The Physics and Cosmology of TeV Blazars

Christoph Pfrommer¹

in collaboration with

Avery E. Broderick², Phil Chang³, Ewald Puchwein¹, Volker Springel¹

¹ Heidelberg Institute for Theoretical Studies, Germany ² Perimeter Institute/University of Waterloo, Canada ³ University of Wisconsin-Milwaukee, USA

Oct 29, 2012 / Physics Colloquium Bochum

The Hitchhiker's Guide to ... Blazar Heating

Blazar Physics

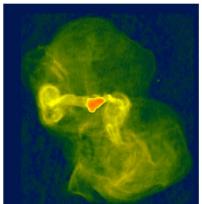
- black holes and jets
- TeV photon propagation
- plasma physics

Cosmological Consequences for

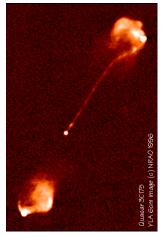
- intergalactic magnetic fields
- gamma-ray background
- thermal history of the Universe
- Lyman- α forest
- formation of dwarf galaxies
- galaxy cluster thermodynamics

Black hole jets Plasma instabilit

Black hole

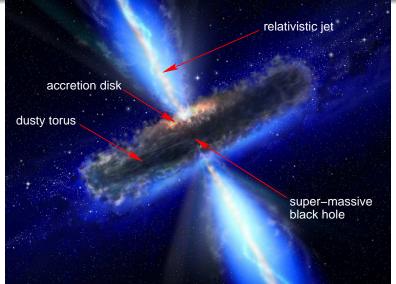


Black hole jets - nearby

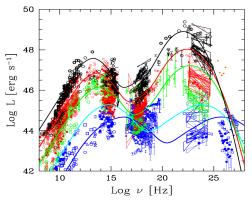

Centaurus A in X-rays: closest active galaxy with a super-massive black hole

Messier 87 in the radio: closest active cluster galaxy in the Virgo cluster: $M_{\rm bh} \simeq 6 \times 10^9 {\rm M}_{\odot}$

Black hole jets - at cosmological distances



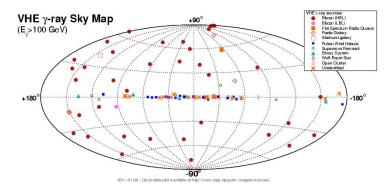
Quasar 3C175: 1 million light years across


Giant radio galaxy B1545-321: relic radio plasma and new jet activity.

Unified model of active galactic nuclei

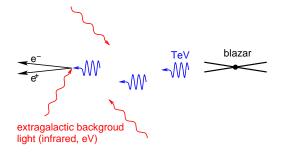
The blazar sequence

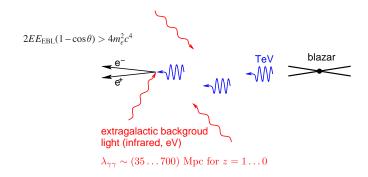
Ghisellini (2011), arXiv:1104.0006

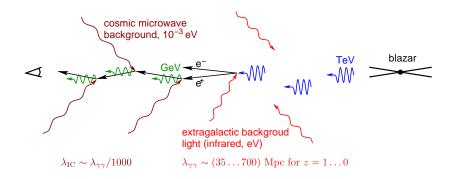

- continuous sequence from LBL-IBL-HBL
- TeV blazars are dim (very sub-Eddington)
- TeV blazars have rising spectra in the Fermi band (α < 2)
- define TeV blazar = hard IBL + HBL

The TeV gamma-ray sky

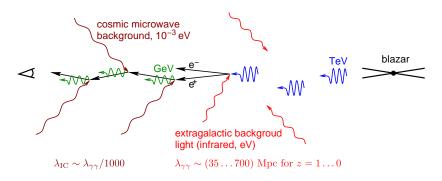
There are several classes of TeV sources:


- Galactic pulsars, BH binaries, supernova remnants
- Extragalactic mostly blazars, two starburst galaxies


Annihilation and pair production

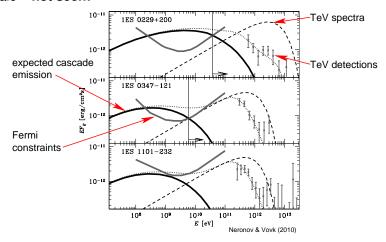


Annihilation and pair production

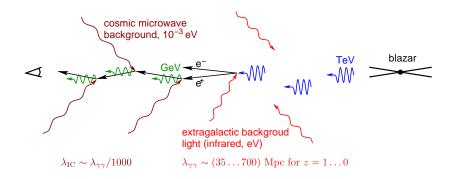


Inverse Compton cascades

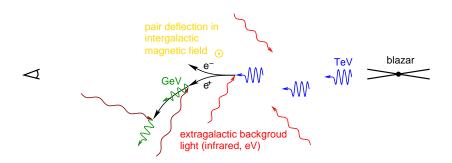
Inverse Compton cascades



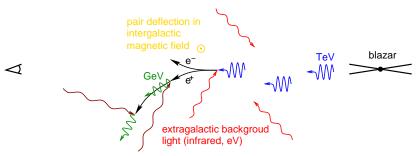
→ each TeV point source should also be a GeV point source!


What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray halo – **not seen!**

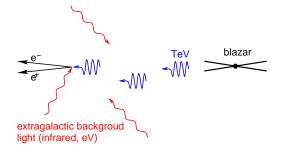


Inverse Compton cascades

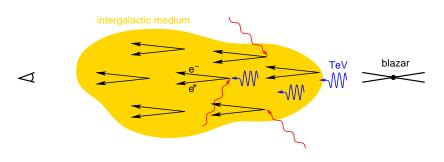


Magnetic field deflection

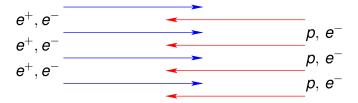
Magnetic field deflection



- GeV point source diluted → weak "pair halo"
- stronger B–field implies more deflection and dilution, gamma–ray non–detection $B \gtrsim 10^{-16}\,\mu{\rm G}$ primordial fields?


What else could happen?

Plasma beam instabilities

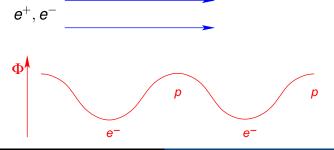

pair plasma beam propagating through the intergalactic medium

Missing plasma physics?

How do beams of e^+/e^- propagate through the IGM?

- plasma processes are important
- interpenetrating beams of charged particles are unstable
- consider the two-stream instability:

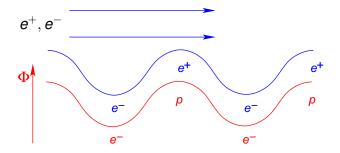
one frequency (timescale) and one length in the problem:


$$\omega_p = \sqrt{rac{4\pi e^2 n_e}{m_e}}, \qquad \lambda_p = \left. rac{c}{\omega_p}
ight|_{ar{
ho}(z=0)} \sim 10^8 \, \mathrm{cm}$$

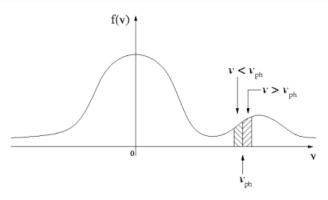
Two-stream instability: mechanism

wave-like perturbation with $\mathbf{k}||\mathbf{v}_{beam}$, longitudinal charge oscillations in background plasma (Langmuir wave):

- initially homogeneous beam-e⁻: attractive (repulsive) force by potential maxima (minima)
- ullet e^- attain lowest velocity in potential minima o bunching up
- ullet e^+ attain lowest velocity in potential maxima o bunching up

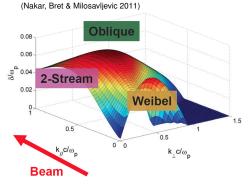


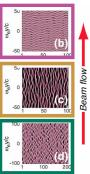
Two-stream instability: mechanism


wave-like perturbation with $\mathbf{k}||\mathbf{v}_{beam}$, longitudinal charge oscillations in background plasma (Langmuir wave):

- beam-e⁺/e⁻ couple in phase with the background perturbation: enhances background potential
- stronger forces on beam- $e^+/e^- \rightarrow$ positive feedback
- exponential wave-growth → instability

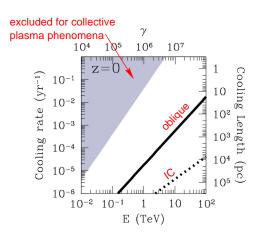
Two-stream instability: momentum transfer




- particles with $v \gtrsim v_{\text{phase}}$: pair momentum \rightarrow plasma waves \rightarrow growing modes: instability
- particles with $v \lesssim v_{\text{phase}}$: plasma wave momentum \rightarrow pairs \rightarrow Landau damping

Oblique instability

- k oblique to v_{beam} : real word perturbations don't choose "easy" alignment = \sum all orientations
- oblique grows faster than two-stream: E-fields can easier deflect ultra-relativistic particles than change their parallel velocities



Bret (2009), Bret+ (2010)

Beam physics - growth rates

- consider a light beam penetrating into relatively dense plasma
- maximum growth rate

$$\sim$$
 0.4 $\gamma \, rac{ extit{n}_{ ext{beam}}}{ extit{n}_{ ext{IGM}}} \, \omega_{ extit{p}}$

 oblique instability beats IC by two orders of magnitude

Broderick, Chang, C.P. (2012)

Beam physics – complications . . .

non-linear saturation:

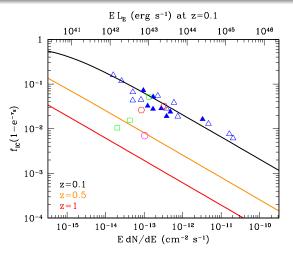
- non-linear evolution of these instabilities at these density contrasts is not known
- expectation from PIC simulations suggest substantial isotropization of the beam
- assume that they grow at linear rate up to saturation
- \rightarrow plasma instabilities dissipate the beam's energy, no (little) energy left over for inverse Compton scattering off the CMB

TeV emission from blazars – a new paradigm

$$\gamma_{\rm TeV} + \gamma_{\rm eV} \ \to \ e^+ + e^- \ \to \ \left\{ \begin{array}{ll} {\rm IC \ off \ CMB} & \to \ \gamma_{\rm GeV} \\ \\ {\rm plasma \ instabilities} \ \to \ {\rm heating \ IGM} \end{array} \right.$$

absence of $\gamma_{\rm GeV}$'s has significant implications for . . .

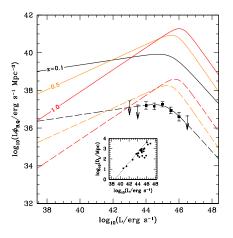
- intergalactic B-field estimates
- γ-ray emission from blazars: spectra, background


additional IGM heating has significant implications for ...

- thermal history of the IGM: Lyman- α forest
- late time structure formation: dwarfs, galaxy clusters

Implications for *B*-field measurements

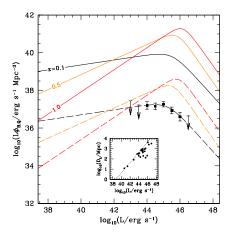
Fraction of the pair energy lost to inverse-Compton on the CMB: $f_{\rm IC} = \Gamma_{\rm IC}/(\Gamma_{\rm IC} + \Gamma_{\rm oblique})$



Conclusions on B-field constraints from blazar spectra

- it is thought that TeV blazar spectra might constrain IGM B-fields
- this assumes that cooling mechanism is IC off the CMB + deflection from magnetic fields
- beam instabilities may allow high-energy e⁺/e⁻ pairs to self scatter and/or lose energy
- isotropizes the beam no need for B-field
- $\bullet \lesssim 1-10\%$ of beam energy to IC CMB photons
- \rightarrow TeV blazar spectra are not suitable to measure IGM $\emph{B}\textsc{-fields}$ (if plasma instabilities saturate close to linear rate)!

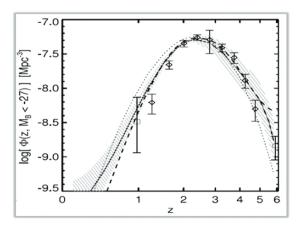
TeV blazar luminosity density: today



- collect luminosity of all 23 TeV blazars with good spectral measurements
- account for the selection effects (sky coverage, duty cycle, galactic occultation, TeV flux limit)
- TeV blazar luminosity density is a scaled version ($\eta_B \sim 0.2\%$) of that of quasars!

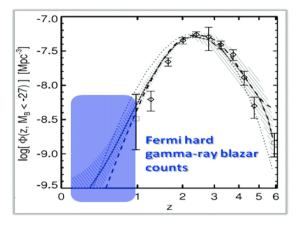
Broderick, Chang, C.P. (2012)

Unified TeV blazar-quasar model

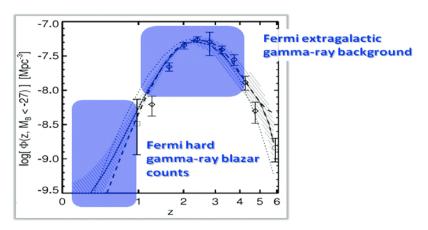

Quasars and TeV blazars are:

- regulated by the same mechanism
- contemporaneous elements of a single AGN population: TeV-blazar activity does not lag quasar activity
- → assume that they trace each other for all redshifts!

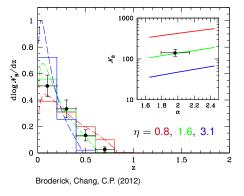
Broderick, Chang, C.P. (2012)


How many TeV blazars are there?

Hopkins+ (2007)

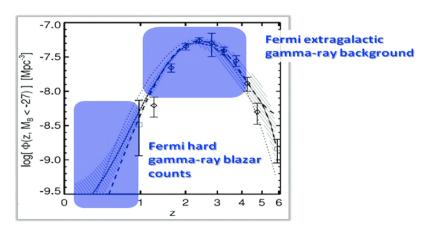

How many TeV blazars are there?

Hopkins+ (2007)


How many TeV blazars are there?

Hopkins+ (2007)

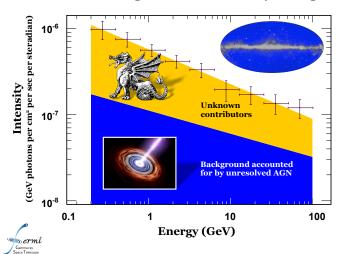
Fermi number count of "TeV blazars"


- TeV blazar evolution: model vs. Fermi number counts
- colors: different flux (luminosity) limits connecting the Fermi and the TeV band:

$$L_{\mathsf{TeV},\mathsf{min}}(z) = \eta \, L_{\mathsf{Fermi},\mathsf{min}}(z)$$

→ evolving (increasing) blazar population consistent with observed declining evolution (*Fermi* flux limit)!

How many TeV blazars are there at high-z?



Fermi probes "dragons" of the gamma-ray sky

Fermi LAT Extragalactic Gamma-ray Background

Extragalactic gamma-ray background

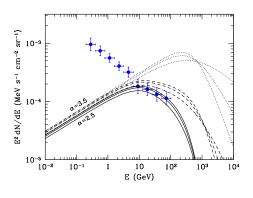
assume all TeV blazars have identical intrinsic spectra:

$$F_E = L\hat{F}_E \propto \frac{1}{(E/E_b)^{\alpha_L-1} + (E/E_b)^{\alpha-1}},$$

 E_b is break energy,

 $\alpha_L < \alpha$ are low and high-energy spectral indexes

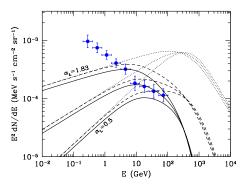
extragalactic gamma-ray background (EGRB):


$$E^2 \frac{dN}{dE}(E,z) = \frac{1}{4\pi} \int_z^\infty dV(z') \frac{\eta_B \, \tilde{\Lambda}_Q(z') \hat{F}_{E'}}{4\pi D_L^2} \mathrm{e}^{-\tau_E(E',z')},$$

E' = E(1 + z') is gamma-ray energy at *emission*, $\tilde{\Lambda}_{O}$ is physical quasar luminosity density,

 $\eta_B \sim 0.2\%$ is blazar fraction, τ is optical depth

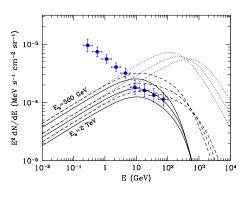
Extragalactic gamma-ray background: varying α



Broderick, Chang, C.P. (2012)

- dotted: unabsorbed EGRB due to TeV blazars
- dashed: absorbed EGRB due to TeV blazars
- solid: absorbed EGRB, after subtracting the resolved TeV blazars (z < 0.25)

Extragalactic gamma-ray background: varying α_L



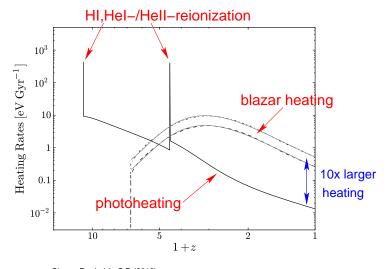
Broderick, Chang, C.P. (2012)

- dotted: unabsorbed EGRB due to TeV blazars
- dashed: absorbed EGRB due to TeV blazars
- solid: absorbed EGRB, after subtracting the resolved TeV blazars (z < 0.25)

Extragalactic gamma-ray background: varying E_b

Broderick, Chang, C.P. (2012)

- dotted: unabsorbed EGRB due to TeV blazars
- dashed: absorbed EGRB due to TeV blazars
- solid: absorbed EGRB, after subtracting the resolved TeV blazars (z < 0.25)



Conclusions on extragalactic gamma-ray background

- the TeV blazar luminosity density is a scaled version of the quasar luminosity density at z = 0.1
- assuming that quasars trace TeV blazars for all z and adopting typical spectra, we can match the Fermi-LAT blazar number counts and the EGRB!
- evolving blazars do not overproduce EGRB since the absorbed energy is not reprocessed to GeV energies
- fraction of absorbed energy is greater at higher energies

Evolution of the heating rates

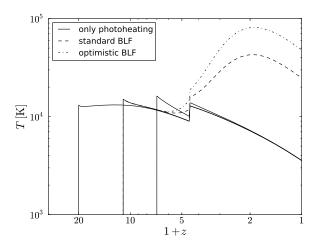
Blazar heating vs. photoheating

- total power from AGN/stars vastly exceeds the TeV power of blazars
- $T_{\rm IGM} \sim 10^4$ K (1 eV) at mean density ($z \sim 2$)

$$\varepsilon_{\rm th} = \frac{kT}{m_{\rm p}c^2} \sim 10^{-9}$$

radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)

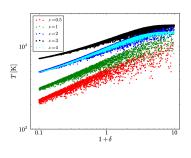
$$\varepsilon_{\rm rad} = \eta \, \Omega_{\rm bh} \sim 0.1 \times 10^{-4} \sim 10^{-5}$$

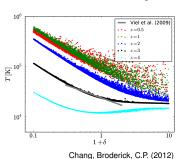

• fraction of the energy energetic enough to ionize H $\scriptstyle\rm I$ is \sim 0.1:

$$\varepsilon_{\text{LIV}} \sim 0.1 \varepsilon_{\text{rad}} \sim 10^{-6} \rightarrow kT \sim \text{keV}$$

- photoheating efficiency $\eta_{\rm ph}\sim 10^{-3}$ \rightarrow $kT\sim\eta_{\rm ph}\,\varepsilon_{\rm UV}\,m_{\rm p}c^2\sim {\rm eV}$ (limited by the abundance of H $l/{\rm He}$ II due to the small recombination rate)
- blazar heating efficiency $\eta_{\rm bh}\sim 10^{-3}$ \rightarrow $kT\sim\eta_{\rm bh}\,\varepsilon_{\rm rad}\,m_{\rm p}c^2\sim 10\,{\rm eV}$ (limited by the total power of TeV sources)

Thermal history of the IGM

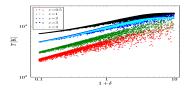



Chang, Broderick, C.P. (2012)

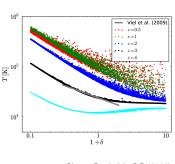
Evolution of the temperature-density relation

no blazar heating

with blazar heating



- blazars and extragalactic background light are uniform:
 - → blazar heating rate independent of density
 - → makes low density regions hot
 - ightarrow causes inverted temperature-density relation, $\mathcal{T} \propto 1/\delta$



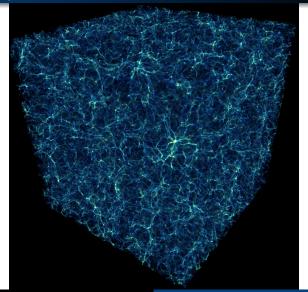
Blazars cause hot voids

no blazar heating

with blazar heating

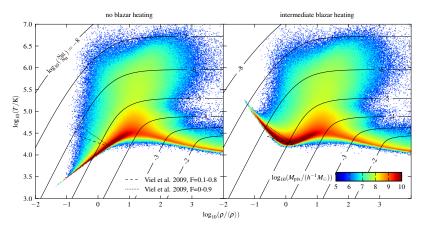
Chang, Broderick, C.P. (2012)

 blazars completely change the thermal history of the diffuse IGM and late-time structure formation

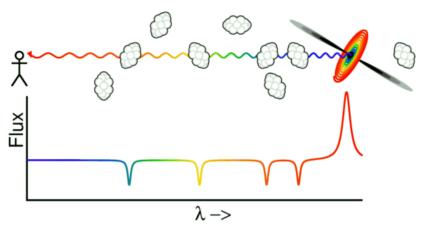

Simulations with blazar heating

Puchwein, C.P., Springel, Broderick, Chang (2012):

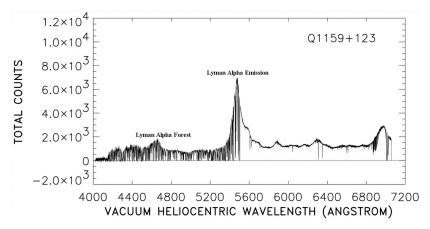
- $L = 15h^{-1}$ Mpc boxes with 2×384^3 particles
- one reference run without blazar heating
- three with blazar heating at different levels of efficiency (address uncertainty)
- used an up-to-date model of the UV background (Faucher-Giguère+ 2009)



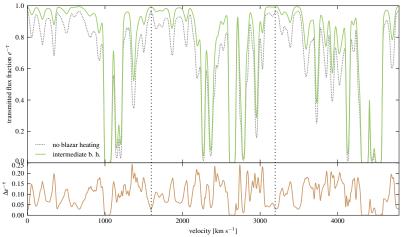
The intergalactic medium



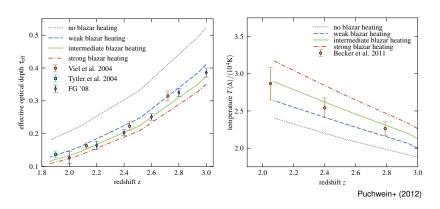
Temperature-density relation



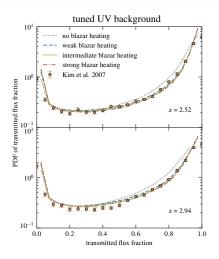
The Lyman- α forest



The observed Lyman- α forest

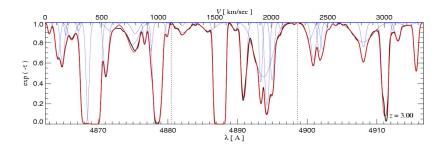


The simulated Ly- α forest


Optical depths and temperatures

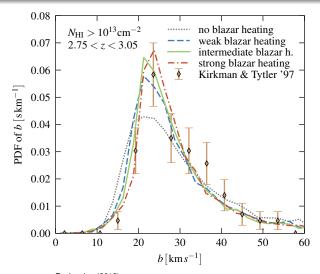
Redshift evolutions of effective optical depth and IGM temperature match data only with additional heating, e.g., provided by blazars!

Ly- α flux PDFs and power spectra



tuned UV background z = 2.07 10^{-2} no blazar heating weak blazar heating intermediate blazar heating power spectrum $\frac{k}{\pi} \times P_{1D}(k)$ strong blazar heating z = 2.52Kim et al. 2004 10^{-2} 10^{-1} k [s km⁻¹]

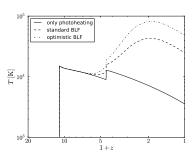
Puchwein+ (2012)


Voigt profile decomposition

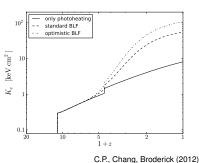
- ullet decomposing Lyman-lpha forest into individual Voigt profiles
- allows studying the thermal broadening of absorption lines

Voigt profile decomposition – line width distribution

Lyman- α forest in a blazar heated Universe


improvement in modelling the Lyman- α forest is a direct consequence of the peculiar properties of blazar heating:

- heating rate independent of IGM density \rightarrow naturally produces the inverted $T-\rho$ relation that Lyman- α forest data demand
- recent and continuous nature of the heating needed to match the redshift evolutions of all Lyman- α forest statistics
- magnitude of the heating rate required by Lyman- α forest data \sim the total energy output of TeV blazars (or equivalently \sim 0.2% of that of quasars)



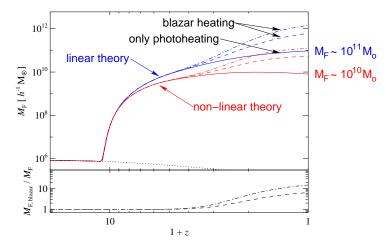
Entropy evolution

temperature evolution

entropy evolution

- , - 3, - (,
- evolution of entropy, $K_e = kTn_e^{-2/3}$, governs structure formation
- blazar heating: late-time, evolving, modest entropy floor

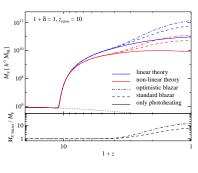
Dwarf galaxy formation - Jeans mass

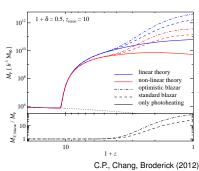

- thermal pressure opposes gravitational collapse on small scales
- characteristic length/mass scale below which objects do not form
- hotter IGM → higher IGM pressure → higher Jeans mass:

$$M_J \propto \frac{c_{\rm s}^3}{
ho^{1/2}} \propto \left(\frac{T_{\rm IGM}^3}{
ho}\right)^{1/2} \quad o \quad \frac{M_{J,{
m blazar}}}{M_{J,{
m photo}}} pprox \left(\frac{T_{
m blazar}}{T_{
m photo}}\right)^{3/2} \gtrsim 30$$

- ightarrow depends on instantaneous value of c_s
- "filtering mass" depends on full thermal history of the gas: accounts for delayed response of pressure in counteracting gravitational collapse in the expanding universe
- apply corrections for non-linear collapse

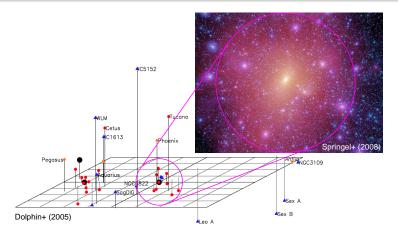
Dwarf galaxy formation - Filtering mass



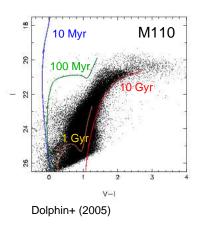


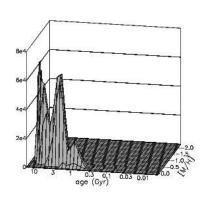
Peebles' void phenomenon explained?

mean density


void, $1 + \delta = 0.5$

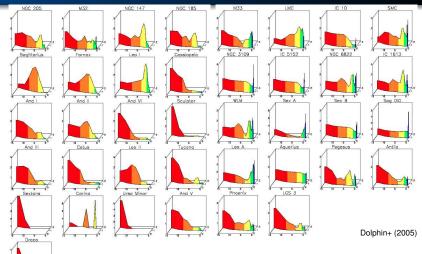
- blazar heating efficiently suppresses the formation of void dwarfs within existing DM halos of masses $< 3 \times 10^{11} \, M_{\odot}$ (z = 0)
- may reconcile the number of void dwarfs in simulations and the paucity of those in observations


"Missing satellite" problem in the Milky Way

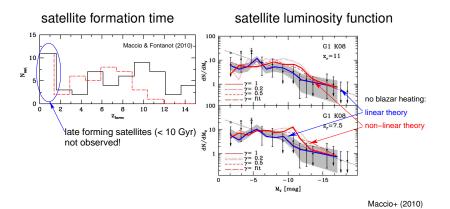


Substructures in cold DM simulations much more numerous than observed number of Milky Way satellites!

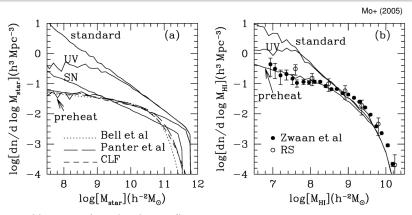
When do dwarfs form?



isochrone fitting for different metallicities \rightarrow star formation histories


When do dwarfs form?

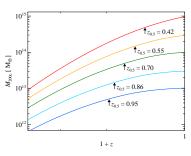
red: $\tau_{form} > 10 \text{ Gyr}$, z > 2



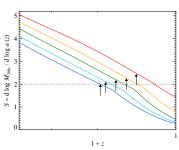
Milky Way satellites: formation history and abundance

 blazar heating suppresses late satellite formation, may reconcile low observed dwarf abundances with CDM simulations

Galactic H I-mass function



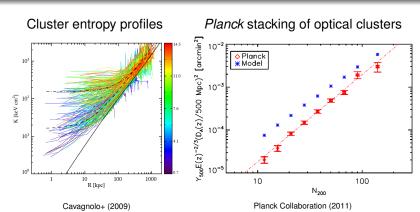
- H I-mass function is too flat (i.e., gas version of missing dwarf problem!)
- photoheating and SN feedback too inefficient
- IGM entropy floor of $K \sim 15 \, \text{keV cm}^2$ at $z \sim 2 3 \, \text{successful!}$



When do clusters form?

mass accretion history

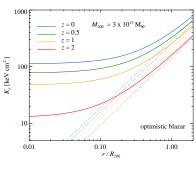
mass accretion rates



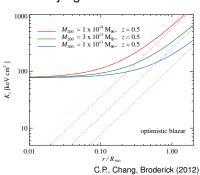
C.P., Chang, Broderick (2012)

• most cluster gas accretes after z = 1, when blazar heating can have a large effect (for late forming objects)!

Entropy floor in clusters

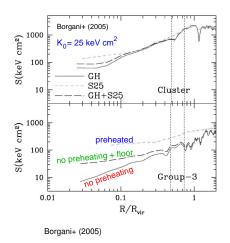


 Do optical and X-ray/Sunyaev-Zel'dovich cluster observations probe the same population? (Hicks+ 2008, Planck Collaboration 2011)



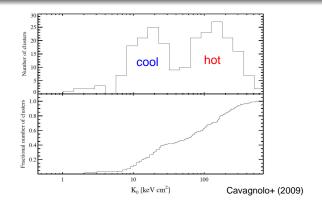
Entropy profiles: effect of blazar heating

varying cluster mass

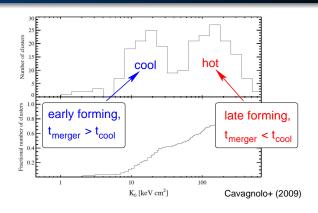

assume big fraction of intra-cluster medium collapses from IGM:

- redshift-dependent entropy excess in cores
- greatest effect for late forming groups/small clusters

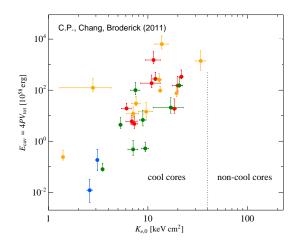
expect:


Gravitational reprocessing of entropy floors

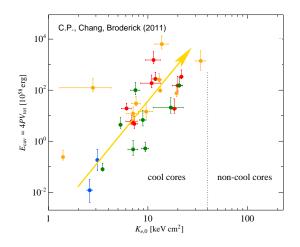
- greater initial entropy K₀
 → more shock heating
 → greater increase in K₀
 - \rightarrow greater increase in K_0 over entropy floor
- net K_0 amplification of 3-5
 - median $K_{\rm e,0} \sim 150 \, {\rm keV \, cm}^2$ max. $K_{\rm e,0} \sim 600 \, {\rm keV \, cm}^2$



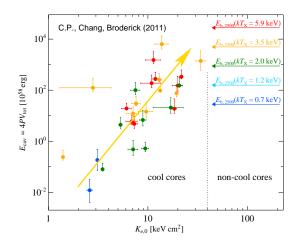
Cool-core versus non-cool core clusters



Cool-core versus non-cool core clusters



- time-dependent preheating + gravitational reprocessing
 → CC-NCC bifurcation (two attractor solutions)
- need hydrodynamic simulations to confirm this scenario





AGNs cannot transform CC to NCC clusters (on a buoyancy timescale)

Conclusions on blazar heating

- explains puzzles in high-energy astrophysics:
 - lack of GeV bumps in blazar spectra without IGM B-fields
 - unified TeV blazar-quasar model explains Fermi source counts and extragalactic gamma-ray background
- novel mechanism; dramatically alters thermal history of the IGM:
 - uniform and z-dependent preheating
 - rate independent of density \rightarrow inverted $T-\rho$ relation
 - ullet quantitative self-consistent picture of high-z Lyman-lpha forest
- significantly modifies late-time structure formation:
 - suppresses late dwarf formation (in accordance with SFHs):
 "missing satellites", void phenomenon, H I-mass function
 - group/cluster bimodality of core entropy values

Literature for the talk

- Broderick, Chang, Pfrommer, The cosmological impact of luminous TeV blazars
 I: implications of plasma instabilities for the intergalactic magnetic field and
 extragalactic gamma-ray background, ApJ, 752, 22, 2012.
- Chang, Broderick, Pfrommer, The cosmological impact of luminous TeV blazars II: rewriting the thermal history of the intergalactic medium, ApJ, 752, 23, 2012.
- Pfrommer, Chang, Broderick, The cosmological impact of luminous TeV blazars III: implications for galaxy clusters and the formation of dwarf galaxies, ApJ, 752, 24, 2012.
- Puchwein, Pfrommer, Springel, Broderick, Chang, *The Lyman-* α *forest in a blazar-heated Universe*, MNRAS, 423, 149, 2012.

Additional slides

Challenges to the Challenge

Challenge #1 (unknown unknowns): inhomogeneous universe

- universe is inhomogeneous and hence density of electrons change as function of position
- could lead to loss of resonance over length scale
 ≪ spatial growth length scale (Miniati & Elyiv 2012)
- growth length in oblique kinetic regime appears to be shorter than gradient → no instability quenching!

Challenge #2 (known unknowns): non-linear saturation

- we assume that the non-linear damping rate = linear growth rate
- effect of wave-particle and wave-wave interactions need to be resolved
- Miniati & Elyiv (2012) claim that the nonlinear Landau damping rate is \ll linear growth rate, but need to scatter waves with $\Delta k/k \sim 50$
- this is in conflict with the theory of induced scattering!

Measuring IGM B-fields from TeV/GeV observations

- TeV beam of e⁺/e⁻ are deflected out of the line of sight reducing the GeV IC flux → lower limit on B
- Larmor radius

$$r_{\rm L} = \frac{E}{eB} \sim 30 \, \left(\frac{E}{3 \, {\rm TeV}}\right) \, \left(\frac{B}{10^{-16} \, {\rm G}}\right)^{-1} \, {\rm Mpc}$$

IC mean free path

$$x_{\rm IC} \sim 0.1 \, \left(\frac{E}{3 \, {\rm TeV}}\right)^{-1} \, {\rm Mpc}$$

• for the associated 10 GeV IC photons the *Fermi* angular resolution is 0.2° or $\theta \sim 3 \times 10^{-3}$ rad

$$\frac{x_{\rm IC}}{r_{\rm I}} > heta
ightarrow B \gtrsim 10^{-16} \, {
m G}$$

