Cosmic ray feedback in hydrodynamical simulations of galaxy and cluster formation

Christoph Pfrommer¹

in collaboration with

Volker Springel², Torsten Enßlin², Martin Jubelgas²

¹Canadian Institute for Theoretical Astrophysics, Canada

²Max-Planck Institute for Astrophysics, Germany

August, 4 2006 Cosmic Frontiers, Durham University

Outline

Motivation and introduction

- Cosmic rays in galaxies and clusters
- Cosmic rays in GADGET
- Cosmic rays and galaxy formation
 - Cosmic rays in isolated galaxies
 - Dwarf galaxy formation
- Osmic rays in galaxy clusters
 - Radiative high-resolution cluster simulations
 - Enhanced X-ray emission
 - Modified Sunyaev-Zel'dovic effect

Cosmic rays in galaxies and clusters Cosmic rays in GADGET

M51: cosmic ray electron population

Cosmic rays in galaxies and clusters Cosmic rays in GADGET

Observations of cluster shock waves

1E 0657-56 ("Bullet cluster")

(NASA/SAO/CXC/M.Markevitch et al.)

Abell 3667

(Radio: Austr.TC Array. X-ray: ROSAT/PSPC.)

Cosmic rays in galaxies and clusters Cosmic rays in GADGET

Radiative simulations – flowchart

イロト イポト イヨト イヨト

Cosmic rays in galaxies and clusters Cosmic rays in GADGET

Radiative simulations with cosmic rays

Cosmic rays in galaxies and clusters Cosmic rays in GADGET

Philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as possible

Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

イロト イポト イヨト イヨ

Cosmic rays in galaxies and clusters Cosmic rays in GADGET

Philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as possible

Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

イロト イポト イヨト イヨト

Cosmic rays in galaxies and clusters Cosmic rays in GADGET

Philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as possible

Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

Cosmic rays in galaxies and clusters Cosmic rays in GADGET

Thermal & CR energy spectra

Kinetic energy per logarithmic momentum interval:

< ∃⇒

Cosmic rays in isolated galaxies Dwarf galaxy formation

Cosmic rays and galaxy formation

Cosmic rays in isolated galaxies Dwarf galaxy formation

Isolated galaxies – projections

 $10^{10} M_{\odot}$

-2 0

x [h^{·1}kpc]

4

 $10^{11} M_{\odot}$

Christoph Pfrommer

-10

-10 -5 0 5 10 x [h⁻¹kpc]

Cosmic ray feedback in hydrodynamical simulations

-10

x [h⁻¹ kpc]

10

Cosmic rays in isolated galaxies Dwarf galaxy formation

 $10^{12} M_{\odot}$

Isolated galaxies – stellar profiles

 $10^{10} M_{\odot}$

 $10^{11} M_{\odot}$

Christoph Pfrommer

Cosmic ray feedback in hydrodynamical simulations

CITA-ICAT

Cosmic rays in isolated galaxies Dwarf galaxy formation

Isolated galaxies – star formation history

 $10^{10} M_{\odot}$

 $10^{11} M_{\odot}$

-5

 $10^{12} M_{\odot}$

Christoph Pfrommer

0.5 1.0

Cosmic ray feedback in hydrodynamical simulations

Cosmic rays in isolated galaxies Dwarf galaxy formation

Effective equation of state

Supernova heating balances cooling

Cosmic rays in isolated galaxies Dwarf galaxy formation

Effective equation of state & phase space distribution

Cosmic rays in isolated galaxies Dwarf galaxy formation

Effective equation of state & phase space distribution

Cosmic rays in isolated galaxies Dwarf galaxy formation

Quenching of dwarf galaxies

Star formation efficiency suppressed in small halos:

Cosmic rays in isolated galaxies Dwarf galaxy formation

Quenching of dwarf galaxies

Cosmic rays in isolated galaxies Dwarf galaxy formation

Quenching of small galaxies

Radiative cluster simulations Enhanced X-ray emission Modified SZ effect

Cosmic rays in galaxy clusters

Diffusive shock acceleration – Fermi 1 mechanism

Cosmic rays gain energy $\Delta E/E \propto v_1 - v_2$ through bouncing back and forth the shock front. Accounting for the loss probability $\propto v_2$ of particles leaving the shock downstream leads to power-law CR population.

Radiative cluster simulations Enhanced X-ray emission Modified SZ effect

Radiative cluster simulation: gas density

Radiative cluster simulations Enhanced X-ray emission Modified SZ effect

Mass weighted temperature

Radiative cluster simulations Enhanced X-ray emission Modified SZ effect

Mach number distribution weighted by ε_{diss}

Radiative cluster simulations Enhanced X-ray emission Modified SZ effect

Relative CR pressure P_{CR}/P_{total}

Radiative cluster simulations Enhanced X-ray emission Modified SZ effect

Relative CR pressure P_{CR}/P_{total}

Radiative cluster simulations Enhanced X-ray emission Modified SZ effect

Thermal X-ray emission

Radiative cluster simulations Enhanced X-ray emission Modified SZ effect

Difference map of S_X : $S_{X,CR} - S_{X,th}$

Christoph Pfrommer Cosmic ray feedback

Cosmic ray feedback in hydrodynamical simulations

Radiative cluster simulations Enhanced X-ray emission Modified SZ effect

Softer effective adiabatic index of composite gas

Radiative cluster simulations Enhanced X-ray emission Modified SZ effect

Compton y parameter in radiative cluster simulation

Radiative cluster simulations Enhanced X-ray emission Modified SZ effect

Compton y difference map: y_{CR} - y_{th}

Christoph Pfrommer Cosmic ray feedback in hydrodynamical simulations

CITA-ICAT

Radiative cluster simulations Enhanced X-ray emission Modified SZ effect

Pressure profiles with and without CRs

Radiative cluster simulations Enhanced X-ray emission Modified SZ effect

Phase-space diagram of radiative cluster simulation

Radiative cluster simulations Enhanced X-ray emission Modified SZ effect

Summary

- Galaxy evolution: CRs significantly reduce the star formation efficiency in small galaxies.
- Galaxy cluster X-ray emission is enhanced up to 35%, predominantly in low-mass cooling core clusters.
- Integrated Sunyaev-Zel'dovich effect remains largely unchanged while the Compton-y profile is more peaked.
- Understanding non-thermal processes is crucial for using clusters as cosmological probes (high-*z* scaling relations).
- Outlook
 - Huge potential and predictive power of cosmological CR simulations → provides detailed γ-ray/radio emission maps
 - Galaxy evolution: CRs might influence energetic feedback, galactic winds, and disk galaxy formation

< ロ > < 同 > < 三 >