Astrophysics of galaxy clusters – Cosmic rays and magnetic fields

Christoph Pfrommer¹

in collaboration with

Torsten Enßlin, Anders Pinzke, Volker Springel, Francesco Miniati, Kandaswamy Subramanian

¹Heidelberg Institute for Theoretical Studies, Germany

Apr 1, 2011 / TAPIR Seminar, Caltech

Outline

Cosmological simulations

- Introduction
- Simulated physics
- Cosmic rays in galaxy clusters
- 2 Non-thermal emission
 - Overview
 - Radio emission
 - Gamma-ray emission

3 Cosmic ray transport

- Observations and models
- CR pumping and streaming
- Radio and gamma-ray bimodality

ntroduction Simulated physics Cosmic rays in galaxy clusters

Outline

Cosmological simulations

- Introduction
- Simulated physics
- Cosmic rays in galaxy clusters
- 2 Non-thermal emission
 - Overview
 - Radio emission
 - Gamma-ray emission
- 3 Cosmic ray transport
 - Observations and models
 - CR pumping and streaming
 - Radio and gamma-ray bimodality

< E

Introduction Simulated physics Cosmic rays in galaxy clusters

The structure of our Universe

The "cosmic web" today. *Left:* the projected gas density in a cosmological simulation. *Right:* gravitationally heated intracluster medium through cosmological shock waves (C.P. et al. 2006).

Introduction Simulated physics Cosmic rays in galaxy clusters

A theorist's perspective of a galaxy cluster

Galaxy clusters are dynamically evolving dark matter potential wells:

Introduction Simulated physics Cosmic rays in galaxy clusters

... and how the observer's Universe looks like

1E 0657-56 ("Bullet cluster")

(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl; Magellan/U.Arizona/D.Clowe et al.; Lensing: NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)

Abell 3667

(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)

(신문)) 신문

Christoph Pfrommer

Astrophysics of galaxy clusters

Introduction Simulated physics Cosmic rays in galaxy clusters

Shock waves

shock waves: sudden change in density, temperature, and pressure that decelerates supersonic flow.

thickness \sim mean free path $\lambda_{\rm mfp}$

in air, $\lambda_{mfp} \sim \mu m$, on Earth, most shocks are mediated by collisions.

Mean free path to Coulomb collisions is huge: $\lambda_{mfp} \sim L_{cluster}/10, \qquad \lambda_{mfp} \sim L_{SNR}$ Mean free path \gg scales of interest! \rightarrow shocks must be mediated without collisions, but through interactions with collective fields \rightarrow collisionless shocks

<ロ> <同> <同> <同> < 同> < 同>

Introduction Simulated physics Cosmic rays in galaxy clusters

Shock waves

shock waves: sudden change in density, temperature, and pressure that decelerates supersonic flow.

thickness \sim mean free path $\lambda_{\rm mfp}$

in air, $\lambda_{mfp} \sim \mu m$, on Earth, most shocks are mediated by collisions.

 $\begin{array}{ll} \mbox{Mean free path to Coulomb collisions is huge:} \\ \lambda_{mfp} \sim L_{cluster}/10, & \lambda_{mfp} \sim L_{SNR} \\ \mbox{Mean free path} \gg \mbox{scales of interest!} \\ \rightarrow \mbox{ shocks must be mediated without collisions,} \\ \mbox{but through interactions with collective fields} \\ \rightarrow \mbox{ collisionless shocks} & \end{tabular}$

(slide concept Spitkovsky

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction Simulated physics Cosmic rays in galaxy clusters

Shocks in supernova remnants

Astrophysical collisionless shocks can:

- accelerate particles (electrons and ions) \rightarrow cosmic rays (CRs)
- amplify magnetic fields (or generate them from scratch)
- exchange energy between electrons and ions

SN 1006 X-rays (CXC/Hughes)

G347.3 HESS TeV (Aharonian et al. 2006)

Tycho X-rays (CXC)

Introduction Simulated physics Cosmic rays in galaxy clusters

Shock acceleration

Spectral index of CRs depends on the shock strength:

Introduction Simulated physics Cosmic rays in galaxy clusters

Giant radio halo in the Coma cluster

thermal X-ray emission

(Snowden/MPE/ROSAT)

radio synchrotron emission

(Deiss/Effelsberg)

< E

Introduction Simulated physics Cosmic rays in galaxy clusters

High-Energy Astrophysics in Galaxy Clusters Understanding non-thermal emission (from radio to γ-rays)

• plasma astrophysics:

- \rightarrow shock and particle acceleration
- \rightarrow large-scale magnetic fields
- \rightarrow turbulence
- structure formation and galaxy cluster cosmology:
 - \rightarrow illuminating the process of structure formation
 - \rightarrow history of individual clusters: cluster archeology
 - \rightarrow calibrating thermal cluster observables: cluster cosmology
- indirect detection of dark matter:
 - \rightarrow cosmic ray vs. DM annihilation γ -rays

프 🖌 🖌 프

< 🗇 🕨

Introduction Simulated physics Cosmic rays in galaxy clusters

Cosmological simulations – flowchart

Introduction Simulated physics Cosmic rays in galaxy clusters

Cosmological simulations with cosmic ray physics

Introduction Simulated physics Cosmic rays in galaxy clusters

Cosmological simulations with cosmic ray physics

Introduction Simulated physics Cosmic rays in galaxy clusters

Hadronic cosmic ray proton interaction

Christoph Pfrommer

Astrophysics of galaxy clusters

Introduction Simulated physics Cosmic rays in galaxy clusters

Hadronic cosmic ray proton interaction

Christoph Pfrommer

Astrophysics of galaxy clusters

Introduction Simulated physics Cosmic rays in galaxy clusters

Cosmological cluster simulation: gas density

Introduction Simulated physics Cosmic rays in galaxy clusters

Mass weighted temperature

Introduction Simulated physics Cosmic rays in galaxy clusters

Shock strengths weighted by dissipated energy

Introduction Simulated physics Cosmic rays in galaxy clusters

Shock strengths weighted by injected CR energy

Introduction Simulated physics Cosmic rays in galaxy clusters

Evolved CR pressure

Christoph Pfrommer A

Astrophysics of galaxy clusters

Introduction Simulated physics Cosmic rays in galaxy clusters

Relative CR pressure P_{CR}/P_{total}

Overview Radio emission Gamma-ray emission

Outline

- Cosmological simulations
 - Introduction
 - Simulated physics
 - Cosmic rays in galaxy clusters
- 2 Non-thermal emission
 - Overview
 - Radio emission
 - Gamma-ray emission
- 3 Cosmic ray transport
 - Observations and models
 - CR pumping and streaming
 - Radio and gamma-ray bimodality

> < ≣

Overview Radio emission Gamma-ray emission

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Overview Radio emission Gamma-ray emission

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

★ E → ★ E →

Overview Radio emission Gamma-ray emission

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Overview Radio emission Gamma-ray emission

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Overview Radio emission Gamma-ray emission

Structure formation shocks

Overview Radio emission Gamma-ray emission

Radio gischt: shock-accelerated CRe

Overview Radio emission Gamma-ray emission

Radio gischt + central hadronic halo = giant radio halo

Overview Radio emission Gamma-ray emission

Which one is the simulation/observation of A2256?

red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic

프 🖌 🖌 프

Christoph Pfrommer

Astrophysics of galaxy clusters

Overview Radio emission Gamma-ray emission

Observation – simulation of A2256

red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic

Christoph Pfrommer

Astrophysics of galaxy clusters

< 回 > < 三 > < 三

Cosmological simulations Overview Non-thermal emission Radio emission Cosmic ray transport Gamma-ray emission

Universal CR spectrum in clusters (Pinzke & C.P. 2010)

Normalized CR spectrum shows universal concave shape \rightarrow governed by hierarchical structure formation and the implied distribution of Mach numbers that a fluid element had to pass through in cosmic history.

Overview Radio emission Gamma-ray emission

CR proton and γ -ray spectrum (Pinzke & C.P. 2010)

Christoph Pfrommer

Astrophysics of galaxy clusters

Overview Radio emission Gamma-ray emission

Hadronic γ -ray emission, $E_{\gamma} > 100 \text{ GeV}$

Christoph Pfrommer

Astrophysics of galaxy clusters
Overview Radio emission Gamma-ray emission

Inverse Compton emission, $E_{\rm IC} > 100 \, {\rm GeV}$

Christoph Pfrommer

Overview Radio emission Gamma-ray emission

Total γ -ray emission, $E_{\gamma} > 100 \text{ GeV}$

Christoph Pfrommer

Overview Radio emission Gamma-ray emission

An analytic model for the cluster γ -ray emission Comparison: simulation vs. analytic model, $M_{vir} \simeq (10^{14}, 10^{15}) M_{\odot}$

Christoph Pfrommer

Overview Radio emission Gamma-ray emission

Gamma-ray scaling relations

Scaling relation + complete sample of the brightest X-ray clusters (HIFLUGCS) \rightarrow predictions for *Fermi* and *IACT's*

Overview Radio emission Gamma-ray emission

γ -ray limits and hadronic predictions (Ackermann et al. 2010)

Christoph Pfrommer

Overview Radio emission Gamma-ray emission

MAGIC observations of Perseus

Christoph Pfrommer

Cosmological simulations Overview Non-thermal emission Radio emission Cosmic ray transport Gamma-ray emission

Upper limit on the TeV γ -ray emission from Perseus

Christoph Pfrommer

Overview Radio emission Gamma-ray emission

Results from the Perseus observation by MAGIC

- assuming $f \propto p^{-\alpha}$ with $\alpha = 2.1$, $P_{CR} \propto P_{th}$: $\langle P_{CR} \rangle < 0.02 \langle P_{th} \rangle \rightarrow \text{most stringent constraint on CR pressure!}$
- upper limits consistent with cosmological simulations: $F_{upper \ limits}(100 \ GeV) = 2 \ F_{sim}$ (optimistic model)
- simulation modeling of pressure constraint yields $\langle P_{CR} \rangle / \langle P_{th} \rangle < 0.04 (0.08)$ for the core (entire cluster)
- resolving the apparent discrepancy:
 - concave curvature 'hides' CR pressure at GeV energies
 - relative CR pressure increases towards the outer parts (adiabatic compression and softer equation of state of CRs)

ヘロト ヘアト ヘビト ヘビ

Overview Radio emission Gamma-ray emission

Results from the Perseus observation by MAGIC

- assuming $f \propto p^{-\alpha}$ with $\alpha = 2.1$, $P_{CR} \propto P_{th}$: $\langle P_{CR} \rangle < 0.02 \langle P_{th} \rangle \rightarrow \text{most stringent constraint on CR pressure!}$
- upper limits consistent with cosmological simulations: $F_{upper limits}(100 \text{ GeV}) = 2 F_{sim}$ (optimistic model)
- simulation modeling of pressure constraint yields $\langle P_{CR} \rangle / \langle P_{th} \rangle < 0.04 (0.08)$ for the core (entire cluster)
- resolving the apparent discrepancy:
 - concave curvature 'hides' CR pressure at GeV energies
 - relative CR pressure increases towards the outer parts (adiabatic compression and softer equation of state of CRs)

イロト イポト イヨト イヨ

Overview Radio emission Gamma-ray emission

Conclusions on high-energy astrophysics in clusters Exploring the memory of structure formation

- primary, shock-accelerated CR electrons resemble current accretion and merging shock waves
- CR protons/hadronically produced CR electrons trace the time integrated non-equilibrium activities of clusters that is modulated by the recent dynamical activities
- \rightarrow Multi-messenger approach from the radio to γ -ray regime

프 🖌 🖌 프

Overview Radio emission Gamma-ray emission

Conclusions on high-energy astrophysics in clusters New generation of observatories

How can we read out this information about non-thermal populations? \rightarrow new era of multi-frequency experiments:

- LOFAR, GMRT, MWA, LWA, SKA: interferometric array of radio telescopes at low frequencies ($\nu \simeq (15 240)$ MHz)
- NuSTAR: future hard X-ray satellite ($E \simeq (1 100)$ keV)
- Fermi γ -ray space telescope ($E \simeq (0.1 300)$ GeV)
- MAGIC, H.E.S.S., Veritas, CTA: imaging air Čerenkov telescopes (*E* ~ (0.1 – 100) TeV)

イロト イポト イヨト イヨト

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Outline

- Cosmological simulations
 - Introduction
 - Simulated physics
 - Cosmic rays in galaxy clusters
- 2 Non-thermal emission
 - Overview
 - Radio emission
 - Gamma-ray emission

3 Cosmic ray transport

- Observations and models
- CR pumping and streaming
- Radio and gamma-ray bimodality

э

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Radio halo theory – (i) hadronic model

$$p_{CR} + p \rightarrow \pi^{\pm} \rightarrow e^{\pm}$$

∃ → < ∃ →</p>

strength:

- all required ingredients available: shocks to inject CRp, gas protons as targets, magnetic fields
- predicted luminosities and morphologies as observed without tuning
- power-law spectra as observed

weakness:

- all clusters should have radio halos
- does not explain all reported spectral features

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Radio halo theory – (i) hadronic model

$$p_{CR} + p \rightarrow \pi^{\pm} \rightarrow e^{\pm}$$

strength:

- all required ingredients available: shocks to inject CRp, gas protons as targets, magnetic fields
- predicted luminosities and morphologies as observed without tuning
- power-law spectra as observed

weakness:

- all clusters should have radio halos
- does not explain all reported spectral features

(E) → (E)

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Radio halo and spectrum in the Bullet cluster

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Radio luminosity - X-ray luminosity

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Radio luminosity - X-ray luminosity

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Radio luminosity - X-ray luminosity

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Radio luminosity - central entropy

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Radio luminosity - central entropy

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Radio luminosity - central entropy

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Radio luminosity - central entropy

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Proton cooling times

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Proton cooling times

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Radio halo theory – (ii) re-acceleration model

strength:

- all required ingredients available: radio galaxies & relics to inject CRe, plasma waves to re-accelerate, ...
- reported complex radio spectra emerge naturally
- clusters without halos ← less turbulent

weakness:

- Fermi II acceleration is inefficient CRe cool rapidly
- observed power-law spectra require fine tuning

★ E → ★ E →

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Radio halo theory – (ii) re-acceleration model

strength:

- all required ingredients available: radio galaxies & relics to inject CRe, plasma waves to re-accelerate, ...
- reported complex radio spectra emerge naturally
- clusters without halos ← less turbulent

weakness:

- Fermi II acceleration is inefficient CRe cool rapidly
- observed power-law spectra require fine tuning

★ 문 ► ★ 문 ►

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Electron cooling times

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Electron cooling times

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Electron cooling times

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Cosmic ray transport – magnetic flux tube with CRs

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Cosmic ray advection

Christoph Pfrommer

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Adiabatic expansion and compression

Christoph Pfrommer

Cosmic ray transport

CR pumping and streaming

Cosmic ray streaming

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Expanded CRs

Christoph Pfrommer

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Turbulent pumping

Christoph Pfrommer

Astrophysics of galaxy clusters

90

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Turbulent pumping

Christoph Pfrommer
Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Turbulent-to-streaming ratio

$$\gamma_{\rm tu} = \frac{\upsilon_{\rm tu}}{\upsilon_{\rm st}}$$

イロン イロン イヨン イヨン

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Are CRs confined to magnetic flux tubes?

Astrophysics of galaxy clusters

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Escape via diffusion: energy dependence

Christoph Pfrommer

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

CR transport theory

CR continuity equation in the absence of sources and sinks:

$$rac{\partial arrho}{\partial t} + ec
abla \cdot (oldsymbol{v} \, arrho) = oldsymbol{0}$$
 $oldsymbol{v} = oldsymbol{v}_{
m ad} + oldsymbol{v}_{
m di} + oldsymbol{v}_{
m st}$

$$\begin{aligned} \boldsymbol{v}_{\mathrm{st}} &= -\boldsymbol{v}_{\mathrm{st}} \, \frac{\vec{\nabla} \, \varrho}{|\vec{\nabla} \, \varrho|} \\ \boldsymbol{v}_{\mathrm{di}} &= -\kappa_{\mathrm{di}} \, \frac{1}{\varrho} \, \vec{\nabla} \varrho \\ \boldsymbol{v}_{\mathrm{ad}} &= -\kappa_{\mathrm{tu}} \, \frac{\eta}{\varrho} \, \vec{\nabla} \frac{\varrho}{\eta} \end{aligned}$$

$$\kappa_{\rm tu} = \frac{L_{\rm tu} \, \upsilon_{\rm tu}}{3}$$

프 > + 프 >

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

CR profile due to advection

Christoph Pfrommer Astrophysics of galaxy clusters

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

CR density profile

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

CR density at fixed particle energy

Christoph Pfrommer

Astrophysics of galaxy clusters

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Gamma-ray emission profile

$$p_{CR} + p \rightarrow \pi^0 \rightarrow 2\gamma$$

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Gamma-ray luminosity

$$p_{CR} + p \rightarrow \pi^0 \rightarrow 2\gamma$$

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

γ -ray limits and hadronic predictions (Ackermann et al. 2010)

Christoph Pfrommer

Astrophysics of galaxy clusters

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Radio emission profile

$$p_{CR} + p \rightarrow \pi^{\pm} \rightarrow e^{\pm} \rightarrow radio$$

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Radio luminosity

$$p_{CR} + p \rightarrow \pi^{\pm} \rightarrow e^{\pm} \rightarrow radio$$

Christoph Pfrommer

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Conclusions

 cosmological simulations predict universal CR spectrum and distribution (ignoring active CR transport)

 \rightarrow Fermi limits consistent with simulations that use most optimistic assumptions of CR acceleration and transport

- streaming & diffusion produce spatially flat CR profiles advection produces centrally enhanced CR profiles
 → profile depends on advection-to-streaming-velocity ratio
- turbulent velocity ~ sound speed ← cluster merger CR streaming velocity ~ sound speed ← plasma physics → peaked/flat CR profiles in merging/relaxed clusters
- energy dependence of $v_{st}^{macro} \rightarrow CR$ & radio spectral variations \rightarrow outstreaming CR: dying halo \leftarrow decaying turbulence
- ightarrow bimodality of cluster radio halos & gamma-ray emission

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Conclusions

 cosmological simulations predict universal CR spectrum and distribution (ignoring active CR transport)

 \rightarrow Fermi limits consistent with simulations that use most optimistic assumptions of CR acceleration and transport

- streaming & diffusion produce spatially flat CR profiles advection produces centrally enhanced CR profiles
 → profile depends on advection-to-streaming-velocity ratio
- turbulent velocity ~ sound speed ← cluster merger CR streaming velocity ~ sound speed ← plasma physics → peaked/flat CR profiles in merging/relaxed clusters
- energy dependence of $v_{st}^{macro} \rightarrow CR$ & radio spectral variations \rightarrow outstreaming CR: dying halo \leftarrow decaying turbulence

ightarrow bimodality of cluster radio halos & gamma-ray emission

(人間) (人) () ()

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Conclusions

 cosmological simulations predict universal CR spectrum and distribution (ignoring active CR transport)

 \rightarrow Fermi limits consistent with simulations that use most optimistic assumptions of CR acceleration and transport

- streaming & diffusion produce spatially flat CR profiles advection produces centrally enhanced CR profiles
 → profile depends on advection-to-streaming-velocity ratio
- turbulent velocity ~ sound speed ← cluster merger CR streaming velocity ~ sound speed ← plasma physics → peaked/flat CR profiles in merging/relaxed clusters
- energy dependence of v^{macro}_{st} → CR & radio spectral variations
 → outstreaming CR: dying halo ← decaying turbulence

ightarrow bimodality of cluster radio halos & gamma-ray emission

< 回 > < 三 >

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Conclusions

 cosmological simulations predict universal CR spectrum and distribution (ignoring active CR transport)

 \rightarrow Fermi limits consistent with simulations that use most optimistic assumptions of CR acceleration and transport

- streaming & diffusion produce spatially flat CR profiles advection produces centrally enhanced CR profiles
 → profile depends on advection-to-streaming-velocity ratio
- turbulent velocity ~ sound speed ← cluster merger CR streaming velocity ~ sound speed ← plasma physics → peaked/flat CR profiles in merging/relaxed clusters
- energy dependence of v_{st}^{macro} → CR & radio spectral variations
 → outstreaming CR: dying halo ← decaying turbulence
- \rightarrow bimodality of cluster radio halos & gamma-ray emission!

< 🗇 🕨

Observations and models CR pumping and streaming Radio and gamma-ray bimodality

Literature for the talk

- Enßlin, Pfrommer, Miniati, Subramanian, 2011, A&A, 527, 99, Cosmic ray transport in galaxy clusters: implications for radio halos, gamma-ray signatures, and cool core heating
- Pinzke & Pfrommer, 2010, MNRAS, 409, 449, Simulating the gamma-ray emission from galaxy clusters: a universal cosmic ray spectrum and spatial distribution
- Pfrommer, 2008, MNRAS, 385, 1242, Simulating cosmic rays in clusters of galaxies – III. Non-thermal scaling relations and comparison to observations
- Pfrommer, Enßlin, Springel, 2008, MNRAS, 385, 1211, Simulating cosmic rays in clusters of galaxies – II. A unified scheme for radio halos and relics with predictions of the γ-ray emission
- Pfrommer, Enßlin, Springel, Jubelgas, Dolag, 2007, MNRAS, 378, 385, Simulating cosmic rays in clusters of galaxies – I. Effects on the Sunyaev-Zel'dovich effect and the X-ray emission

< 17 ▶