Cosmic Rays in Galaxy Clusters: Simulations and Perspectives

Christoph Pfrommer¹

in collaboration with

Volker Springel², Torsten Enßlin²

¹Canadian Institute for Theoretical Astrophysics, Canada

²Max-Planck Institute for Astrophysics, Germany

February, 7 2007 / Carnegie Mellon University Astrophysics Seminar

Outline

Introduction to galaxy clusters

- Properties of galaxy clusters
- Physical processes in simulations
- Cosmic ray physics
- 2 Cosmic rays in cosmological simulations
 - Cosmic ray acceleration
 - Radiative high-resolution cluster simulations
 - Modified X-ray emission and Sunyaev-Zel'dovich effect
- 3 Non-thermal emission from clusters
 - Overview of non-thermal emission processes
 - Radio synchrotron emission
 - Gamma-ray emission

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Observational properties of galaxy clusters Exploring complementary methods for studying cluster formation

Each frequency window is sensitive to different processes and cluster properties:

- optical: gravitational lensing of background galaxies, galaxy velocity dispersion measure gravitational mass
- X-ray: thermal plasma emission, $F_X \propto n_{th}^2 \sqrt{T_{th}} \rightarrow$ thermal gas with abundances, cluster potential, substructure
- Sunyaev-Zel'dovich effect: IC up-scattering of CMB photons by thermal electrons, F_{sz} ∝ p_{th} → cluster velocity, turbulence, high-z clusters
- radio synchrotron halos: F_{synchro} ∝ ε_Bε_{CRe} → magnetic fields, CR electrons, shock waves
- diffuse γ -ray emission: $F_{\gamma} \propto n_{\text{th}} n_{\text{CRp}} \rightarrow \text{CR}$ protons

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Observational properties of galaxy clusters Exploring complementary methods for studying cluster formation

Each frequency window is sensitive to different processes and cluster properties:

- optical: gravitational lensing of background galaxies, galaxy velocity dispersion measure gravitational mass
- X-ray: thermal plasma emission, $F_X \propto n_{th}^2 \sqrt{T_{th}} \rightarrow$ thermal gas with abundances, cluster potential, substructure
- Sunyaev-Zel'dovich effect: IC up-scattering of CMB photons by thermal electrons, F_{sz} ∝ p_{th} → cluster velocity, turbulence, high-z clusters
- radio synchrotron halos: F_{synchro} ∝ ε_Bε_{CRe} → magnetic fields, CR electrons, shock waves
- diffuse γ -ray emission: $F_{\gamma} \propto n_{\text{th}} n_{\text{CRp}} \rightarrow \text{CR}$ protons

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Observational properties of galaxy clusters Exploring complementary methods for studying cluster formation

Each frequency window is sensitive to different processes and cluster properties:

- optical: gravitational lensing of background galaxies, galaxy velocity dispersion measure gravitational mass
- X-ray: thermal plasma emission, $F_X \propto n_{th}^2 \sqrt{T_{th}} \rightarrow$ thermal gas with abundances, cluster potential, substructure
- Sunyaev-Zel'dovich effect: IC up-scattering of CMB photons by thermal electrons, F_{SZ} ∝ p_{th} → cluster velocity, turbulence, high-z clusters
- radio synchrotron halos: F_{synchro} ∝ ε_Bε_{CRe} → magnetic fields, CR electrons, shock waves
- diffuse γ -ray emission: $F_{\gamma} \propto n_{\text{th}} n_{\text{CRp}} \rightarrow \text{CR}$ protons

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Observational properties of galaxy clusters Exploring complementary methods for studying cluster formation

Each frequency window is sensitive to different processes and cluster properties:

- optical: gravitational lensing of background galaxies, galaxy velocity dispersion measure gravitational mass
- X-ray: thermal plasma emission, $F_X \propto n_{th}^2 \sqrt{T_{th}} \rightarrow$ thermal gas with abundances, cluster potential, substructure
- Sunyaev-Zel'dovich effect: IC up-scattering of CMB photons by thermal electrons, F_{SZ} ∝ p_{th} → cluster velocity, turbulence, high-z clusters
- radio synchrotron halos: F_{synchro} ∝ ε_Bε_{CRe} → magnetic fields, CR electrons, shock waves
- diffuse γ -ray emission: $F_{\gamma} \propto n_{\text{th}} n_{\text{CRp}} \rightarrow \text{CR protons}$

Introduction to galaxy clusters Cosmic rays in cosmological simulations Properties of galaxy clusters

Coma cluster: member galaxies

infra-red emission,

(credit: ISO)

(credit: Kitt Peak)

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Coma cluster: (non-)thermal plasma

thermal X-ray emission,

(credit: S.L. Snowden/MPE/ROSAT)

radio synchrotron emission,

イロト イポト イヨト イヨ

(credit: B.Deiss/Effelsberg)

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Dynamical picture of cluster formation

- structure formation in the ACDM universe predicts the hierarchical build-up of dark matter halos from small scales to successively larger scales
- clusters of galaxies currently sit atop this hierarchy as the largest objects that have had time to collapse under the influence of their own gravity
- cluster are dynamically evolving systems that have not finished forming and equilibrating, $\tau_{dyn} \sim 1 \text{ Gyr}$

 \rightarrow two extreme dynamical states of galaxy clusters: **merging clusters** and **cool core clusters**, which are relaxed systems where the central gas develops a dense cooling core due to the short thermal cooling times

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Radiative simulations – flowchart

< ロ > < 回 > < 回 > < 回 > < 回 >

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Radiative simulations with cosmic ray (CR) physics

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Radiative simulations with extended CR physics

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as necessary

Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as necessary

Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as necessary

Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

CR spectral description

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Thermal & CR energy spectra

Kinetic energy per logarithmic momentum interval:

Properties of galaxy clusters Physical processes in simulations Cosmic ray physics

Radiative cooling

Cooling of primordial gas:

Cooling of cosmic rays:

★ Ξ → < Ξ</p>

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Cosmic rays in clusters - flowchart

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Observations of cluster shock waves

1E 0657-56 ("Bullet cluster")

(NASA/SAO/CXC/M.Markevitch et al.)

Abell 3667

(radio: Austr.TC Array. X-ray: ROSAT/PSPC.)

イロト イポト イヨト イヨ

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Abell 2256: giant radio relic & small halo

X-ray (red) & radio (blue, contours)

fractional polarization in colour

Clarke & Enßlin (2006)

Diffusive shock acceleration – Fermi 1 mechanism (1)

conditions:

- a collisionless shock wave
- magnetic fields to confine energetic particles
- $\bullet\,$ plasma waves to scatter energetic particles \rightarrow particle diffusion
- supra-thermal particles

mechanism:

- supra-thermal particles diffuse upstream across shock wave
- each shock crossing energizes particles through momentum transfer from recoil-free scattering off the macroscopic scattering agents
- momentum increases exponential with number of shock crossings
- number of particles decreases exponential with number of crossings
- → power-law CR distribution

Diffusive shock acceleration – Fermi 1 mechanism (1)

conditions:

- a collisionless shock wave
- magnetic fields to confine energetic particles
- plasma waves to scatter energetic particles \rightarrow particle diffusion
- supra-thermal particles

mechanism:

- supra-thermal particles diffuse upstream across shock wave
- each shock crossing energizes particles through momentum transfer from recoil-free scattering off the macroscopic scattering agents
- momentum increases exponential with number of shock crossings
- number of particles decreases exponential with number of crossings
- \rightarrow power-law CR distribution

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Diffusive shock acceleration – Fermi 1 mechanism (2)

Spectral index depends on the Mach number of the shock, $\mathcal{M} = v_{shock}/c_s$:

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Gravitational heating by shocks

The "cosmic web" today. *Left:* the projected gas density in a cosmological simulation. *Right:* gravitationally heated intracluster medium through cosmological shock waves.

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Cosmological Mach numbers: weighted by *e*diss

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Cosmological Mach numbers: weighted by ε_{CR}

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Cosmological Mach number statistics

- more energy is dissipated at later times
- mean Mach number decreases with time

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Cosmological statistics: CR acceleration

- more energy is dissipated in weak shocks internal to collapsed structures than in external strong shocks
- non-radiative simulations: injected CR energy inside cluster makes up only a small fraction of the total dissipated energy

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Radiative simulations with extended CR physics

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Radiative cool core cluster simulation: gas density

Christoph Pfrommer Cosm

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Mass weighted temperature

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Mach number distribution weighted by ε_{diss}

Christoph Pfrommer Cosmic Rays in C

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Relative CR pressure P_{CR}/P_{total}

Christoph Pfrommer Cos

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Relative CR pressure P_{CR}/P_{total}

Christoph Pfrommer

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Thermal X-ray emission

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Difference map of S_X : $S_{X,CR} - S_{X,th}$

large, merging cluster, $M_{\rm vir} \simeq 10^{15} M_{\odot}/h$

small, cool core cluster, $M_{\rm vir} \simeq 10^{14} M_{\odot} / h_{\rm vir}$

イロト イヨト イヨト イヨ

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Softer effective adiabatic index of composite gas

Christoph Pfrommer Cosmic Rays in Galaxy Clusters: Simulations and Perspectives

CITA-ICAT

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Compton y parameter in radiative cluster simulation

ヘロト ヘアト ヘヨト ヘ

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Compton y difference map: $y_{CR} - y_{th}$

large, merging cluster, $M_{\rm vir} \simeq 10^{15} M_{\odot}/h$

small, cool core cluster, $M_{\rm vir} \simeq 10^{14} M_{\odot} / h_{\rm vir}$

Cosmic ray acceleration Radiative cluster simulations Modified X-ray emission and SZ effect

Pressure profiles with and without CRs

CITA-ICAT

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Non-thermal emission from clusters Exploring the memory of structure formation

So far, we were asking how the CR pressure modifies thermal cluster observables such as the X-ray emission and the Sunyaev-Zel'dovich effect of clusters. These processes tell us only very indirectly (if at all) about the history of structure formation. In contrast, non-thermal processes retain their cosmic memory since their particle population is not in equilibrium.

How can we read out this information about non-thermal populations? \rightarrow new era of multi-frequency experiments, e.g.:

- LOFAR: European interferometric array of radio telescopes at low frequencies (ν ≃ (10 – 240) MHz)
- Astrosat: Indian satellite that images soft and hard X-rays $(E \simeq (0.3 100) \text{ keV})$
- Glast: international high-energy γ -ray space mission ($E \simeq (0.02 - 300)$ GeV)

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Hadronic cosmic ray proton interaction

Christoph Pfrommer

Cosmic Rays in Galaxy Clusters: Simulations and Perspectives

CITA-ICAT

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Expected hadronic γ -ray flux of the Perseus cluster

IC emission of secondary CRes (B = 0), π^0 -decay induced γ -ray emission:

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Cosmic rays and radiative processes

Relativistic populations and radiative processes in clusters:

(日) (四) (三) (三)

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Cosmic rays and radiative processes

Relativistic populations and radiative processes in clusters:

Christoph Pfrommer Cosmic Rays in Galaxy Clusters: Simulations and Perspectives

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Cosmic rays and radiative processes

Relativistic populations and radiative processes in clusters:

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Cosmic rays and radiative processes

Relativistic populations and radiative processes in clusters:

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Abell 2256: giant radio relic & small halo

X-ray (red) & radio (blue, contours)

fractional polarization in colour

Clarke & Enßlin (2006)

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Cosmic web: density

Christoph Pfrommer Cosmic I

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Cosmic web: Mach number

Christoph Pfrommer Cosmic Rays in Gala

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Radio web: primary CRe (1.4 GHz)

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Radio web: primary CRe (150 MHz)

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Radio web: primary CRe (15 MHz)

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Radio web: primary CRe (15 MHz), slower magnetic decline

Christoph Pfrommer Cosmic Rays in

Models for radio synchrotron halos in clusters

Halo characteristics: smooth unpolarized radio emission at scales of 3 Mpc.

Different CR electron populations:

- Primary accelerated CR electrons: synchrotron/IC cooling times too short to account for extended diffuse emission
- Re-accelerated CR electrons through resonant interaction with turbulent Alfvén waves: possibly too inefficient, no first principle calculations (Jaffe 1977, Schlickeiser 1987, Brunetti 2001)
- Hadronically produced CR electrons in inelastic collisions of CR protons with the ambient gas (Dennison 1980, Vestrad 1982, Miniati 2001, Pfrommer 2004)

イロト イポト イヨト

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Cosmic rays and radiative processes

Relativistic populations and radiative processes in clusters:

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Radio halos: secondary CRe (150 MHz)

Christoph Pfrommer (

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Radio web + halos 150 MHz

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Radio web + halos: spectral index

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Thermal X-ray emission

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Hadronic γ -ray emission, $E_{\gamma} > 100 \text{ MeV}$

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Inverse Compton emission, $E_{IC} > 100 \text{ MeV}$

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Inverse Compton emission, $E_{IC} > 10 \text{ keV}$

Overview of non-thermal emission processes Radio synchrotron emission Gamma-ray emission

Summary

CR physics modifies the intracluster medium in merging clusters and cooling core regions:

- Galaxy cluster X-ray emission is enhanced up to 35%, systematic effect in low-mass cooling core clusters.
- Integrated Sunyaev-Zel'dovich effect remains largely unchanged while the Compton-*y* profile is more peaked.
- LOFAR is expected to see the radio web emission: origin of cosmic magnetic fields.
- Glast should see hadronic γ-ray emission from clusters: measurement of CR protons and origin of radio halos.

 \rightarrow exciting experiments allow a complementary view on structure formation as well as fundamental physics!

