Large-scale shocks and extragalactic cosmic rays

Christoph Pfrommer¹

in collaboration with

Torsten Enßlin, Volker Springel, Tom Jones

¹Heidelberg Institute for Theoretical Studies, Germany

Oct 28, 2015 / International Team Meeting, ISSI Bern

★ 문 ► ★ 문 ►

Outline

- Cosmological simulations
 - Introduction
 - Physics in simulations
 - Cosmic rays in galaxy clusters
- 2 Cosmic-ray signatures
 - Multi messenger approach
 - Radio emission
 - Gamma rays

3 Large-scale shocks

- Radio galaxies in clusters
- Probing accretion shocks
- Vision and Speculations

- 王

Introduction Physics in simulations Cosmic rays in galaxy clusters

The structure of our Universe – a "cosmic web"

Left: projected gas density in a cosmological simulation ($L = 100 h^{-1}$ Mpc, z = 0). *Middle:* gas temperature of the gravitationally heated intergalactic medium. *Right:* structure formation shocks, color coded by Mach number.

(C.P. et al. 2006)

< < > < < > <

→ E > < E</p>

Introduction Physics in simulations Cosmic rays in galaxy clusters

Galaxy cluster evolution

 cluster mergers are the most energetic events in the Universe (after the Big Bang)
 → shocks and turbulence

'Bullet cluster'

X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl; U.Arizona/D.Clowe et al.; Lensing: NASA/STScl; ESO; U.Arizona/D.Clowe et al

Introduction Physics in simulations Cosmic rays in galaxy clusters

Galaxy cluster evolution

- cluster mergers are the most energetic events in the Universe (after the Big Bang)
 → shocks and turbulence
- accompanied by enigmatic cluster radio halos and relics
 → existence of relativistic electrons and magnetic fields

giant radio halo and relic in Coma

Effelsberg/Deiss

Introduction Physics in simulations Cosmic rays in galaxy clusters

Galaxy cluster evolution

- cluster mergers are the most energetic events in the Universe (after the Big Bang)
 → shocks and turbulence
- accompanied by enigmatic cluster radio halos and relics
 → existence of relativistic electrons and magnetic fields
- laboratories for cluster formation and high-energy astrophysics:
 - \rightarrow particle acceleration and cosmic magnetism

giant radio relic in Abell 3667

イロト イ理ト イヨト イヨト

radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.

Introduction Physics in simulations Cosmic rays in galaxy clusters

Cosmological simulations – flowchart

Introduction Physics in simulations Cosmic rays in galaxy clusters

Cosmological simulations with cosmic ray physics

Introduction Physics in simulations Cosmic rays in galaxy clusters

Cosmological simulations with cosmic ray physics

Introduction Physics in simulations Cosmic rays in galaxy clusters

Cosmological cluster simulation: gas density

Introduction Physics in simulations Cosmic rays in galaxy clusters

Mass weighted temperature

Introduction Physics in simulations Cosmic rays in galaxy clusters

Shock strengths weighted by dissipated energy

Introduction Physics in simulations Cosmic rays in galaxy clusters

Shock strengths weighted by injected CR energy

Introduction Physics in simulations Cosmic rays in galaxy clusters

Evolved CR pressure

Introduction Physics in simulations Cosmic rays in galaxy clusters

Relative CR pressure P_{CR}/P_{total}

Multi messenger approach Radio emission Gamma rays

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

★ Ξ > ★ Ξ >

Multi messenger approach Radio emission Gamma rays

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

イロン イロン イヨン イヨン

Multi messenger approach Radio emission Gamma rays

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Multi messenger approach Radio emission Gamma rays

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Multi messenger approach Radio emission Gamma rays

Structure formation shocks

Multi messenger approach Radio emission Gamma ravs

Radio gischt: shock-accelerated CRe

Christoph Pfrommer La

Multi messenger approach Radio emission Gamma ravs

Radio gischt + central hadronic halo = giant radio halo

Multi messenger approach Radio emission Gamma rays

Which one is the simulation/observation of A2256?

red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic

Christoph Pfrommer

Multi messenger approach Radio emission Gamma rays

Observation – simulation of A2256

red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic

Multi messenger approach Radio emission Gamma rays

Universal CR spectrum in clusters (Pinzke & C.P. 2010)

Normalized CR spectrum shows universal concave shape \rightarrow governed by hierarchical structure formation and the implied distribution of Mach numbers that a fluid element had to pass through in cosmic history.

Multi messenger approach Radio emission Gamma rays

CR proton and γ -ray spectra (Pinzke & C.P. 2010)

Christoph Pfrommer

Multi messenger approach Radio emission Gamma rays

CR proton and γ -ray spectra (Pinzke & C.P. 2010)

Christoph Pfrommer

Multi messenger approach Radio emission Gamma rays

CR proton and γ -ray spectra (Pinzke & C.P. 2010)

Christoph Pfrommer

Multi messenger approach Radio emission Gamma rays

An analytic model for the cluster γ -ray emission Comparison: simulation vs. analytic model, $M_{vir} \simeq (10^{14}, 10^{15}) M_{\odot}$

Christoph Pfrommer

Multi messenger approach Radio emission Gamma rays

Constraining CR physics with γ -ray observations

- non-detections constrain $P_{\rm CR}/P_{\rm th} < 1.7\%$ in Coma and Perseus and to $\lesssim 1\%$ in a stacked sample of 50 *Fermi* clusters
- constrains maximum shock acceleration efficiency to < 50%
- hydrostatic cluster masses not significantly biased by CRs: important for cluster cosmology!

Multi messenger approach Radio emission Gamma rays

Conclusions on non-thermal signatures in clusters Exploring the memory of structure formation

- primary, shock-accelerated CR electrons resemble current accretion and merging shock waves
- CR protons/hadronically produced CR electrons trace the time integrated non-equilibrium activities of clusters that is modulated by the recent dynamical activities
- Fermi, MAGIC, VERITAS non-detections of γ rays from clusters start to limit CR acceleration efficiencies to < 50% (or tell us about CR transport processes)
- \rightarrow Multi-messenger approach from the radio to γ -ray regime!

★ E → ★ E →

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

Large-scale shocks

What we would like to measure and hope to infer:

- jump conditions: shock strength
- upstream properties: infalling warm-hot intergalactic medium
- post- and pre-shock conditions: geometry, obliquity
- shock curvature: vorticity and *B* field generation
- post-shock turbulence: power spectrum, non-thermal pressure support
- . . .

→ E → < E →</p>

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

Large-scale shocks

What we would like to measure and hope to infer:

- jump conditions: shock strength
- upstream properties: infalling warm-hot intergalactic medium
- post- and pre-shock conditions: geometry, obliquity
- shock curvature: vorticity and *B* field generation
- post-shock turbulence: power spectrum, non-thermal pressure support
- . . .

X-rays give limited insight \rightarrow new complementary tools!

→ E → < E →</p>

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

Radio galaxies in merging clusters

Christoph Pfrommer

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

Total synchrotron intensity of NGC 1265

NGC 1265 – a radio galaxy in the Perseus cluster at 4.9 GHz (*left*) and 1.4 GHz (*right*) O'Dea & Owen (1986)

▲ 同 ▶ → 三 三

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

Bipolar AGN jets in an ICM wind: magnetic field

Christoph Pfrommer

Radio galaxies in clusters

Bipolar AGN jets in an ICM wind: synthetic radio

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

Radio properties of NGC 1265

Sijbring & de Bruyn (1998): *left*: radio intensity $I_{600 \text{ MHz}}$; *right*: variations of $I_{600 \text{ MHz}}$ (*triangles*), $I_{150 \text{ MHz}}$ (*squares*) and spectral index (*bottom*) along the tail

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

Previous models of NGC 1265 and why they fail

Chance superposition of several independent head-tail galaxies → lack of observed strong radio sources in this field

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

Previous models of NGC 1265 and why they fail

- chance superposition of several independent head-tail galaxies \rightarrow lack of observed strong radio sources in this field
- 2 re-acceleration of electrons in the turbulent wake of a galaxy \rightarrow contrived projection probabilities and implausible energetics (re-acceleration efficiency $\sim 3\%$)

∃ ► < ∃ ►</p>

Previous models of NGC 1265 and why they fail

- chance superposition of several independent head-tail galaxies → lack of observed strong radio sources in this field
- 2 re-acceleration of electrons in the turbulent wake of a galaxy \rightarrow contrived projection probabilities and implausible energetics (re-acceleration efficiency \sim 3%)
- In the second se

≣ ► < ≣ →

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

Previous models of NGC 1265 and why they fail

- chance superposition of several independent head-tail galaxies \rightarrow lack of observed strong radio sources in this field
- 2 re-acceleration of electrons in the turbulent wake of a galaxy \rightarrow contrived projection probabilities and implausible energetics (re-acceleration efficiency $\sim 3\%$)
- If a constraint of the second second
- [●] 'radio tail' outlines ballistic orbit of NGC 1265 → requires dark object with $M \gtrsim M_{\text{NGC 1265}} \simeq 3 \times 10^{12} M_{\odot}$ orbiting the galaxy, no explanation of change of orbit and same challenges regarding electron cooling and re-acceleration

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- 신문 () 신문

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

Requirements for any model of NGC 1265

- bright narrow angle tail radio jet: synchrotron cooling
- transition region: change of winding direction and sharp drop in S_ν and α
- coherent properties along the dim radio ring, confined morphology
- \rightarrow we are looking at 2 electron populations in projection possibly suggesting 2 different epochs of feedback:
- \rightarrow active jet + detached radio bubble that recently got energized coherently across 300 kpc \rightarrow shock?

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

Shock overruns an aged radio bubble (C.P. & Jones 2011)

Christoph Pfrommer

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

Bubble transformation to vortex ring

Enßlin & Brüggen (2002): gas density (top) and magnetic energy density (bottom)

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

Synthetic radio emission of shock-transformed bubble

Enßlin & Brüggen (2002): total 100 MHz intensity and polarization E-vectors, strong shock/weak *B* (*left*) and strong shock/strong *B* model (*right*)

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

Cartoon of the time evolution of NGC 1265

C.P. & Jones (2011)

ъ

NGC 1265 as a perfect probe of a shock

• idea:

- galaxy velocity not affected by shock
 → pre-shock conditions
- tail & torus as tracers of the post-shock flow
- assumptions:
 - shock surface || gravitational equipotential surface of Perseus
 - recent jet launched shortly after shock crossing

method:

- extrapolating position and velocity back in time
- employing conservation laws at oblique shock
- iterate until convergence

★ 문 ► ★ 문 ►

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

Derived geometry for NGC 1265

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

A 3D model for NGC 1265

3D model:

top view:

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

A 3D model for NGC 1265

3D model:

observer's view:

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

Shock strength and jump conditions

- shock compresses relativistic bubble adiabatically: $P_2/P_1 = C^{4/3}$
- bubble compression factor:

$$C = \frac{V_{\text{bubble}}}{V_{\text{torus}}} = \frac{\frac{4}{3}\pi R^3}{2\pi^2 R r_{\text{min}}^2} = \frac{2}{3\pi} \left(\frac{R}{r_{\text{min}}}\right)^2 \simeq 10$$

• assuming pressure equilibrium \rightarrow shock jumps:

$$\frac{P_2}{P_1} \simeq 21.5, \quad \frac{\rho_2}{\rho_1} \simeq 3.4, \quad \frac{T_2}{T_1} \simeq 6.3, \quad \text{and } \mathcal{M} \simeq 4.2$$

C.P. & Jones (2011)

イロト イポト イヨト イヨト

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

Perseus accretion shock and WHIM properties

- jet has low Faraday RM → NGC 1265 on near side of Perseus NGC 1265 redshifted w/r to Perseus → infalling system
 → shock likely the accretion shock
- extrapolating X-ray *n* and *T*-profiles to R_{200} & shock jumps: \rightarrow upper limits on infalling warm-hot intergalactic medium

$$egin{array}{rcl} kT_{1} &\lesssim & 0.4 \ {
m keV} \ n_{1} &\lesssim & 5 imes 10^{-5} \ {
m cm^{-3}} \ P_{1} &\lesssim & 3.6 imes 10^{-14} \ {
m erg} \ {
m cm^{-3}} \end{array}$$

< < > < < > <

→ E → < E →</p>

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

Shear flows and shock curvature

- ellipticity of radio torus (magnitude and orientation) & bending direction of tail
 → excludes projection effects
 - \rightarrow evidence for post-shock shear flow
- shock curvature injects vorticity that shears the gas westwards:

$$rac{arepsilon_{
m shear}}{arepsilon_{
m th,2}} = rac{\mu m_{
m p} v_{\perp}^2}{3kT_2} \simeq 0.14,$$

with $kT_2\simeq 2.4\,\text{keV}$ and $v_\perp\simeq 400\,\text{km/s}$

C.P. & Jones (2011)

Sijbring & de Bruyn (1998)

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

Vision and Speculations

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

The Universe is full of

Christoph Pfrommer

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

Conclusions on radio galaxies as probes of shocks

- consistent 3D model of NGC 1265
- prediction of a very interesting source class for LOFAR/SKA
- radio galaxies as perfect probes of pre- and post-shock flows:
 - hydrodynamic jumps and Mach numbers
 - statistical properties of the infalling WHIM (+ X-rays)
 - estimating the curvature radius of shocks and induced shear flows

 \rightarrow implications for intra-cluster turbulence as well as generation and amplification of large-scale magnetic fields!

∃ → < ∃ →</p>

Radio galaxies in clusters Probing accretion shocks Vision and Speculations

Literature for the talk

Cosmic rays in clusters:

- Pfrommer, Enßlin, Springel, Jubelgas, Dolag, Simulating cosmic rays in clusters of galaxies – I. Effects on the Sunyaev-Zel'dovich effect and the X-ray emission, 2007, MNRAS, 378, 385.
- Pfrommer, Enßlin, Springel, Simulating cosmic rays in clusters of galaxies II. A unified scheme for radio halos and relics with predictions of the γ-ray emission, 2008, MNRAS, 385, 1211.
- Pinzke & Pfrommer, Simulating the gamma-ray emission from galaxy clusters: a universal cosmic ray spectrum and spatial distribution, 2010, MNRAS, 409, 449.

Large-scale shocks:

 Pfrommer & Jones, 2011, ApJ, 730, 22, Radio Galaxy NGC 1265 unveils the Accretion Shock onto the Perseus Galaxy Cluster

→ E → < E →</p>