The physics of propagating TeV gamma-rays: From plasma instabilities to cosmological structure formation

Christoph Pfrommer¹

with

Avery E. Broderick, Phil Chang, Ewald Puchwein, Mohamad Shalaby, Astrid Lamberts, Volker Springel

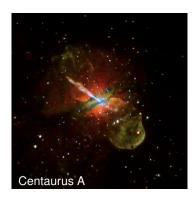
¹Heidelberg Institute for Theoretical Studies, Germany

RAPP Center Inauguration meeting, Bochum - 2016

Motivation

A new link between high-energy astrophysics and cosmological structure formation

Introduction to Blazars


- active galactic nuclei (AGN)
- propagating gamma rays
- plasma physics

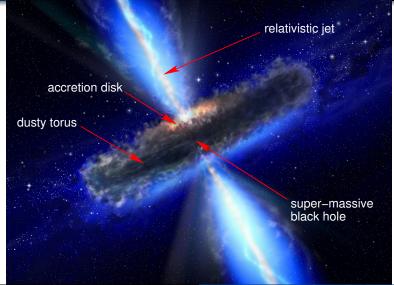
Cosmological Consequences

- unifying blazars with AGN
- gamma-ray background
- thermal history of the Universe
- Lyman- α forest
- formation of dwarf galaxies

Active galactic nucleus (AGN)

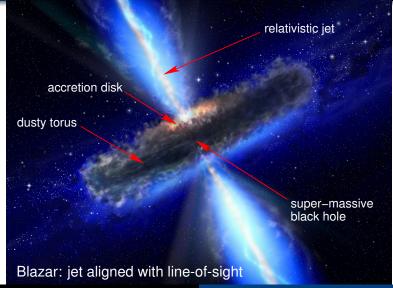
- AGN: compact region at the center of a galaxy, which dominates the luminosity of its electromagnetic spectrum
- AGN emission is most likely caused by mass accretion onto a supermassive black hole and can also launch relativistic jets

Active galactic nucleus at a cosmological distance



Quasar 3C175 at $z \simeq 0.8$: jet extends 10^6 light years across

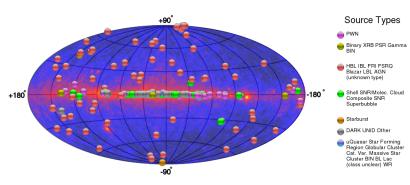
- AGN: compact region at the center of a galaxy, which dominates the luminosity of its electromagnetic spectrum
- AGN emission is most likely caused by mass accretion onto a supermassive black hole and can also launch relativistic jets
- AGNs are among the most luminous sources in the universe
 → discovery of distant objects



Unified model of active galactic nuclei

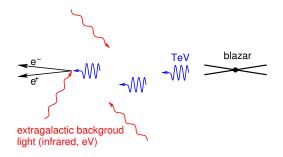
Unified model of active galactic nuclei

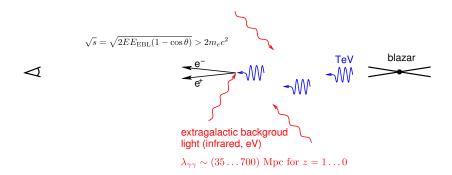
TeV gamma-ray observations

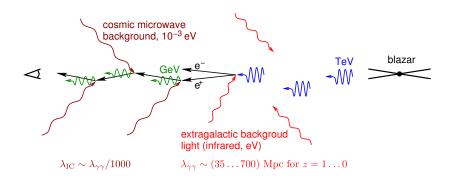


The TeV gamma-ray sky

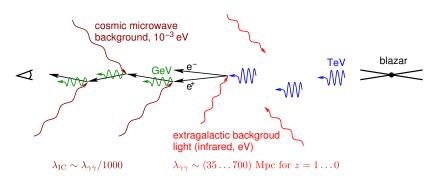
There are several classes of TeV sources:


- Galactic pulsars, BH binaries, supernova remnants
- Extragalactic mostly blazars, two starburst galaxies


Annihilation and pair production

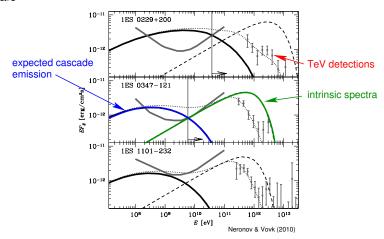


Annihilation and pair production



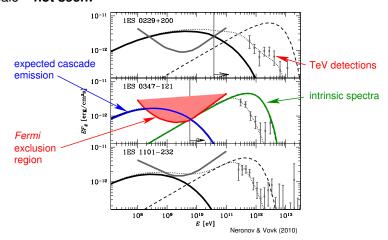
Inverse Compton cascades

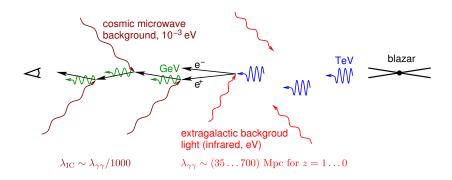
Inverse Compton cascades



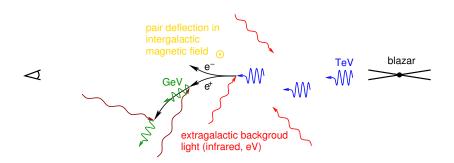
→ each TeV point source should also be a GeV point source!

What about the cascade emission?

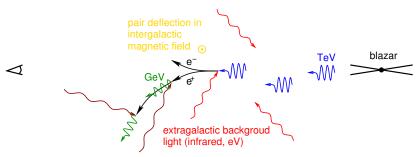

Every TeV source should be associated with a 1-100 GeV gamma-ray halo


What about the cascade emission?

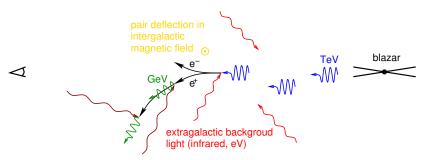
Every TeV source should be associated with a 1-100 GeV gamma-ray halo – **not seen!**



Inverse Compton cascades

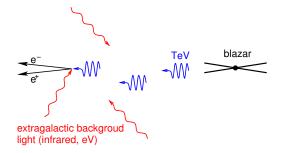


Extragalactic magnetic fields?

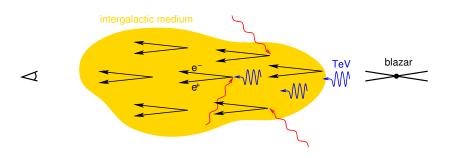

Extragalactic magnetic fields?

- GeV point source diluted → weak "pair halo"
- stronger B–field implies more deflection and dilution, gamma–ray non–detection \longrightarrow $B\gtrsim 10^{-16}\,\mathrm{G}$ primordial fields?

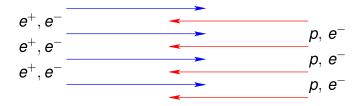
Extragalactic magnetic fields?



 problem for unified AGN model: no increase in comoving blazar density with redshift allowed (as seen in other AGNs) since other wise, extragalactic GeV background would be overproduced!


What else could happen?

Plasma instabilities

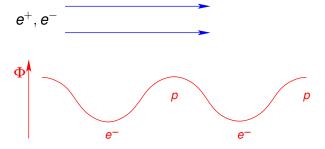

pair plasma beam propagating through the intergalactic medium

Plasma instabilities

pair beam

intergalactic medium (IGM)

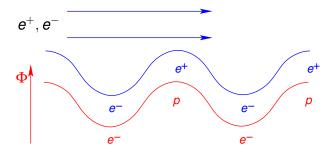
- this configuration is unstable to plasma instabilities
- characteristic frequency and length scale of the problem:


$$\omega_{\it p} = \sqrt{rac{4\pi e^2 n_e}{m_e}}, \qquad \lambda_{\it p} = \left. rac{c}{\omega_{\it p}}
ight|_{ar{
ho}(z=0)} \sim 10^8 \, {
m cm}$$

Two-stream instability

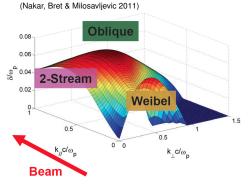
consider wave-like perturbation in background plasma along the beam direction (Langmuir wave):

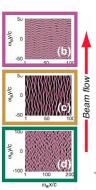
- initially homogeneous beam-e⁻: attractive (repulsive) force by potential maxima (minima)
- ullet e^- attain lowest velocity in potential minima o bunching up
- ullet e^+ attain lowest velocity in potential maxima o bunching up



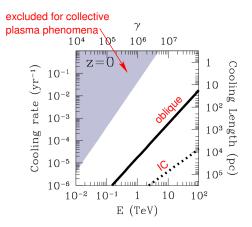
Two-stream instability

consider wave-like perturbation in background plasma along the beam direction (Langmuir wave):


- beam- e^+/e^- couple in phase with the background perturbation: enhances background potential
- stronger forces on beam- $e^+/e^- o$ positive feedback
- exponential wave-growth → instability



Oblique instability


- k oblique to v_{beam}: real word perturbations don't choose "easy" alignment = ∑ all orientations
- oblique grows faster than two-stream: E-fields can easier deflect ultra-relativistic particles than change their parallel velocities

Beam physics – growth rates

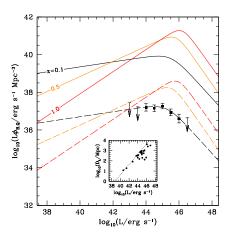
Broderick, Chang, C.P. (2012), also Schlickeiser+ (2012)

- consider a light beam penetrating into relatively dense plasma
- maximum growth rate

$$\Gamma \simeq 0.4 \, \gamma \, rac{n_{
m beam}}{n_{
m IGM}} \, \omega_{
m p}$$

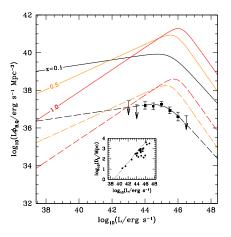
- oblique instability beats inverse Compton cooling by factor 10-100
- assume that instability grows at linear rate up to saturation

TeV emission from blazars – a new paradigm


$$\gamma_{\mathsf{TeV}} + \gamma_{\mathsf{eV}} \ o \ \pmb{e}^+ + \pmb{e}^- \ o \ \left\{ egin{array}{ll} \mathsf{inv.} \ \mathsf{Compton} \ \mathsf{cascades} & o & \gamma_{\mathsf{GeV}} \\ \mathsf{plasma} \ \mathsf{instabilities} \end{array}
ight.$$

absence of $\gamma_{\rm GeV}$'s has significant implications for . . .

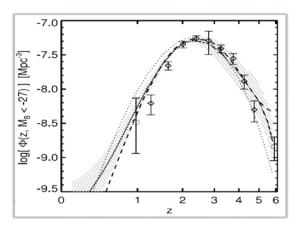
- intergalactic magnetic field estimates
- unified picture of TeV blazars and quasars

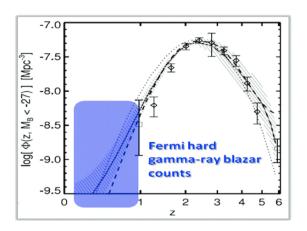

TeV blazar luminosity density: today

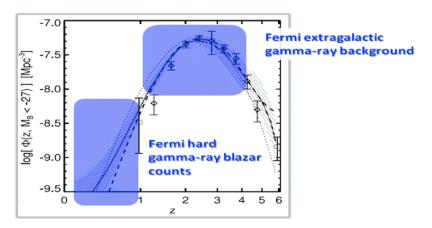
- collect luminosity of all 23 TeV blazars with good spectral measurements
- account for the selection effects (sky coverage, duty cycle, galactic occultation, TeV flux limit)
- TeV blazar luminosity density is a scaled version ($\eta_B \sim$ 0.2%) of that of quasars!

Unified TeV blazar-quasar model

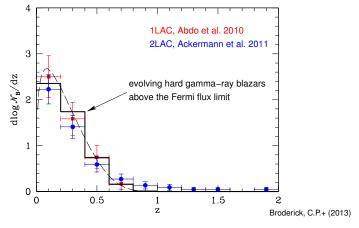
Quasars and TeV blazars are:

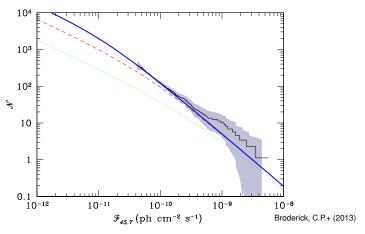

- regulated by the same mechanism
- contemporaneous elements of a single AGN population: TeV-blazar activity does not lag quasar activity
- \rightarrow assume that they trace each other for all redshifts!


→ use all-sky survey of the GeV gamma-ray sky: *Fermi* gamma-ray space telescope

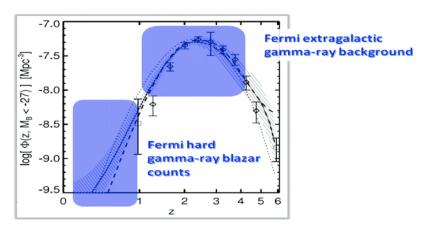

Hopkins+ (2007)

Hopkins+ (2007)



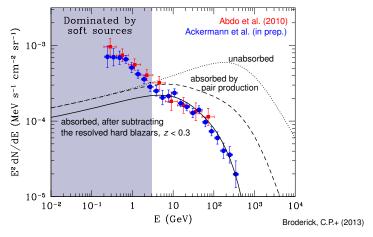

Redshift distribution of *Fermi* hard γ -ray blazars

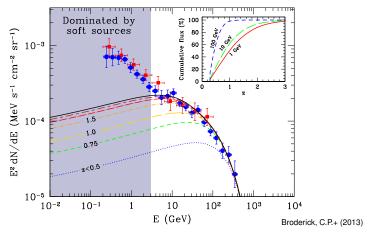
 \rightarrow evolving (increasing) blazar population consistent with observed declining evolution (*Fermi* flux limit)!



$\log N - \log S$ distribution of *Fermi* hard γ -ray blazars

ightarrow predicted and observed flux distributions of hard *Fermi* blazars between 10 GeV and 500 GeV are indistinguishable!




Extragalactic gamma-ray background

 \rightarrow evolving population of hard blazars provides excellent match to latest EGRB by *Fermi* for $E \gtrsim 3$ GeV

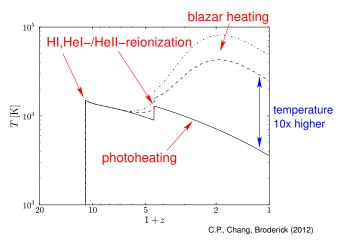
Extragalactic gamma-ray background

 \rightarrow the signal at 10 (100) GeV is dominated by redshifts $z\sim$ 1.2 ($z\sim$ 0.6)

TeV emission from blazars – a new paradigm

$$\gamma_{\mathsf{TeV}} + \gamma_{\mathsf{eV}} \ o \ e^+ + e^- \ o \ \left\{ egin{array}{ll} \mathsf{inv. Compton \ cascades} & o & \gamma_{\mathsf{GeV}} \\ \mathsf{plasma \ instabilities} & o & \mathsf{IGM \ heating} \end{array}
ight.$$

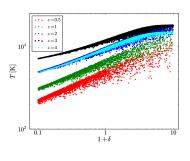
absence of $\gamma_{\rm GeV}$'s has significant implications for . . .


- intergalactic magnetic field estimates
- unified picture of TeV blazars and quasars: explains $Fermi's \gamma$ -ray background and blazar number counts

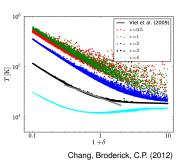
additional IGM heating has significant implications for ...

- thermal history of the IGM: Lyman- α forest
- late-time formation of dwarf galaxies

Thermal history of the IGM



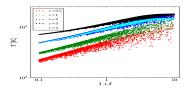
→ increased temperature at **mean** density!



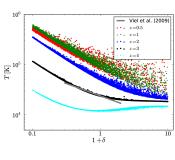
Evolution of the temperature-density relation

no blazar heating

with blazar heating



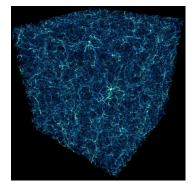
- blazars and extragalactic background light are uniform:
 - → blazar heating rate independent of density
 - → makes low density regions hot
 - \rightarrow causes inverted temperature-density relation, $T \propto 1/\delta$



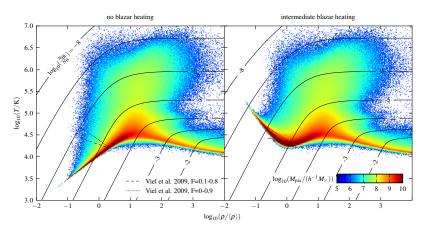
Blazars cause hot voids

no blazar heating

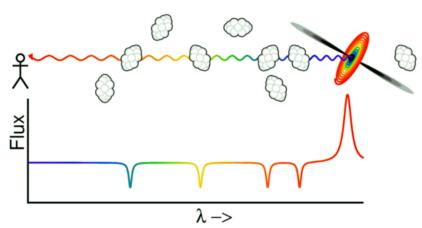
with blazar heating


Chang, Broderick, C.P. (2012)

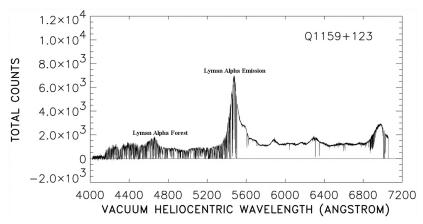
 blazars completely change the thermal history of the diffuse IGM and late-time structure formation


Cosmological hydrodynamical simulations

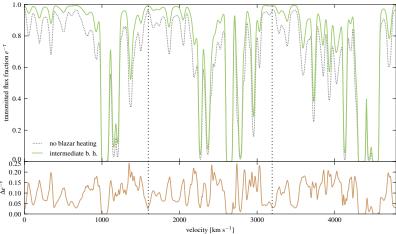
- include predicted volumetric heating rate in cosmological hydrodynamical simulations
- study:
 - thermal properties of intergalactic medium
 - ullet Lyman-lpha forest



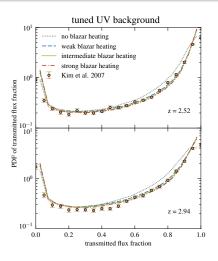
Temperature-density relation

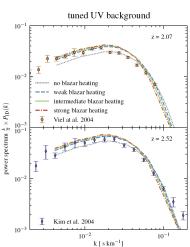


The Lyman- α forest



The observed Lyman- α forest

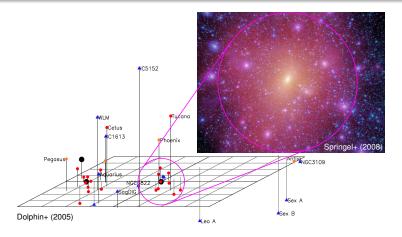




The simulated Ly- α forest

Ly- α flux PDFs and power spectra

Puchwein, C.P.+ (2012)


Lyman- α forest in a blazar heated Universe

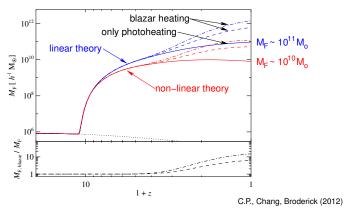
improvement in modelling the Lyman- α forest is a direct consequence of the peculiar properties of blazar heating:

- heating rate independent of IGM density \rightarrow naturally produces the inverted $T-\rho$ relation that Lyman- α forest data demand
- recent and continuous nature of the heating is needed to match the redshift evolutions of all Lyman- α forest statistics
- magnitude of the heating rate required by Lyman- α forest data \sim the total energy output of TeV blazars (or equivalently \sim 0.2% of that of quasars)

"Missing satellite" problem in the Milky Way

Substructures in cold DM simulations much more numerous than observed number of Milky Way satellites!

Dwarf galaxy formation


- thermal pressure opposes gravitational collapse on small scales
- characteristic length/mass scale below which objects do not form
- hotter intergalactic medium → higher thermal pressure → higher Jeans mass:

$$M_J \propto \frac{C_s^3}{
ho^{1/2}} \propto \left(\frac{T_{\rm IGM}^3}{
ho}\right)^{1/2} \quad o \quad \frac{M_{J,{
m blazar}}}{M_{J,{
m photo}}} pprox \left(\frac{T_{{
m blazar}}}{T_{{
m photo}}}\right)^{3/2} \gtrsim 30$$

- \rightarrow blazar heating increases M_J by 30 over pure photoheating!
- complications: non-linear collapse, delayed pressure response in expanding universe → concept of "filtering mass"

Dwarf galaxy formation suppressed

- blazar heating suppresses the formation of late-forming dwarfs within existing dark matter halos of masses $<10^{11}\,M_{\odot}$
 - → introduces new time and mass scale to galaxy formation!

Conclusions on blazar heating

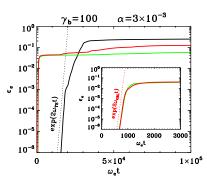
Blazar heating: TeV photons are attenuated by EBL; their kinetic energy → heating of the IGM; it is *not* cascaded to GeV energies

- explains puzzles in gamma-ray astrophysics:
 - lack of GeV bumps in blazar spectra without IGM B-fields
 - unified TeV blazar-quasar model explains Fermi source counts and extragalactic gamma-ray background
- novel mechanism; dramatically alters thermal history of the IGM:
 - uniform and z-dependent preheating
 - ullet quantitative self-consistent picture of high-z Lyman-lpha forest
- significantly modifies late-time structure formation:
 - suppresses late dwarf formation
 - void phenomenon, "missing satellites" (?)

CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtioN

Literature for the talk

- Broderick, Chang, Pfrommer, The cosmological impact of luminous TeV blazars
 I: implications of plasma instabilities for the intergalactic magnetic field and
 extragalactic gamma-ray background, ApJ, 752, 22, 2012.
- Chang, Broderick, Pfrommer, The cosmological impact of luminous TeV blazars II: rewriting the thermal history of the intergalactic medium, ApJ, 752, 23, 2012.
- Pfrommer, Chang, Broderick, The cosmological impact of luminous TeV blazars III: implications for galaxy clusters and the formation of dwarf galaxies, ApJ, 752, 24, 2012.
- Puchwein, Pfrommer, Springel, Broderick, Chang, The Lyman-α forest in a blazar-heated Universe, MNRAS, 423, 149, 2012.
- Broderick, Pfrommer, Chang, Puchwein, Implications of plasma beam instabilities for the statistics of the Fermi hard gamma-ray blazars and the origin of the extragalactic gamma-ray background, ApJ, 790, 137, 2014.
- Chang, Broderick, Pfrommer, Puchwein, Lamberts, Shalaby, The effect of nonlinear Landau damping on ultrarelativistic beam plasma instabilities, ApJ, 2014, 797, 110.



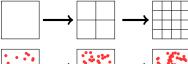
Additional slides

Challenges to the Challenge

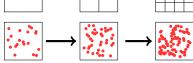
Challenge #1: quenching of linear growth & non-linear saturation

- quenching of linear growth at small level $(10^{-3} 10^{-2}) \epsilon_e$
- ullet cold beam: slow secular growth with non-linear saturation only \sim 10% of the beam energy transferred to the IGM

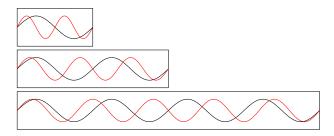
PIC simulations: $\alpha = n_{\text{beam}}/n_{\text{IGM}}$,


1D: black - two-stream & green - oblique,

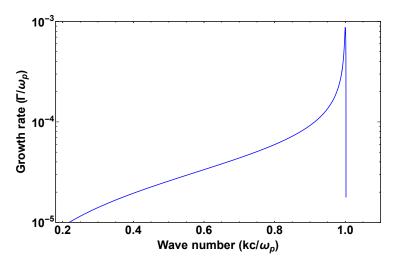
2D: red – oblique (Sironi & Giannios 2013)



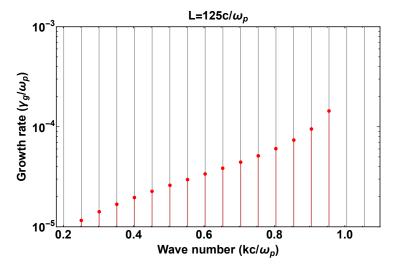
Shalaby+ (2016)


Spatial resolution:

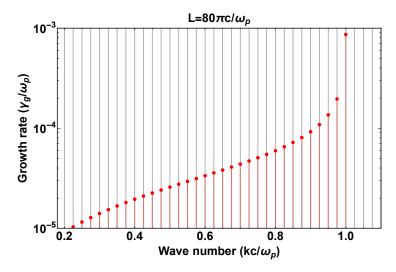
 Momentum resolution:



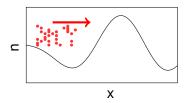
Spectral resolution:



Shalaby+ (2016)



Shalaby+ (2016)


Shalaby+ (2016)

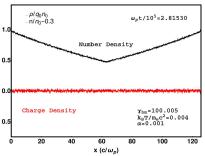
Challenges to the Challenge

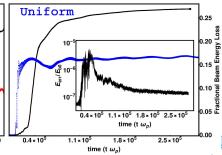
Challenge #2: inhomogeneous universe

- universe is inhomogeneous
 → electron density changes as
 a function of position
- could lead to loss of resonance over length scale
 ≪ length scale for instability growth
- condition for linear growth to occur is claimed (Miniati & Elyiv 2013)

$$\frac{\text{few}}{\Gamma_m} < \frac{\Delta k_\parallel}{|\textit{dk}/\textit{dt}|} \quad \xrightarrow{\substack{\text{electrostatic} \\ \text{modes (1D)}}} \quad \frac{\gamma_b}{\alpha} \frac{\textit{c}\lambda_\parallel}{\omega_p} < 1,$$

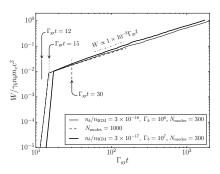
where $\lambda_{\parallel} \equiv |n/\nabla n|$.




Background inhomogeneity effects

Condition
$$(\gamma_b/\alpha)(c\lambda_{\parallel}/\omega_p)<1$$

Simulation
$$\left(\gamma_b/\alpha\right)\left(c\lambda_\parallel/\omega_p\right)\sim 10^7$$


Shalaby+ (2016): 1D PIC simulation shows linear wave growth at lower growth rate, more energy lost by the beam than for uniform case.

Challenges to the Challenge

Challenge #3: induced scattering (non-linear Landau damping)

Chang+ (2014)

- we assume that the non-linear damping rate = linear growth rate
- wave-particle and wave-wave interactions need to be resolved
- using slow collisional scattering (reactive regime), Miniati & Elyiv (2012) claim that the nonlinear Landau damping rate is ≪ linear growth rate
- accounting for much faster collisionless scattering (kinetic regime) → powerful instability, faster than IC cooling

(Schlickeiser+ 2013, Chang+ 2014)

