High Energy Astrophysics – Status and Perspectives

Christoph Pfrommer

Heidelberg Institute for Theoretical Studies, Germany

Annual Meeting of the German Astronomical Society, Bochum University, 2016

Which astrophysics can we probe at high energies?

intergalactic space

active galactic nuclei

galaxy formation

... and don't forget the UNEXPECTED!

dark matter

particle acceleration magnetic amplification

The Questions Probing physics and cosmology with in high-energy astrophysics

which objects can we see?

active galactic nuclei (blazars, radio galaxies), starburst galaxies, gamma-ray bursts, diffuse radiation, compact objects \rightarrow astronomy: characterization, population studies

what underlying physics can we probe?

most extreme physics laboratories of the cosmos: plasma instabilities, particle acceleration, magnetic fields \rightarrow high-energy astrophysics, plasma physics

 what (fundamental) physics can we hope to learn? galaxy formation, dark matter, structure of space time
 → structure formation, cosmology, particle physics

Radiative processes induced by cosmic rays Complementary information to cosmic rays: non-thermal emission points back to origin

hadronic processes:

• pion decay:

 $p{+}\text{ion} \rightarrow \left\{ \begin{array}{ccc} \pi^0 & \rightarrow & \gamma\gamma \\ \pi^\pm & \rightarrow & e^\pm + 3\nu \end{array} \right.$

photo-meson production:

$$\mathsf{p} + \gamma^* \to \left\{ \begin{array}{ccc} \pi^0 & \to & \gamma\gamma \\ \pi^\pm & \to & \mathsf{e}^\pm + 3\nu \end{array} \right.$$

• Bethe-Heitler pair production:

$$\mathbf{p} + \gamma^* \rightarrow \mathbf{p} + \mathbf{e}^+ + \mathbf{e}^-$$

leptonic processes:

• inverse Compton:

$$\mathbf{e}^* + \gamma \rightarrow \mathbf{e} + \gamma^*$$

• synchrotron radiation:

$$e^* + B \rightarrow e + B + \gamma^*$$

• bremsstrahlung:

 $e^* + ion \rightarrow e + ion + \gamma^*$

A sketch of the non-thermal emission

Physics Feedback heating Structure of space time

The physics and cosmology of active galactic nuclei

relativistic jet

accretion disk.

dusty torus

super-massive black hole

Physics Feedback heating Structure of space time

The physics and cosmology of active galactic nuclei

relativistic jet

accretion disk.

dusty torus

super-massive black hole

Blazar: jet aligned with line-of-sight

Physics Feedback heating Structure of space time

Active galactic nuclei: paradigm and open questions

- paradigm for γ -ray emission:
 - synchrotron self Compton
 - external Compton
 - proton-induced cascades
 - proton synchrotron
- open questions:
 - energetics
 - mechanisms for jet formation and collimation
 - plasma composition (leptonic vs. hadronic, 1-zone vs. spine-layer)
 - acceleration mechanisms

• TeV "flares" may sign plasma instabilities in the black hole accretion disk or magnetic reconnection events in the jet

Physics Feedback heating Structure of space time

Feedback heating: M87 at radio wavelengths

 $\nu =$ 1.4 GHz (Owen+ 2000)

 $\nu =$ 140 MHz (LOFAR/de Gasperin+ 2012)

- high-ν: freshly accelerated CR electrons low-ν: fossil CR electrons → time-integrated AGN feedback!
- LOFAR: same picture → puzzle of "missing fossil electrons"
- solution: electrons are fully mixed with the dense cluster gas and cooled through Coulomb interactions

Physics Feedback heating Structure of space time

The gamma-ray picture of M87

- high state is time variable
 → jet emission
- low state:(1) steady flux
 - (2) γ -ray spectral index (2.2)
 - = CRp index
 - = CRe injection index as probed by LOFAR
 - (3) spatial extension is under investigation (?)

Rieger & Aharonian (2012)

 \rightarrow confirming this triad would be smoking gun for first γ -ray signal from a galaxy cluster!

Physics Feedback heating Structure of space time

AGN feedback = cosmic ray heating (?)

hypothesis: low state γ -ray emission traces π^0 decay within cluster

 cosmic rays excite Alfvén waves that dissipate the energy → heating rate

$$\mathcal{H}_{CR} = | \boldsymbol{v}_A \cdot \boldsymbol{\nabla} \boldsymbol{P}_{CR} |$$

 calibrate P_{CR} to γ-ray emission and v_A to radio and X-ray emission
 → spatial heating profile

 \rightarrow cosmic-ray heating matches radiative cooling (observed in X-rays) and may solve the famous "cooling flow problem" in galaxy clusters!

Physics Feedback heating Structure of space time

Probing the structure of space-time with gamma rays

Physics Feedback heating Structure of space time

Probing the structure of space-time: idea

 does quantum gravity make space-time 'foamy' or discrete at the Planck scale?

$$l_{\mathrm{P}} = \hbar/(m_{\mathrm{P}}c), \quad t_{\mathrm{P}} = \hbar/(m_{\mathrm{P}}c^2), \quad m_{\mathrm{P}} = \sqrt{\hbar c/G}$$

- this does not happen in string theory, but in other approaches like *loop quantum gravity*
- preserving the O(3) subgroup of SO(3, 1), we parametrize the new dispersion rel. for photons

$$c^2 p^2 = E^2 (1 + \xi E / E_{QG} + \eta E^2 / E_{QG}^2 + ...)$$

$$v \equiv \partial E / \partial p = c \left(1 - \xi E / E_{QG} + \ldots\right) \quad \Rightarrow \quad \Delta t = \xi E / E_{QG} L / c$$

 \rightarrow we can test this *energy-dependent time delay* by studying the propagation of high-energy gamma ray pulses (Amelino-Camelia+ 1998)

Physics Feedback heating Structure of space time

Quantum gravity constraints with gamma-ray bursts

• expected time delay for $E_{\rm QG} \sim E_{\rm P} = 10^{19} {\rm ~GeV}$ and GeV pulse structure

$$\Delta t \approx 10 \,\mathrm{ms} \, \frac{E}{\mathrm{GeV}} \, \frac{L}{\mathrm{Gpc}}$$

- idea: use pulses from gamma-ray bursts or blazar flares
- assuming anomalous photon dispersion dominated by the linear term yields the constraint (Abdo+ 2009)

 $E_{\rm QG} > 1.2 \times 10^{19} \, {\rm GeV}, \ {\rm for} \ \xi = 1$

... set mainly by the early arrival time of the 31 GeV photon!

Physics Feedback heating Structure of space time

Quantum gravity constraints with blazar flares

→ no observable time delay between low and high energy photons! → constraints on energy-dependent violation of Lorentz invariance: $E_{\rm QG} > 2.1 \times 10^{18}$ GeV (90% CL limit)

 \rightarrow photons of all energies travel in vacuum at the same speed!

Extragalactic background light Intergalactic magnetic fields? Plasma physics

Propagation of γ rays through intergalactic space

Extragalactic background light Intergalactic magnetic fields? Plasma physics

Observational gamma-ray cosmology

Annihilation and pair production

Propagation of gamma rays Supernova remnants Extragalactic background light

Observational gamma-ray cosmology

Annihilation and pair production

Extragalactic background light Intergalactic magnetic fields? Plasma physics

The Fermi gamma-ray horizon

- stacking of 150 significantly detected BL Lac blazars
- absorption feature moves to lower *E* for higher source redshifts (propagation distances) due to attenuation of gamma rays by EBL

Extragalactic background light Intergalactic magnetic fields? Plasma physics

Extragalactic background light Unique probe of the integrated star formation rate

Extragalactic background light Intergalactic magnetic fields? Plasma physics

Annihilation and pair production

Extragalactic background light Intergalactic magnetic fields? Plasma physics

Inverse Compton cascades

Extragalactic background light Intergalactic magnetic fields? Plasma physics

Inverse Compton cascades

each TeV point source should also be a GeV point source!

Extragalactic background light Intergalactic magnetic fields? Plasma physics

What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray halo

Extragalactic background light Intergalactic magnetic fields? Plasma physics

What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray halo – **not seen!**

Extragalactic background light Intergalactic magnetic fields? Plasma physics

Inverse Compton cascades

Extragalactic background light Intergalactic magnetic fields? Plasma physics

Magnetic field deflection

Extragalactic background light Intergalactic magnetic fields? Plasma physics

Magnetic field deflection

- GeV point source diluted --> weak "pair halo"
- stronger B-field implies more deflection and dilution, gamma-ray non-detection $\longrightarrow B \gtrsim 10^{-16} \,\text{G}$ primordial fields?

Extragalactic background light Intergalactic magnetic fields? Plasma physics

Magnetic field deflection

 problem for unified AGN model: no increase in comoving blazar density with redshift allowed (as seen in other AGNs) since other– wise, extragalactic GeV background would be overproduced!

Extragalactic background light Intergalactic magnetic fields? Plasma physics

What else could happen?

Extragalactic background light Intergalactic magnetic fields? Plasma physics

Plasma instabilities

 pair plasma beam propagating through the intergalactic medium

Extragalactic background light Intergalactic magnetic fields? Plasma physics

Plasma instabilities

• pair beam

intergalactic medium (IGM)

- this configuration is unstable to plasma instabilities
- characteristic frequency and length scale of the problem:

$$\omega_{
ho} = \sqrt{rac{4\pi e^2 n_e}{m_e}}, \qquad \lambda_{
ho} = \left. rac{c}{\omega_{
ho}} \right|_{ar{
ho}(z=0)} \sim 10^8\,{
m cm}$$

Extragalactic background light Intergalactic magnetic fields? Plasma physics

Beam physics – linear growth rates

Broderick, Chang, CP (2012), also Schlickeiser+ (2012)

- consider a light beam penetrating into relatively dense plasma
- maximum growth rate

$$\Gamma \simeq 0.4 \, \gamma \, rac{\textit{n}_{
m beam}}{\textit{n}_{
m IGM}} \, \omega_{\it p}$$

- oblique instability beats inverse Compton cooling by factor 10-100
 - **assume** that instability grows at linear rate up to saturation

Extragalactic background light Intergalactic magnetic fields? Plasma physics

TeV emission from blazars – a new paradigm

$$\gamma_{\text{TeV}} + \gamma_{\text{eV}} \rightarrow e^+ + e^- \rightarrow \begin{cases} \text{inv. Compton cascades} \rightarrow \gamma_{\text{GeV}} \\ \\ \text{plasma instabilities} \rightarrow \text{IGM heating} \end{cases}$$

absence of $\gamma_{\rm GeV}{\rm 's}$ has significant implications for . . .

- intergalactic magnetic field estimates
- unified picture of TeV blazars and quasars: explains *Fermi's* γ-ray background and blazar number counts

additional IGM heating has significant implications for ...

- thermal history of the IGM: Lyman- α forest
- late time structure formation: dwarf galaxies, galaxy clusters

Extragalactic background light Intergalactic magnetic fields? Plasma physics

Extragalactic gamma-ray background

 \rightarrow evolving population of hard blazars provides excellent match to latest EGRB by *Fermi* for *E* \gtrsim 3 GeV

Particle acceleration Galaxy formation Starburst galaxies

Supernova remnants probe acceleration physics How high-energy astrophysics impacts on cosmological structure formation

Particle acceleration Galaxy formation Starburst galaxies

Supernova remnants probe acceleration physics

- supernova remnant shocks amplify magnetic fields and accelerate CR electrons up to ~ 100 TeV (narrow X-ray synchrotron filaments observed by Chandra)
- pion bump provides evidence for CR proton acceleration (*Fermi*/AGILE γ-ray spectra)

Fermi observations of W44:

Particle acceleration Galaxy formation Starburst galaxies

Supernova remnants probe acceleration physics

- supernova remnant shocks amplify magnetic fields and accelerate CR electrons up to ~ 100 TeV (narrow X-ray synchrotron filaments observed by Chandra)
- pion bump provides evidence for CR proton acceleration (*Fermi*/AGILE γ-ray spectra)
- shell-type SNRs show evidence for efficient shock acceleration beyond \sim 100 TeV (HESS TeV γ -ray observations)

Particle acceleration Galaxy formation Starburst galaxies

Physics of galaxy formation

supernova Cassiopeia A

X-ray: NASA/CXC/SAO; Optical: NASA/STScl; Infrared: NASA/JPL-Caltech/Steward/O.Krause et al. galactic supernova remnants drive shock waves, accelerate electrons, amplify magnetic fields

Particle acceleration Galaxy formation Starburst galaxies

Physics of galaxy formation

super wind in M82

NASA/JPL-Caltech/STScI/CXC/UofA

- galactic supernova remnants drive shock waves, accelerate electrons, amplify magnetic fields
- star formation and supernovae drive gas out of galaxies by galactic super winds
- critical for understanding the physics of galaxy formation
 → explains puzzle of low star formation efficiency in dwarf galaxies

Particle acceleration Galaxy formation Starburst galaxies

Physics of galaxy formation

- galactic supernova remnants drive shock waves, accelerate electrons, amplify magnetic fields
- star formation and supernovae drive gas out of galaxies by galactic super winds
- critical for understanding the physics of galaxy formation
 → explains puzzle of low star formation efficiency in dwarf galaxies

Particle acceleration Galaxy formation Starburst galaxies

Cosmic ray-driven winds

super wind in M82

NASA/JPL-Caltech/STScI/CXC/UofA

Pakmor, CP+ (2016)

• MHD-CR simulation: diffusing cosmic rays successfully launch and energize super winds that expel gas from the halo

Particle acceleration Galaxy formation Starburst galaxies

Starburst galaxies

Particle acceleration Galaxy formation Starburst galaxies

Cosmic rays and star formation

the picture: star formation \rightarrow supernova remnants \rightarrow proton acceleration \rightarrow pion decay gamma rays induced by p-p interactions

- dense material in starburst region
 - $\langle \textit{n} \rangle \sim 250 \ \text{cm}^{-3}$
 - $t_{
 m pp} \sim t_{
 m esc}$
 - approaching the calorimetric limit
 - large NT bremsstrahlung and *B*: efficient electron emission

far-IR – radio correlation

- implies universal conversion: star form. \rightarrow CR \rightarrow synchrotron
- now: far-IR – gamma-ray correlation

Particle acceleration Galaxy formation Starburst galaxies

Far infra-red – gamma-ray correlation Universal conversion: star formation – cosmic rays – gamma rays

Particle acceleration Galaxy formation Starburst galaxies

Far infra-red – gamma-ray correlation Universal conversion: star formation – cosmic rays – gamma rays

Particle acceleration Galaxy formation Starburst galaxies

Conclusions

- the non-thermal universe uncovered by high-energy radiation provides new probes of fundamental physics and cosmology
- radio and X-ray astronomy have provided impressive discoveries of new phenomena
- now the age of cosmic-ray and γ-ray astronomy has begun and neutrino (and gravitational wave) astronomy are about to open up
- \rightarrow non-thermal multi-messenger analyses:

"The only true voyage of discovery would be not to visit new landscapes but to possess other eyes and to behold the universe through the eyes of another, of a hundred others."

Marcel Proust

Particle acceleration Galaxy formation Starburst galaxies

CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtioN

НІТЯ