Cosmic ray heating in cool core clusters

Christoph Pfrommer

in collaboration with

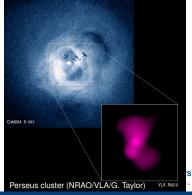
S. Jacob, R. Weinberger, K. Ehlert, R. Pakmor, V. Springel Heidelberg Institute for Theoretical Studies, Germany

Galaxy clusters, KICC, Cambridge, UK, Dec 2016

Outline

- Active galactic nuclei
 - Feedback
 - Magnetic fields
 - Open questions
- 2 Cosmic ray feedback
 - Observations of M87
 - Cosmic ray heating
 - Local stability

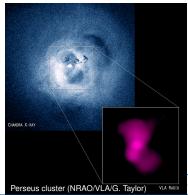
Oiversity of cool cores


- Steady state solutions
- Non-thermal emission
- AREPO Simulations

Feedback Magnetic fields Open questions

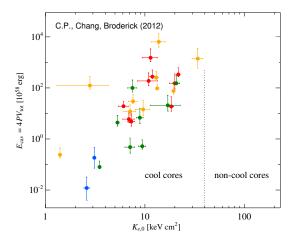
Radio mode feedback by AGN

Paradigm: super-massive black holes with $M \sim (10^9 \dots 10^{10}) M_{\odot}$ co-evolve with their hosting cD galaxies at the centers of galaxy clusters; they launch relativistic jets that blow bubbles and provide energetic feedback to balance cooling

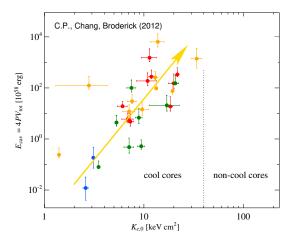


Feedback Magnetic fields Open questions

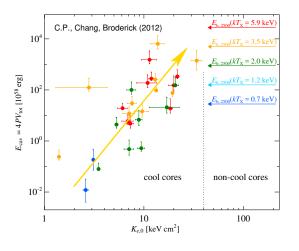
Radio mode feedback by AGN


Paradigm: super-massive black holes with $M \sim (10^9 \dots 10^{10}) M_{\odot}$ co-evolve with their hosting cD galaxies at the centers of galaxy clusters; they launch relativistic jets that blow bubbles and provide energetic feedback to balance cooling

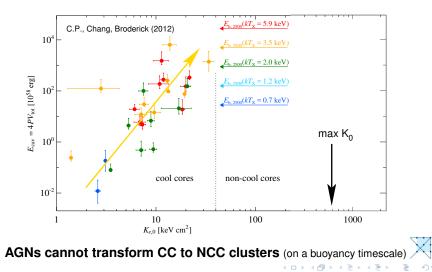
- energy source: release of non-gravitational energy due to accretion on a black hole and its spin
- jet interaction with magnetized cluster medium → turbulence
- jet accelerates relativistic particles (cosmic rays, CRs) → release from bubbles provides source of heat
- self-regulated heating mechanism to avoid overcooling


Feedback Magnetic fields Open questions

How efficient is heating by AGN feedback?

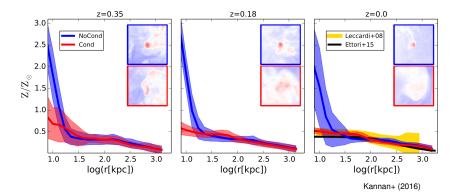

Feedback Magnetic fields Open questions

How efficient is heating by AGN feedback?


Feedback Magnetic fields Open questions

How efficient is heating by AGN feedback?

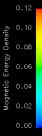
Feedback Magnetic fields Open questions


How efficient is heating by AGN feedback?

Feedback Magnetic fields Open questions

Anisotropic thermal conduction

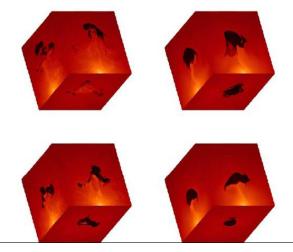
Increasing AGN feedback induced quenching and metal mixing



Anisotropic thermal conduction changes buoyant response of ICM: increased mixing efficiently isotropizes the injected feedback energy at less energy cost!

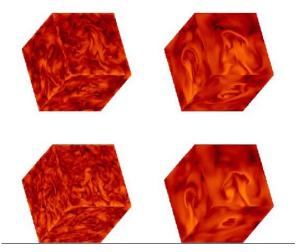
(本間) (本語) (本語)

Feedback Magnetic fields Open questions


Magnetic draping around rising bubbles

Feedback Magnetic fields Open questions

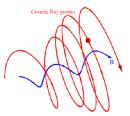
Magnetic draping at bubbles: density



 $\log \rho,$ non-draping versus draping case $_{\rm (Ruszkowski+\,2007)}$

Feedback Magnetic fields Open questions

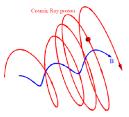
Magnetic draping at bubbles: magnetic pressure


log B², non-draping versus draping case (Ruszkowski+ 2007)

Feedback Magnetic fields Open questions

Interactions of CRs and magnetic fields

- $\bullet\,$ CRs scatter on magnetic fields \rightarrow isotropization of CR momenta
- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_A, CR current provides steady driving force, which amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_A
 - wave damping: transfer of CR energy and momentum to the thermal gas



Feedback Magnetic fields Open questions

Interactions of CRs and magnetic fields

- $\bullet\,$ CRs scatter on magnetic fields \rightarrow isotropization of CR momenta
- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_A, CR current provides steady driving force, which amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_A
 - wave damping: transfer of CR energy and momentum to the thermal gas

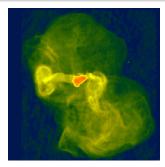
 \rightarrow CRs exert a pressure on the thermal gas by means of scattering off of Alfvén waves

Feedback Magnetic fields Open questions

Open questions on radio mode AGN feedback

- how is accretion output thermalized?
 - dissipation of waves, turbulence, releasing potential energy, thermal conduction, cosmic-ray heating
- is heating/cooling balance thermally stable?
 - no: turbulence dissipation, conduction
 - yes: cosmic-ray heating
- how is the accretion rate tuned?
 - Schwarzschild radius

$$r_{
m SMBH} = rac{2 G M_{
m SMBH}}{c^2} \simeq 10^{15} \, \left(rac{M_{
m SMBH}}{5 imes 10^9 \,
m M_{\odot}}
ight) \,
m cm$$


• cooling radius (30 kpc) $\sim 10^8$ Schwarzschild radii

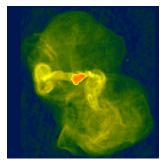
- 4 同 ト 4 回 ト 4 回

Observations of M87 Cosmic ray heating Local stability

Messier 87 at radio wavelengths

 $\nu =$ 1.4 GHz (Owen+ 2000)

 high-ν: freshly accelerated CR electrons low-ν: fossil CR electrons → time-integrated AGN feedback!



Cosmic ray heating in cool core clusters

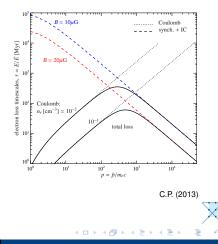
< 🗇 🕨

Observations of M87 Cosmic ray heating Local stability

Messier 87 at radio wavelengths

 $\nu = 1.4 \text{ GHz} (\text{Owen+ 2000})$

 $\nu =$ 140 MHz (LOFAR/de Gasperin+ 2012)


- high-*ν*: freshly accelerated CR electrons low-*ν*: fossil CR electrons → time-integrated AGN feedback!
- LOFAR: halo confined to same region at all frequencies and no low-ν spectral steepening → puzzle of "missing fossil electrons"

Observations of M87 Cosmic ray heating Local stability

Solution to the "missing fossil electrons" problem

solution:

• Coulomb cooling removes fossil electrons \rightarrow efficient mixing of CR electrons and protons with dense cluster gas \rightarrow predicts γ rays from CRp-p interactions: $p + p \rightarrow \pi^0 + ... \rightarrow 2\gamma + ...$

Observations of M87 Cosmic ray heating Local stability

The gamma-ray picture of M87

- high state is time variable
 → jet emission
- low state:(1) steady flux
 - (2) γ -ray spectral index (2.2)
 - = CRp index
 - CRe injection index as probed by LOFAR
 - (3) spatial extension is under investigation (?)

Rieger & Aharonian (2012)

 \rightarrow confirming this triad would be smoking gun for first $\gamma\text{-ray}$ signal from a galaxy cluster!

Observations of M87 Cosmic ray heating Local stability

AGN feedback = cosmic ray heating (?)

hypothesis: low state γ -ray emission traces π^0 decay within cluster

 cosmic rays excite Alfvén waves that dissipate the energy → heating rate

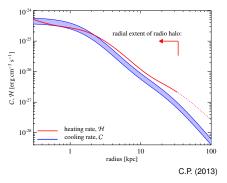
 $\mathcal{H}_{cr} = | \boldsymbol{v}_{A} \cdot \boldsymbol{\nabla} \boldsymbol{P}_{cr} |$

(Loewenstein+ 1991, Guo & Oh 2008, Enßlin+ 2011, Wiener+ 2013, C.P. 2013)

 calibrate P_{cr} to γ-ray emission and v_A to radio/X-ray emission
 → spatial heating profile

Observations of M87 Cosmic ray heating Local stability

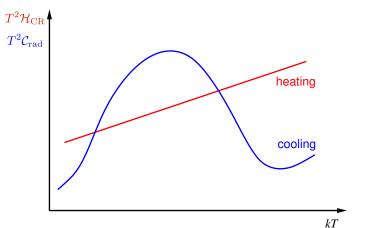
AGN feedback = cosmic ray heating (?)


hypothesis: low state γ -ray emission traces π^0 decay within cluster

 cosmic rays excite Alfvén waves that dissipate the energy → heating rate

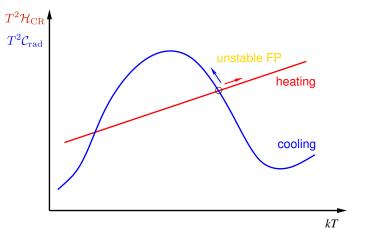
 $\mathcal{H}_{cr} = |\textbf{\textit{v}}_{A} \boldsymbol{\cdot} \boldsymbol{\nabla} \textbf{\textit{P}}_{cr}|$

(Loewenstein+ 1991, Guo & Oh 2008, Enßlin+ 2011, Wiener+ 2013, C.P. 2013)


 calibrate P_{cr} to γ-ray emission and v_A to radio/X-ray emission
 → spatial heating profile

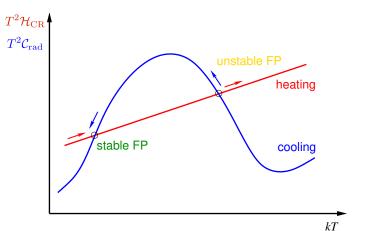
 \rightarrow cosmic-ray heating matches radiative cooling (observed in X-rays) and may solve the famous "cooling flow problem" in galaxy clusters!

Observations of M87 Cosmic ray heating Local stability


Local stability analysis (1)

- isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations

Observations of M87 Cosmic ray heating Local stability


Local stability analysis (1)

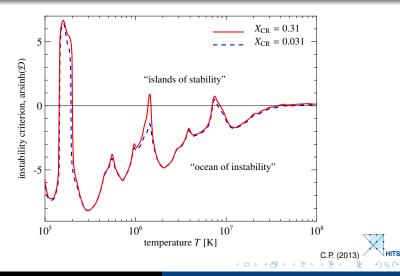
- isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations

Observations of M87 Cosmic ray heating Local stability


Local stability analysis (1)

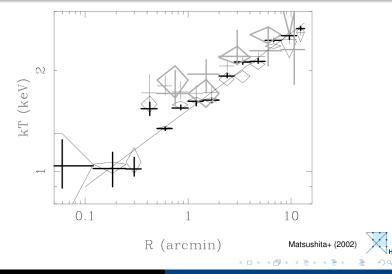
- isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations

Observations of M87 Cosmic ray heating Local stability


Local stability analysis (1)

- isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations

Observations of M87 Cosmic ray heating Local stability


Local stability analysis (2) Theory predicts observed temperature floor at $kT \simeq 1$ keV

Cosmic ray heating in cool core clusters

Observations of M87 Cosmic ray heating Local stability

Virgo cluster cooling flow: temperature profile X-ray observations confirm temperature floor at $kT \simeq 1$ keV

Steady state solutions Non-thermal emission AREPO Simulations

How universal is CR heating in cool core clusters?

• no γ rays observed from other clusters $\rightarrow P_{cr}$ unconstrained

strategy:

- (1) construct large sample of 39 cool cores
- (2) search for spherically symmetric, steady-state solutions: CR heating (\mathcal{H}_{cr}) + conductive heating $(\mathcal{H}_{th}) \approx$ cooling (\mathcal{C}_{rad})
- (3) calculate hadronic radio and γ-ray flux F_{had} and compare to observed fluxes F_{obs}

Steady state solutions Non-thermal emission AREPO Simulations

How universal is CR heating in cool core clusters?

• no γ rays observed from other clusters $\rightarrow P_{cr}$ unconstrained

strategy:

- (1) construct large sample of 39 cool cores
- (2) search for spherically symmetric, steady-state solutions: CR heating (\mathcal{H}_{cr}) + conductive heating $(\mathcal{H}_{th}) \approx$ cooling (\mathcal{C}_{rad})
- (3) calculate hadronic radio and γ-ray flux F_{had} and compare to observed fluxes F_{obs}

consequences:

 $\Rightarrow \text{if } \mathcal{H}_{cr} + \mathcal{H}_{th} \approx \mathcal{C}_{rad} \; \forall \; r \text{ and } \mathcal{F}_{had} \leq \mathcal{F}_{obs}:$

successful CR heating model that is locally stable at 1 keV

 \Rightarrow otherwise *CR heating ruled out* as dominant heating source

イロト イポト イヨト イヨト

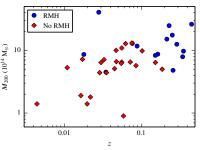
Steady state solutions Non-thermal emission AREPO Simulations

Sample selection

select 39 cool cores (CCs):

- brightest 23 CCs from X-ray flux-limited sample (HIFLUGCS) that are also in ACCEPT
- 10 high-resolution Chandra data (Vikhlinin+ 2006)
- 15 clusters with radio-mini halos (RMHs) (Giacintucci+ 2014)
- add Virgo + A2597

Jacob & C.P. (2016a)



Steady state solutions Non-thermal emission AREPO Simulations

Sample selection

select 39 cool cores (CCs):

- brightest 23 CCs from X-ray flux-limited sample (HIFLUGCS) that are also in ACCEPT
- 10 high-resolution Chandra data (Vikhlinin+ 2006)
- 15 clusters with radio-mini halos (RMHs) (Giacintucci+ 2014)
- add Virgo + A2597
- ⇒ RMH clusters show selection bias towards high-z and being more massive (fixed surface brightness limit)

Jacob & C.P. (2016a)

Steady state solutions Non-thermal emission AREPO Simulations

Sample selection

select 39 cool cores (CCs):

- brightest 23 CCs from X-ray flux-limited sample (HIFLUGCS) that are also in ACCEPT
- 10 high-resolution Chandra data (Vikhlinin+ 2006)
- 15 clusters with radio-mini halos (RMHs) (Giacintucci+ 2014)
- add Virgo + A2597

(⁰_W _h) ⁰⁰₀₀

Jacob & C.P. (2016a)

- ⇒ RMH clusters show selection bias towards high-z and being more massive (fixed surface brightness limit)
- \Rightarrow study sub-sample that is unbiased in M_{200} and entire sample

イロト イポト イヨト イヨ

Steady state solutions Non-thermal emission AREPO Simulations

Governing equations

• conservation of mass, momentum, thermal and CR energy:

$$\begin{aligned} \frac{\mathrm{d}\rho}{\mathrm{d}t} + \rho \nabla \cdot \mathbf{v} &= 0\\ \rho \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} &= -\nabla \left(P_{\mathrm{th}} + P_{\mathrm{cr}}\right) - \rho \nabla \phi\\ \frac{\mathrm{d}e_{\mathrm{th}}}{\mathrm{d}t} + \gamma_{\mathrm{th}} \mathbf{e}_{\mathrm{th}} \nabla \cdot \mathbf{v} &= -\nabla \cdot \mathbf{F}_{\mathrm{th}} + \mathcal{H}_{\mathrm{cr}} - \rho \mathcal{L}\\ \frac{\mathrm{d}e_{\mathrm{cr}}}{\mathrm{d}t} + \gamma_{\mathrm{cr}} \mathbf{e}_{\mathrm{cr}} \nabla \cdot \mathbf{v} &= -\nabla \cdot \mathbf{F}_{\mathrm{cr}} - \mathcal{H}_{\mathrm{cr}} + S_{\mathrm{cr}} \end{aligned}$$

- Lagrangian derivative $d/dt = \partial/\partial t + \mathbf{v} \cdot \nabla$
- equations of state:

$$egin{aligned} P_{ ext{th}} &= (\gamma_{ ext{th}} - 1) eta_{ ext{th}} \ P_{ ext{cr}} &= (\gamma_{ ext{cr}} - 1) eta_{ ext{cr}} \end{aligned}$$

→ E → < E →</p>

Cosmic ray heating in cool core clusters

< 🗇 🕨

Steady state solutions Non-thermal emission AREPO Simulations

Governing equations

o conservation of mass, momentum, thermal and CR energy:

$$\begin{aligned} \frac{\mathrm{d}\rho}{\mathrm{d}t} + \rho \nabla \cdot \boldsymbol{v} &= 0\\ \rho \frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} &= -\nabla \left(P_{\mathrm{th}} + P_{\mathrm{cr}}\right) - \rho \nabla \phi\\ \frac{\mathrm{d}\boldsymbol{e}_{\mathrm{th}}}{\mathrm{d}t} + \gamma_{\mathrm{th}} \boldsymbol{e}_{\mathrm{th}} \nabla \cdot \boldsymbol{v} &= -\nabla \cdot \boldsymbol{F}_{\mathrm{th}} + \mathcal{H}_{\mathrm{cr}} - \rho \mathcal{L}\\ \frac{\mathrm{d}\boldsymbol{e}_{\mathrm{cr}}}{\mathrm{d}t} + \gamma_{\mathrm{cr}} \boldsymbol{e}_{\mathrm{cr}} \nabla \cdot \boldsymbol{v} &= -\nabla \cdot \boldsymbol{F}_{\mathrm{cr}} - \mathcal{H}_{\mathrm{cr}} + S_{\mathrm{cr}} \end{aligned}$$

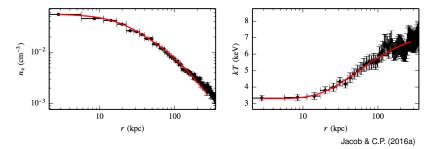
- gravitational potential $\phi = -\frac{GM_s}{r} \ln \left(1 + \frac{r}{r_s}\right) + v_c^2 \ln \left(\frac{r}{r_0}\right)$
- radiative cooling $\rho \mathcal{L} = n_e^2 \left(\Lambda_I + \Lambda_b T^{1/2} \right)$

Steady state solutions Non-thermal emission AREPO Simulations

Governing equations

onservation of mass, momentum, thermal and CR energy:

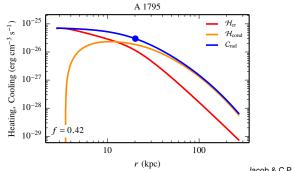
$$\begin{aligned} \frac{\mathrm{d}\rho}{\mathrm{d}t} + \rho \nabla \cdot \mathbf{v} &= 0\\ \rho \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} &= -\nabla \left(P_{\mathrm{th}} + P_{\mathrm{cr}}\right) - \rho \nabla \phi\\ \frac{\mathrm{d}e_{\mathrm{th}}}{\mathrm{d}t} + \gamma_{\mathrm{th}} \mathbf{e}_{\mathrm{th}} \nabla \cdot \mathbf{v} &= -\nabla \cdot \mathbf{F}_{\mathrm{th}} + \mathcal{H}_{\mathrm{cr}} - \rho \mathcal{L}\\ \frac{\mathrm{d}e_{\mathrm{cr}}}{\mathrm{d}t} + \gamma_{\mathrm{cr}} \mathbf{e}_{\mathrm{cr}} \nabla \cdot \mathbf{v} &= -\nabla \cdot \mathbf{F}_{\mathrm{cr}} - \mathcal{H}_{\mathrm{cr}} + S_{\mathrm{cr}} \end{aligned}$$


- thermal heat flux $F_{\text{th}} = -\kappa \nabla T$
- CR streaming flux $\mathbf{F}_{cr} = (e_{cr} + P_{cr})\mathbf{v}_{st}$ with $\mathbf{v}_{st} = -\mathbf{v}_{A} \frac{\nabla P_{cr}}{|\nabla P_{cr}|}$
- CR heating rate $\mathcal{H}_{cr} = -\mathbf{v}_{st} \cdot \nabla P_{cr}$

イロト イ理ト イヨト イヨト

Steady state solutions Non-thermal emission AREPO Simulations

Case study A1795: density and temperature



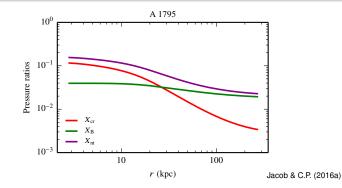
• beautiful match of steady-state solutions to observed profiles

• pure NFW mass profile in A1795

Steady state solutions Non-thermal emission AREPO Simulations

Case study A1795: heating and cooling

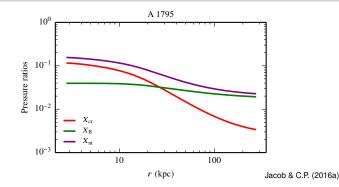
Jacob & C.P. (2016a)


- CR heating dominates in the center
- conductive heating takes over at larger radii, $\kappa = 0.42\kappa_{Sp}$

• $\mathcal{H}_{cr} + \mathcal{H}_{th} \approx C_{rad}$: modest mass deposition rate of 1 M_{\odot} yr⁻¹

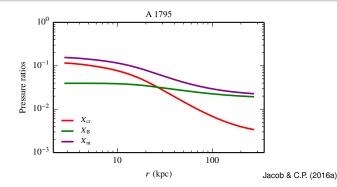
Steady state solutions Non-thermal emission AREPO Simulations

Case study A1795: CR and *B* pressure ratios



• define $X_{cr} = P_{cr}/P_{th}$, $X_B = P_B/P_{th}$, $X_{nt} = P_{nt}/P_{th}$

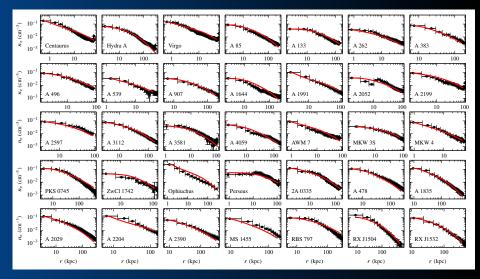
Steady state solutions Non-thermal emission AREPO Simulations


Case study A1795: CR and *B* pressure ratios

- define $X_{cr} = P_{cr}/P_{th}$, $X_B = P_B/P_{th}$, $X_{nt} = P_{nt}/P_{th}$
- $X_{cr} \approx \text{const.}$ in center: $\Delta \varepsilon_{th} = -\tau_A \mathbf{v}_{st} \cdot \nabla P_{cr} \approx P_{cr} = X_{cr} P_{th}$

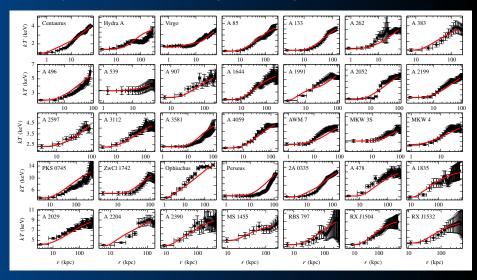
Steady state solutions Non-thermal emission AREPO Simulations

Case study A1795: CR and B pressure ratios

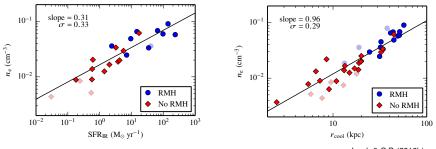


- define $X_{cr} = P_{cr}/P_{th}$, $X_B = P_B/P_{th}$, $X_{nt} = P_{nt}/P_{th}$
- $X_{cr} \approx \text{const.}$ in center: $\Delta \varepsilon_{th} = -\tau_A \mathbf{v}_{st} \cdot \nabla \mathbf{P}_{cr} \approx \mathbf{P}_{cr} = X_{cr} \mathbf{P}_{th}$
- adopt *B* model from Faraday rotation studies:

$$B = 10 \, \mu {
m G} imes ig(n/0.01 \, {
m cm^{-3}} ig)^{0.5}$$


Steady state solutions Non-thermal emission AREPO Simulations

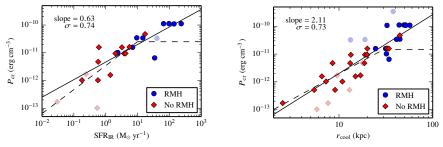
Gallery of solutions: density profiles


Steady state solutions Non-thermal emission AREPO Simulations

Gallery of solutions: temperature profiles

Steady state solutions Non-thermal emission AREPO Simulations

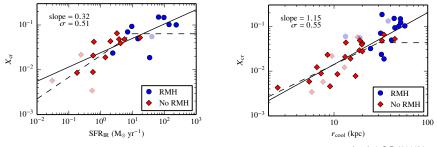
Steady state solutions: density correlations



- tight correlation of gas density n_e(30 kpc) with SFR and with 1 Gyr cooling radius
- RMH clusters are on average denser, show larger SFRs and cooling radii

Steady state solutions Non-thermal emission AREPO Simulations

Steady state solutions: *P*_{cr} correlations

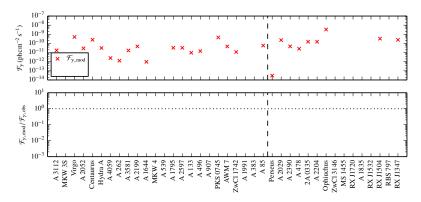

Jacob & C.P. (2016b)

- strong correlation of CR pressure P_{cr} with SFR and r_{cool}
- strongly cooling RMH clusters require larger CR heating rates, $\mathcal{H}_{cr} \propto P_{cr}$, and thus CR pressure values to balance cooling
- P_{cr} correlations significantly steeper than n_e correlations

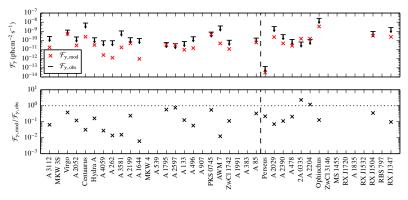
Steady state solutions

Steady state solutions: X_{cr} correlations

Jacob & C.P. (2016b)


- remainder made up by correlation of CR-to-thermal pressure ratio $X_{cr} = P_{cr}/(nkT)$ with SFR and r_{cool}
- strongly cooling RMH clusters require not only larger P_{cr} but also larger X_{cr} to balance cooling ★ Ξ → ★ Ξ

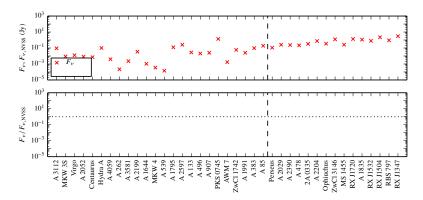
< < >> < </>


Steady state solutions Non-thermal emission AREPO Simulations

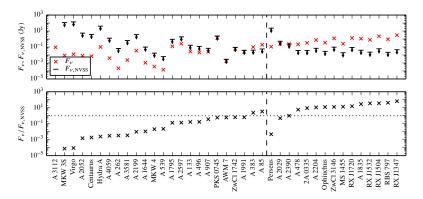
Hadronic gamma-ray emission

Steady state solutions Non-thermal emission AREPO Simulations

Hadronic gamma-ray emission: observational limits



- predictions close to observational limits
- sensitivity not sufficient to be constraining

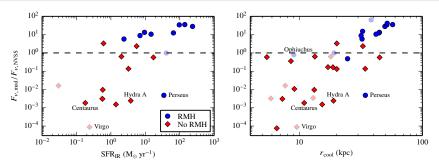

Steady state solutions Non-thermal emission AREPO Simulations

Hadronically induced radio emission

Steady state solutions Non-thermal emission AREPO Simulations

Hadronically induced radio emission: NVSS limits

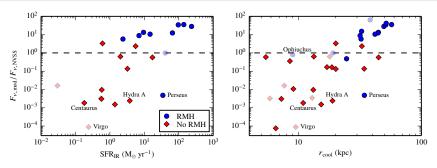
• continuous sequence in $F_{\nu,\text{pred}}/F_{\nu,\text{NVSS}}$


Jacob & C.P. (2016b)

- CR heating solution ruled out in radio mini halos
- CR heating viable solution for non-RMH clusters

Steady state solutions Non-thermal emission AREPO Simulations

Self-regulated heating/cooling cycle in cool cores


Jacob & C.P. (2016b)

possibly CR-heated cool cores vs. radio mini halo clusters:

- simmering SF: CR heating is effectively balancing cooling
- abundant SF: heating/cooling out of balance

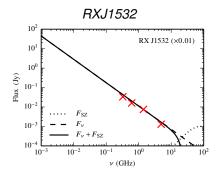
Steady state solutions Non-thermal emission AREPO Simulations

Self-regulated heating/cooling cycle in cool cores

Jacob & C.P. (2016b)

possibly CR-heated cool cores vs. radio mini halo clusters:

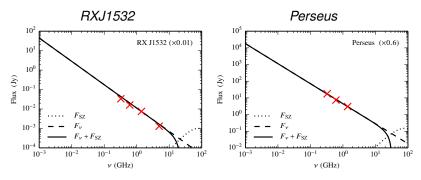
- simmering SF: CR heating is effectively balancing cooling
- abundant SF: heating/cooling out of balance


• $F_{\nu,obs} > F_{\nu,pred}$: strong radio source = abundant injection of CRs

 \Rightarrow predicting existence of radio micro halos in CR heated clusters

Steady state solutions Non-thermal emission AREPO Simulations

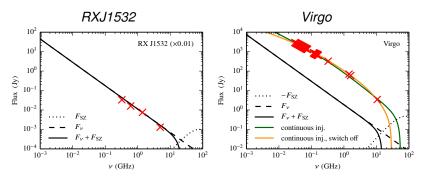
Radio mini halos



- radio mini halos may be of hadronic origin: CR protons from AGN that have streamed outwards and cooled via Alfvén-wave excitation
- RXJ1532: dying radio mini halo

Steady state solutions Non-thermal emission AREPO Simulations

Radio mini halos



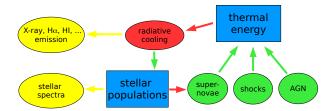
- radio mini halos may be of hadronic origin: CR protons from AGN that have streamed outwards and cooled via Alfvén-wave excitation
- RXJ1532: dying radio mini halo Perseus: transitional object, was CR heated until recently

Steady state solutions Non-thermal emission AREPO Simulations

Predicting radio micro halos

Jacob & C.P. (2016a)

- radio mini halos may be of hadronic origin: CR protons from AGN that have streamed outwards and cooled via Alfvén-wave excitation
- predicting radio micro halos of primary origin in CR-heated CCs: CR electrons that escaped from AGN; subdominant hadronic emission

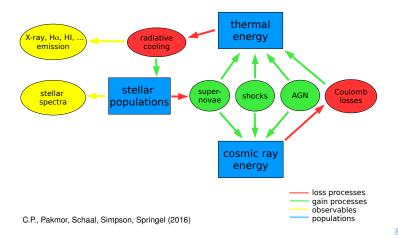


Steady state solutions Non-thermal emission AREPO Simulations

Simulations – flowchart

observables:

physical processes:


C.P., Pakmor, Schaal, Simpson, Springel (2016)

Steady state solutions Non-thermal emission AREPO Simulations

Simulations with cosmic ray physics

observables:

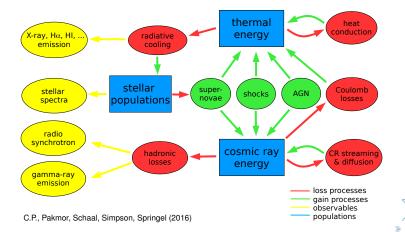
physical processes:

Steady state solutions Non-thermal emission AREPO Simulations

Simulations with cosmic ray physics

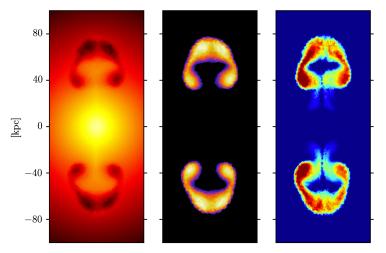
observables:

physical processes:



Steady state solutions Non-thermal emission AREPO Simulations

Simulations with cosmic ray physics


observables:

physical processes:

Steady state solutions Non-thermal emission AREPO Simulations

Jet simulation: gas density, CR energy, B field

Weinberger+ in prep.

Steady state solutions Non-thermal emission AREPO Simulations

Conclusions on AGN feedback by cosmic-ray heating

cosmic-ray heating in M87:

- radio and γ-ray data of M87 imply CR mixing with dense cluster gas with a CR-to-thermal pressure ratio of X_{cr} = 0.3
- CR Alfvén wave heating balances radiative cooling on all scales within the central radio halo (r < 35 kpc)
- local thermal stability analysis predicts observed temperature floor at $kT \simeq 1$ keV

Steady state solutions Non-thermal emission AREPO Simulations

Conclusions on AGN feedback by cosmic-ray heating

cosmic-ray heating in M87:

- radio and γ-ray data of M87 imply CR mixing with dense cluster gas with a CR-to-thermal pressure ratio of X_{cr} = 0.3
- CR Alfvén wave heating balances radiative cooling on all scales within the central radio halo (r < 35 kpc)
- local thermal stability analysis predicts observed temperature floor at $kT \simeq 1$ keV

large sample of cool cores \Rightarrow self-regulation cycle

- Iow-density cool cores: possibly stably heated by cosmic rays
- radio mini halo clusters: cosmic-ray heating ruled out systems are strongly cooling and form stars at large rates
- predicting continuous sequence of diffuse radio emission in all cool cores: from radio micro to mini halos

Steady state solutions Non-thermal emission AREPO Simulations

CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtioN

HITS E DQC

Steady state solutions Non-thermal emission AREPO Simulations

Literature for the talk

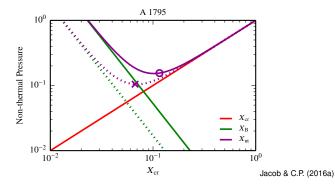
AGN feedback by cosmic rays:

- Pfrommer, Toward a comprehensive model for feedback by active galactic nuclei: new insights from M87 observations by LOFAR, Fermi and H.E.S.S., 2013, ApJ, 779, 10.
- Jacob & Pfrommer, *Cosmic ray heating in cool core clusters I: diversity of steady state solutions*, 2016a, submitted.
- Jacob & Pfrommer, Cosmic ray heating in cool core clusters II: self-regulation cycle and non-thermal emission, 2016b, submitted.

Cosmic ray simulations with AREPO:

• Pfrommer, Pakmor, Schaal, Simpson, Springel, *Simulating cosmic ray physics on a moving mesh*, 2016, submitted.

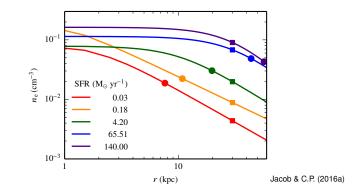
イロト イ理ト イヨト イヨト


Steady state solutions Non-thermal emission AREPO Simulations

Additional slides

Steady state solutions Non-thermal emission AREPO Simulations

Case study A1795: non-thermal pressure balance



- define $X_{cr} = P_{cr}/P_{th}$ and $X_B = P_B/P_{th}$
- CR heating rate: $\mathcal{H}_{cr} = -\mathbf{v}_{st} \cdot \nabla P_{cr} \propto X_B^{0.5} X_{cr}$
- non-thermal pressure at fixed heating rate:

$$X_{\rm nt} \equiv (X_{\mathcal{B}} + X_{\rm cr})|_{\mathcal{H}_{\rm cr}} = AX_{\rm cr}^{-2} + X_{\rm cr} \quad \rightarrow \quad X_{\rm cr,min} = (2A)^{1/3}$$

Steady state solutions Non-thermal emission AREPO Simulations

Steady state solutions: origin of density correlations

- tight correlation of gas density $n_e(30 \text{ kpc})$ (squares) with SFR and with 1 Gyr cooling radius r_{cool} (circles)
- clusters with larger SFRs are on average denser and show larger r_{cool}:
 more cool gas available for star formation