
- initially homogeneous beam-e⁻: attractive (repulsive) force by potential maxima (minima)
- e^- attain lowest velocity in potential minima \rightarrow bunching up
- e^+ attain lowest velocity in potential maxima \rightarrow bunching up


Introduction and motivation Propagation of TeV photons Plasma instabilities

Two-stream instability: mechanism

consider wave-like perturbation in background plasma along the beam direction (Langmuir wave):

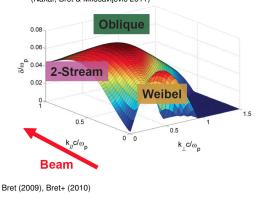
- beam-e⁺/e⁻ couple in phase with the background perturbation: enhances background potential
- stronger forces on beam- $e^+/e^-
 ightarrow$ positive feedback

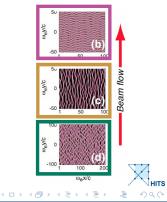

• exponential wave-growth \rightarrow instability

Introduction and motivation Propagation of TeV photons Plasma instabilities

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Two-stream instability: momentum transfer

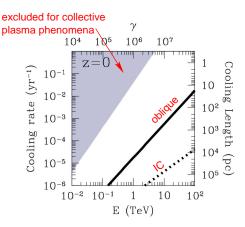



- particles with v ≥ v_{phase}:
 pair momentum → plasma waves → growing modes: instability
- particles with $\nu \leq v_{\text{phase}}$: plasma wave momentum \rightarrow pairs \rightarrow Landau damping

Introduction and motivation Propagation of TeV photons Plasma instabilities

Oblique instability

- k oblique to v_{beam}: real word perturbations don't choose "easy" alignment = ∑ all orientations
- oblique grows faster than two-stream: E-fields can easier deflect ultra-relativistic particles than change their parallel velocities (Nakar, Bret & Milosavlievic 2011)

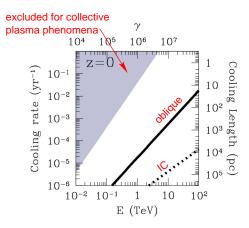


Christoph Pfrommer Blaza

Blazar heating

Introduction and motivation Propagation of TeV photons Plasma instabilities

Beam physics – growth rates


- consider a light beam penetrating into relatively dense plasma
- maximum growth rate

$$\Gamma \simeq 0.4 \, \gamma \, rac{n_{
m beam}}{n_{
m IGM}} \, \omega_{
m p}$$

Broderick, Chang, C.P. (2012), also Schlickeiser+ (2012)

Introduction and motivation Propagation of TeV photons Plasma instabilities

Beam physics – growth rates

Broderick, Chang, C.P. (2012), also Schlickeiser+ (2012)

- consider a light beam penetrating into relatively dense plasma
- maximum growth rate

$$\Gamma \simeq 0.4\,\gamma\,rac{\textit{n}_{
m beam}}{\textit{n}_{
m IGM}}\,\omega_{
m p}$$

- oblique instability beats inverse Compton cooling by factor 10-100
- assume that instability grows at linear rate up to saturation

Jnifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

Outline

- The physics of blazar heating
 - Introduction and motivation
 - Propagation of TeV photons
 - Plasma instabilities

2 Cosmological consequences

- Unifying blazars and quasars
- The intergalactic medium
- Formation of dwarf galaxies

Jnifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

TeV emission from blazars – a new paradigm

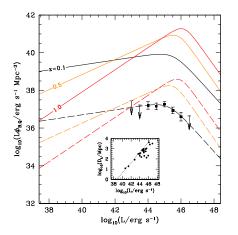
$$\gamma_{\rm TeV} + \gamma_{\rm eV} \rightarrow e^+ + e^- \rightarrow$$

inv. Compton cascades
$$\rightarrow \gamma_{GeV}$$

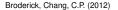
plasma instabilities \rightarrow IGM heating

Jnifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

TeV emission from blazars – a new paradigm

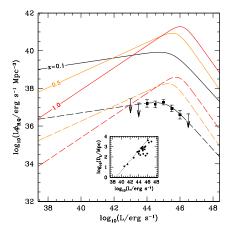

$$\gamma_{\text{TeV}} + \gamma_{\text{eV}} \rightarrow e^+ + e^- \rightarrow \begin{cases} \text{inv. Compton cascades} \rightarrow \gamma_{\text{GeV}} \\ \\ \text{plasma instabilities} \rightarrow \text{IGM heating} \end{cases}$$

absence of $\gamma_{\rm GeV}{\rm 's}$ has significant implications for \ldots


- intergalactic magnetic field estimates
- unified picture of TeV blazars and quasars

Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

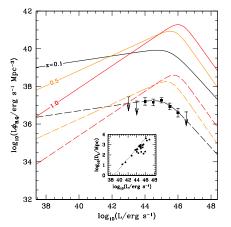
TeV blazar luminosity density: today



- collect luminosity of all 23 TeV blazars with good spectral measurements
- account for the selection effects (sky coverage, duty cycle, galactic occultation, TeV flux limit)
- TeV blazar luminosity density is a scaled version (η_B ~ 0.2%) of that of quasars!

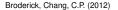
Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

Unified TeV blazar-quasar model

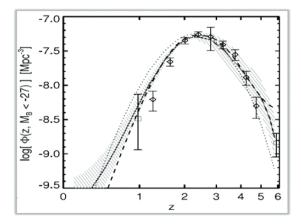

Quasars and TeV blazars are:

- regulated by the same mechanism
- contemporaneous elements of a single AGN population: TeV-blazar activity does not lag quasar activity

Broderick, Chang, C.P. (2012)


Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

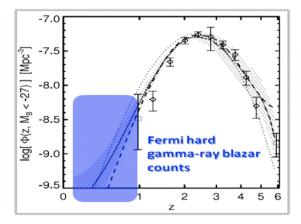
Unified TeV blazar-quasar model


Quasars and TeV blazars are:

- regulated by the same mechanism
- contemporaneous elements of a single AGN population: TeV-blazar activity does not lag quasar activity
- \rightarrow assume that they trace each other for all redshifts!

Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

How many TeV blazars are there?

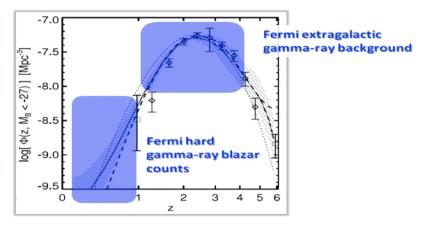


Hopkins+ (2007)

∃ → < ∃</p>

Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

How many TeV blazars are there?

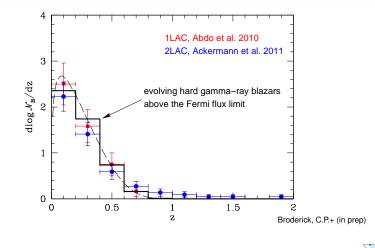


Hopkins+ (2007)

★ Ξ > ★ Ξ >

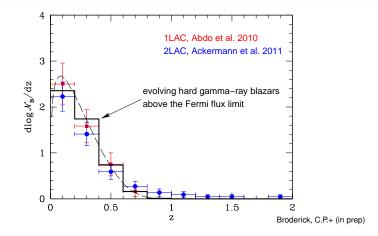
Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

How many TeV blazars are there?



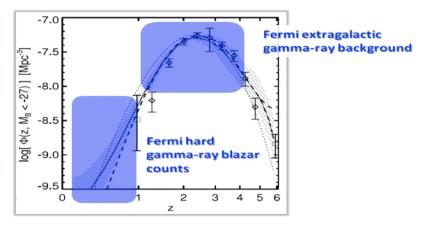
Hopkins+ (2007)

★ Ξ > ★ Ξ >


Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

Redshift distribution of *Fermi* hard γ -ray blazars

Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies


Redshift distribution of *Fermi* hard γ -ray blazars

 \rightarrow evolving (increasing) blazar population consistent with observed declining evolution (*Fermi* flux limit)!

Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

How many TeV blazars are there?

Hopkins+ (2007)

★ Ξ > ★ Ξ >

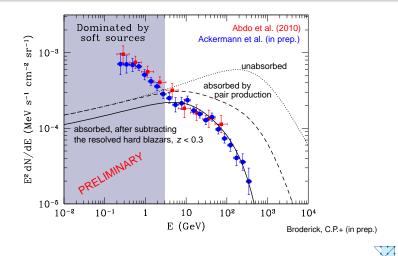
Extragalactic gamma-ray background

• intrinsic spectrum for a TeV blazar:

$$\frac{dN}{dE} = f\hat{F}_E = f\left[\left(\frac{E}{E_b}\right)^{\Gamma_l} + \left(\frac{E}{E_b}\right)^{\Gamma_b}\right]^{-1},$$

 $E_b = 1$ TeV is break energy, $\Gamma_h = 3$ is high-energy spectral index, Γ_I related to Γ_F , which is drawn from observed distribution

• extragalactic gamma-ray background (EGRB):


$$E^{2}\frac{dN}{dE}(E,z) = \frac{1}{4\pi}\int_{0}^{2}d\Gamma_{I}\int_{z}^{\infty}dV(z')\frac{\eta_{B}\tilde{\Lambda}_{Q}(z')\hat{F}_{E'}}{4\pi D_{L}^{2}}e^{-\tau_{E}(E',z')},$$

E' = E(1 + z') is gamma-ray energy at *emission*, $\tilde{\Lambda}_O$ is physical quasar luminosity density,

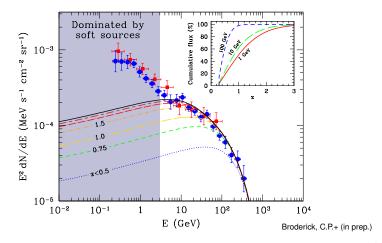
 $\eta_B \sim$ 0.2% is blazar fraction, au is optical depth

Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

Extragalactic gamma-ray background

Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

Extragalactic gamma-ray background


→ evolving population of hard blazars provides excellent match to latest EGRB by *Fermi* for $E \gtrsim 3$ GeV

Christoph Pfrommer

Blazar heating

Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

Extragalactic gamma-ray background

 \rightarrow the signal at 10 (100) GeV is dominated by redshifts $z \sim 1$ ($z \sim 0.8$)

TeV emission from blazars – a new paradigm

$$\gamma_{\text{TeV}} + \gamma_{\text{eV}} \rightarrow e^+ + e^- \rightarrow \begin{cases} \text{inv. Compton cascades} \rightarrow \gamma_{\text{GeV}} \\ \\ \text{plasma instabilities} \rightarrow \text{IGM heating} \end{cases}$$

absence of $\gamma_{\rm GeV}{\rm 's}$ has significant implications for \ldots

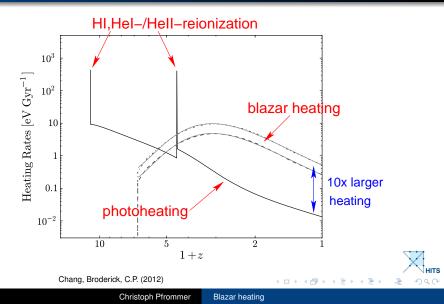
- intergalactic magnetic field estimates
- unified picture of TeV blazars and quasars: explains *Fermi's* γ-ray background and blazar number counts

TeV emission from blazars – a new paradigm

$$\gamma_{\text{TeV}} + \gamma_{\text{eV}} \rightarrow e^+ + e^- \rightarrow \begin{cases} \text{inv. Compton cascades} \rightarrow \gamma_{\text{GeV}} \\ \\ \text{plasma instabilities} \rightarrow \text{IGM heating} \end{cases}$$

absence of $\gamma_{\rm GeV}{\rm 's}$ has significant implications for \ldots

- intergalactic magnetic field estimates
- unified picture of TeV blazars and quasars: explains *Fermi's* γ-ray background and blazar number counts


additional IGM heating has significant implications for ...

- thermal history of the IGM: Lyman- α forest
- late time structure formation: dwarf galaxies, galaxy clusters

Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

Evolution of the heating rates

Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

Blazar heating vs. photoheating

• total power from AGN/stars vastly exceeds the TeV power of blazars

Blazar heating vs. photoheating

- total power from AGN/stars vastly exceeds the TeV power of blazars
- $T_{\rm IGM} \sim 10^4$ K (1 eV) at mean density ($z \sim$ 2)

$$arepsilon_{
m th}=rac{kT}{m_{
m p}c^2}\sim 10^{-9}$$

Blazar heating vs. photoheating

- total power from AGN/stars vastly exceeds the TeV power of blazars
- $T_{\rm IGM} \sim 10^4$ K (1 eV) at mean density ($z \sim$ 2)

$$arepsilon_{
m th} = rac{kT}{m_{
m p}c^2} \sim 10^{-9}$$

• radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)

$$arepsilon_{
m rad} = \eta \, \Omega_{
m bh} \sim 0.1 imes 10^{-4} \sim 10^{-5}$$

Blazar heating vs. photoheating

- total power from AGN/stars vastly exceeds the TeV power of blazars
- $T_{\rm IGM} \sim 10^4$ K (1 eV) at mean density ($z \sim$ 2)

$$arepsilon_{
m th} = rac{kT}{m_{
m p}c^2} \sim 10^{-9}$$

radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)

$$arepsilon_{
m rad} = \eta \, \Omega_{
m bh} \sim 0.1 imes 10^{-4} \sim 10^{-5}$$

• fraction of the energy energetic enough to ionize H $\scriptstyle\rm I$ is \sim 0.1:

$$arepsilon_{\text{UV}} \sim 0.1 arepsilon_{ ext{rad}} \sim 10^{-6} \quad o \quad kT \sim \text{keV}$$

A B > 4
 B > 4
 B

Blazar heating vs. photoheating

- total power from AGN/stars vastly exceeds the TeV power of blazars
- $T_{\rm IGM} \sim 10^4$ K (1 eV) at mean density ($z \sim$ 2)

$$arepsilon_{
m th} = rac{kT}{m_{
m p}c^2} \sim 10^{-9}$$

• radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)

$$arepsilon_{
m rad} = \eta \, \Omega_{
m bh} \sim 0.1 imes 10^{-4} \sim 10^{-5}$$

• fraction of the energy energetic enough to ionize H $\scriptscriptstyle\rm I$ is \sim 0.1:

$$arepsilon_{\text{UV}} \sim 0.1 arepsilon_{\text{rad}} \sim 10^{-6} \quad
ightarrow \quad kT \sim \text{keV}$$

• photoheating efficiency $\eta_{ph} \sim 10^{-3} \rightarrow kT \sim \eta_{ph} \varepsilon_{UV} m_p c^2 \sim eV$ (limited by the abundance of H I/He II due to the small recombination rate)

Blazar heating vs. photoheating

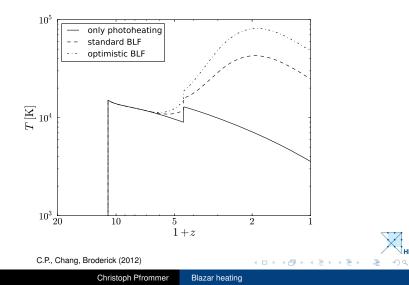
- total power from AGN/stars vastly exceeds the TeV power of blazars
- $T_{\rm IGM} \sim 10^4$ K (1 eV) at mean density ($z \sim$ 2)

$$arepsilon_{
m th}=rac{kT}{m_{
m p}c^2}\sim 10^{-9}$$

• radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)

$$arepsilon_{
m rad} = \eta \, \Omega_{
m bh} \sim 0.1 imes 10^{-4} \sim 10^{-5}$$

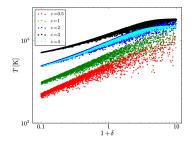
• fraction of the energy energetic enough to ionize H $\scriptscriptstyle\rm I$ is \sim 0.1:


$$arepsilon_{\text{UV}} \sim 0.1 arepsilon_{\text{rad}} \sim 10^{-6} \quad
ightarrow \quad kT \sim \text{keV}$$

- photoheating efficiency $\eta_{ph} \sim 10^{-3} \rightarrow kT \sim \eta_{ph} \varepsilon_{UV} m_p c^2 \sim eV$ (limited by the abundance of H I/He II due to the small recombination rate)
- blazar heating efficiency $\eta_{bh} \sim 10^{-3} \rightarrow kT \sim \eta_{bh} \varepsilon_{rad} m_p c^2 \sim 10 \text{ eV}$ (limited by the total power of TeV sources)

イロト イポト イヨト イヨト 二連

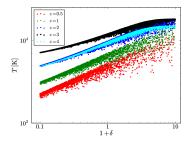
Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies


Thermal history of the IGM

Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

Evolution of the temperature-density relation

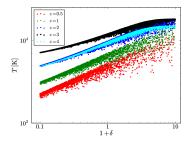
no blazar heating



Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

Evolution of the temperature-density relation

no blazar heating



blazars and extragalactic background light are uniform:
 → blazar heating rate independent of density

Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

Evolution of the temperature-density relation

no blazar heating

- blazars and extragalactic background light are uniform:
 - \rightarrow blazar heating rate independent of density
 - \rightarrow makes low density regions hot
 - ightarrow causes inverted temperature-density relation, $T \propto 1/\delta$

no blazar heating

The intergalactic medium

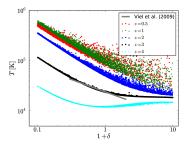
with blazar heating

Evolution of the temperature-density relation

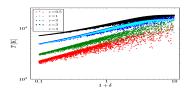
10 Viel et al. (2009 10° 된 10 10 $T[\mathbf{K}]$ 10^{4} 10^{3} 0. $1 + \delta$ $1 \pm \delta$

Chang, Broderick, C.P. (2012)

- blazars and extragalactic background light are uniform:
 - \rightarrow blazar heating rate independent of density
 - \rightarrow makes low density regions hot
 - \rightarrow causes inverted temperature-density relation, $T \propto 1/\delta$

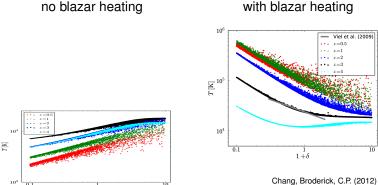


Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies


Blazars cause hot voids

no blazar heating

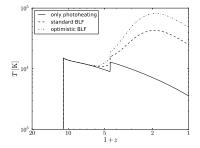
with blazar heating


Chang, Broderick, C.P. (2012)

The intergalactic medium

Blazars cause hot voids

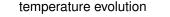
 $1 + \delta$

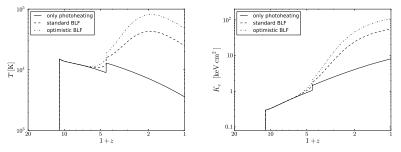

with blazar heating

 blazars completely change the thermal history of the diffuse IGM and late-time structure formation

Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

Entropy evolution


temperature evolution


Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

Entropy evolution

entropy evolution

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

C.P., Chang, Broderick (2012)

- evolution of entropy, $K_{\rm e} = kT n_{\rm e}^{-2/3}$, governs structure formation
- blazar heating: late-time, evolving, modest entropy floor

Dwarf galaxy formation

- thermal pressure opposes gravitational collapse on small scales
- characteristic length/mass scale below which objects do not form

Dwarf galaxy formation

- thermal pressure opposes gravitational collapse on small scales
- characteristic length/mass scale below which objects do not form
- hotter intergalactic medium → higher thermal pressure
 → higher Jeans mass:

$$M_J \propto rac{c_s^3}{
ho^{1/2}} \propto \left(rac{T_{
m IGM}^3}{
ho}
ight)^{1/2} \quad
ightarrow \quad rac{M_{J,
m blazar}}{M_{J,
m photo}} pprox \left(rac{T_{
m blazar}}{T_{
m photo}}
ight)^{3/2} \gtrsim 30$$

 \rightarrow blazar heating increases M_J by 30 over pure photoheating!

Dwarf galaxy formation

- thermal pressure opposes gravitational collapse on small scales
- characteristic length/mass scale below which objects do not form
- hotter intergalactic medium → higher thermal pressure
 → higher Jeans mass:

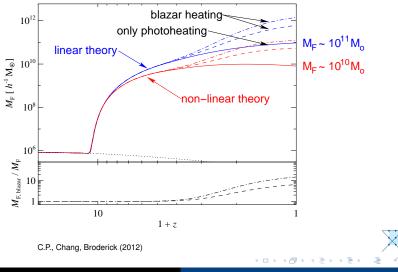
$$M_J \propto rac{c_s^3}{
ho^{1/2}} \propto \left(rac{T_{
m IGM}^3}{
ho}
ight)^{1/2} \quad
ightarrow \quad rac{M_{J,
m blazar}}{M_{J,
m photo}} pprox \left(rac{T_{
m blazar}}{T_{
m photo}}
ight)^{3/2} \gtrsim 30$$

 \rightarrow blazar heating increases M_J by 30 over pure photoheating!

complications:

non-linear collapse,

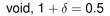
delayed pressure response in expanding universe \rightarrow concept of "filtering mass"

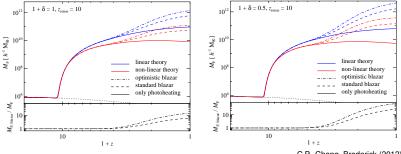

C.P., Chang, Broderick (2012)

・ロト ・ 同ト ・ ヨト ・ ヨト

Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

Dwarf galaxy formation – Filtering mass

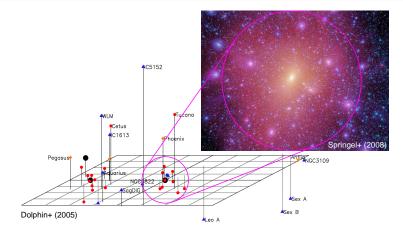



Christoph Pfrommer Blazar heating

Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

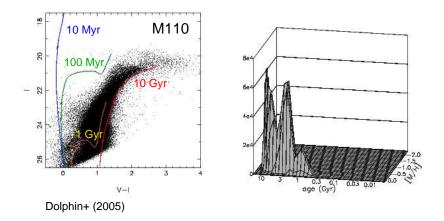
Peebles' void phenomenon explained?

mean density



- C.P., Chang, Broderick (2012)
- blazar heating efficiently suppresses the formation of void dwarfs within existing DM halos of masses $< 3 \times 10^{11} M_{\odot}$ (z = 0)
- may reconcile the number of void dwarfs in simulations and the paucity of those in observations

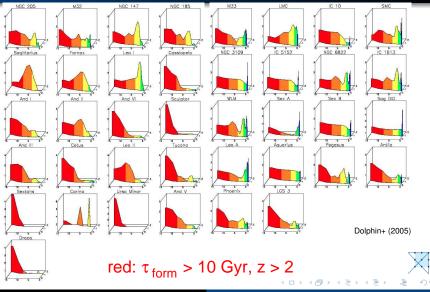
Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies


"Missing satellite" problem in the Milky Way

Substructures in cold DM simulations much more numerous than observed number of Milky Way satellites!

Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

When do dwarfs form?


isochrone fitting for different metallicities \rightarrow star formation histories

・ロト ・回ト ・ヨト ・ヨト

Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

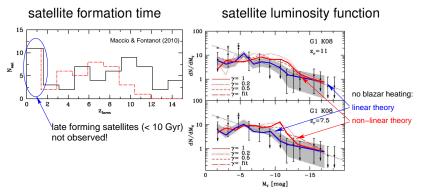
When do dwarfs form?

Christoph Pfrommer

Blazar heating

Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

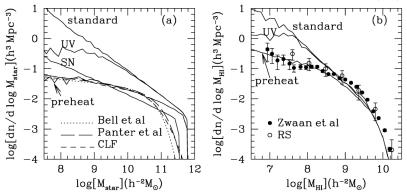
Milky Way satellites: formation history and abundance



satellite formation time

Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

Milky Way satellites: formation history and abundance


Maccio+ (2010)

 blazar heating suppresses late satellite formation, may reconcile low observed dwarf abundances with CDM simulations

Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

Galactic H I-mass function

- H I-mass function is too flat (i.e., gas version of missing dwarf problem!)
- photoheating and SN feedback too inefficient
- IGM entropy floor of $K \sim 15 \, \text{keV} \, \text{cm}^2$ at $z \sim 2 3 \, \text{successful!}$

Conclusions on blazar heating

Blazar heating: TeV photons are attenuated by EBL; their kinetic energy \rightarrow heating of the IGM; it is *not* cascaded to GeV energies

Conclusions on blazar heating

Blazar heating: TeV photons are attenuated by EBL; their kinetic energy \rightarrow heating of the IGM; it is *not* cascaded to GeV energies

- explains puzzles in gamma-ray astrophysics:
 - lack of GeV bumps in blazar spectra without IGM B-fields
 - *unified TeV blazar-quasar model* explains Fermi source counts and extragalactic gamma-ray background

Conclusions on blazar heating

Blazar heating: TeV photons are attenuated by EBL; their kinetic energy \rightarrow heating of the IGM; it is *not* cascaded to GeV energies

- explains puzzles in gamma-ray astrophysics:
 - lack of GeV bumps in blazar spectra without IGM B-fields
 - *unified TeV blazar-quasar model* explains Fermi source counts and extragalactic gamma-ray background
- novel mechanism; dramatically alters thermal history of the IGM:
 - uniform and z-dependent preheating
 - quantitative self-consistent picture of high-z Lyman-α forest

Conclusions on blazar heating

Blazar heating: TeV photons are attenuated by EBL; their kinetic energy \rightarrow heating of the IGM; it is *not* cascaded to GeV energies

- explains puzzles in gamma-ray astrophysics:
 - lack of GeV bumps in blazar spectra without IGM B-fields
 - *unified TeV blazar-quasar model* explains Fermi source counts and extragalactic gamma-ray background
- novel mechanism; dramatically alters thermal history of the IGM:
 - uniform and z-dependent preheating
 - quantitative self-consistent picture of high-z Lyman-α forest
- significantly modifies late-time structure formation:
 - suppresses late dwarf formation (in accordance with SFHs): void phenomenon, "missing satellites" (?)

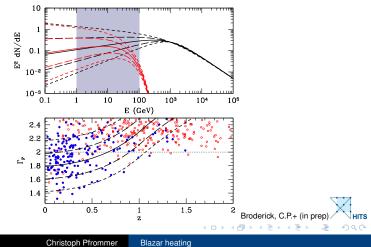
ヘロト ヘアト ヘヨト ヘ

Literature for the talk

- Broderick, Chang, Pfrommer, The cosmological impact of luminous TeV blazars *I: implications of plasma instabilities for the intergalactic magnetic field and extragalactic gamma-ray background*, ApJ, 752, 22, 2012.
- Chang, Broderick, Pfrommer, *The cosmological impact of luminous TeV blazars II: rewriting the thermal history of the intergalactic medium*, ApJ, 752, 23, 2012.
- Pfrommer, Chang, Broderick, The cosmological impact of luminous TeV blazars III: implications for galaxy clusters and the formation of dwarf galaxies, ApJ, 752, 24, 2012.
- Puchwein, Pfrommer, Springel, Broderick, Chang, *The Lyman-α forest in a blazar-heated Universe*, MNRAS, 423, 149, 2012.

< < >> < <</>

Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies


Additional slides

Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

TeV photon absorption by pair production

top: intrinsic and **observed** SEDs of blazars at z = 1; *bottom:* inferred Γ_F for the spectra in the top panel; *Fermi* data on BL Lacs and non-BL Lacs (mostly FSRQs)

Challenges to the Challenge

Challenge #1 (unknown unknowns): inhomogeneous universe

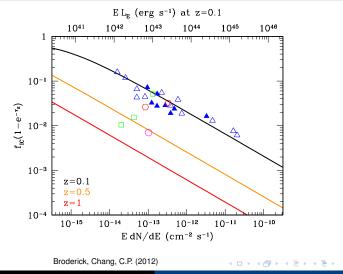
- universe is inhomogeneous and hence density of electrons change as function of position
- could lead to loss of resonance over length scale ≪ spatial growth length scale (Miniati & Elyiv 2012)
- growth length in oblique kinetic regime appears to be shorter than gradient → no instability quenching!

Challenges to the Challenge

Challenge #1 (unknown unknowns): inhomogeneous universe

- universe is inhomogeneous and hence density of electrons change as function of position
- could lead to loss of resonance over length scale ≪ spatial growth length scale (Miniati & Elyiv 2012)
- growth length in oblique kinetic regime appears to be shorter than gradient → no instability quenching!

Challenge #2 (known unknowns): non-linear saturation


- we assume that the non-linear damping rate = linear growth rate
- effect of wave-particle and wave-wave interactions need to be resolved
- Miniati & Elyiv (2012) claim that the nonlinear Landau damping rate is
 ≪ linear growth rate, but need to scatter waves with Δk/k ~ 50
- this is in conflict with the theory of induced scattering! (Schlickeiser+ 2012)

ヘロト ヘアト ヘヨト ヘ

Unifying blazars and quasars The intergalactic medium Formation of dwarf galaxies

Implications for *B*-field measurements Fraction of the pair energy lost to inverse-Compton on the CMB: $f_{IC} = \Gamma_{IC}/(\Gamma_{IC} + \Gamma_{oblique})$

Conclusions on B-field constraints from blazar spectra

- it is thought that TeV blazar spectra might constrain IGM B-fields
- this assumes that cooling mechanism is IC off the CMB + deflection from magnetic fields
- beam instabilities may allow high-energy e⁺/e⁻ pairs to self scatter and/or lose energy
- isotropizes the beam no need for B-field
- \lesssim 1–10% of beam energy to IC CMB photons

Conclusions on B-field constraints from blazar spectra

- it is thought that TeV blazar spectra might constrain IGM B-fields
- this assumes that cooling mechanism is IC off the CMB + deflection from magnetic fields
- beam instabilities may allow high-energy e⁺/e⁻ pairs to self scatter and/or lose energy
- isotropizes the beam no need for B-field
- \lesssim 1–10% of beam energy to IC CMB photons

 \rightarrow TeV blazar spectra are not suitable to measure IGM *B*-fields (if plasma instabilities saturate close to linear rate)!