Cosmic ray acceleration at shocks

Christoph Pfrommer¹

in collaboration with

R. Pakmor, K. Schaal, C. Simpson, V. Springel, T. Enßlin ¹Leibniz-Institute for Astrophysics Potsdam (AIP)

< □

Astrophysical shocks, AIP, Mar 2018

Introduction Cluster shocks Non-thermal signatures

Astrophysical shocks

interstellar shocks $\sim 20~pc$ supernova 1006 (CXC/Hughes)

cluster shocks $\sim 2 \text{ Mpc}$ giant radio relic (van Weeren)

Introduction Cluster shocks Non-thermal signatures

Astrophysical shocks

Astrophysical collisionless shocks can:

- accelerate particles (electrons and ions) \rightarrow cosmic rays (CRs)
- amplify magnetic fields (or generate them from scratch)

solar system shocks $\sim R_{\odot}$ coronal mass ejection (SOHO)

interstellar shocks \sim 20 pc supernova 1006 (CXC/Hughes)

cluster shocks $\sim 2 \text{ Mpc}$ giant radio relic (van Weeren)

Introduction Cluster shocks Non-thermal signatures

Astrophysical shocks

Astrophysical collisionless shocks can:

- accelerate particles (electrons and ions) \rightarrow cosmic rays (CRs)
- amplify magnetic fields (or generate them from scratch)
- \Rightarrow non-thermal emission (radio to gamma rays)
- \Rightarrow cosmic ray feedback in galaxies and galaxy clusters

solar system shocks $\sim R_{\odot}$ coronal mass ejection (SOHO)

interstellar shocks \sim 20 pc supernova 1006 (CXC/Hughes)

cluster shocks $\sim 2~\text{Mpc}$ giant radio relic (van Weeren)

(日)

Introduction Cluster shocks Non-thermal signatures

Cosmological cluster simulation: gas density

Introduction Cluster shocks Non-thermal signatures

Mass weighted temperature

Introduction Cluster shocks Non-thermal signatures

Shock strengths weighted by dissipated energy

Introduction Cluster shocks Non-thermal signatures

Shock strengths weighted by injected CR energy

Introduction Cluster shocks Non-thermal signatures

Evolved CR pressure

Introduction Cluster shocks Non-thermal signatures

Relative CR pressure P_{CR}/P_{total}

Introduction Cluster shocks Non-thermal signatures

Cosmological shock statistics

- more energy is dissipated at later times
- mean Mach number decreases with time

Introduction Cluster shocks Non-thermal signatures

Cosmological shock statistics: CR acceleration

- more energy is dissipated in weak shocks internal to collapsed structures than in external strong shocks
- injected CR energy within clusters only makes up a small fraction of the total dissipated energy

Introduction Cluster shocks Non-thermal signatures

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

→ E → < E →</p>

Introduction Cluster shocks Non-thermal signatures

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

イロト イポト イヨト イヨト

Introduction Cluster shocks Non-thermal signatures

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Introduction Cluster shocks Non-thermal signatures

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Introduction Cluster shocks Non-thermal signatures

Structure formation shocks

Introduction Cluster shocks Non-thermal signatures

Radio gischt: shock-accelerated CRe

Introduction Cluster shocks Non-thermal signatures

Radio gischt + central hadronic halo = giant radio halo

Introduction Cluster shocks Non-thermal signatures

Which one is the simulation/observation of A2256?

red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic

Christoph Pfrommer C

Cosmic ray acceleration at shocks

Introduction Cluster shocks Non-thermal signatures

Observation – simulation of A2256

red/yellow: thermal X-ray emission, blue/contours: 1.4 GHz radio emission with giant radio halo and relic

AIP

Algorithm Supernova explosions Global galaxy simulations

Shock finder

Algorithm Supernova explosions Global galaxy simulations

Shock finder

Voronoi cells belong to shock zone if

- $\boldsymbol{\nabla} \cdot \boldsymbol{\nu} < 0$ (converging flow)
- $\nabla T \cdot \nabla \rho > 0$ (filtering out tangential discontinuities)
- $\mathcal{M}_1 > \mathcal{M}_{min}$ (safeguard against numerical noise)

Algorithm Supernova explosions Global galaxy simulations

Shock finder and CR acceleration

CR acceleration:

• shock surface: cell with most converging flow

Algorithm Supernova explosions Global galaxy simulations

Shock finder and CR acceleration

CR acceleration:

- shock surface: cell with most converging flow
- collect pre- and post-shock energy at shock surface $\Rightarrow E_{diss}$
- inject $\Delta E_{cr} = \zeta(\mathcal{M}_1, \theta) E_{diss}$ to shock and 1st post-shock cell

Algorithm Supernova explosions Global galaxy simulations

Shock finder and CR acceleration

CR acceleration:

- shock surface: cell with most converging flow
- collect pre- and post-shock energy at shock surface $\Rightarrow E_{diss}$
- inject $\Delta E_{cr} = \zeta(\mathcal{M}_1, \theta) E_{diss}$ to shock and 1st post-shock cell

Algorithm Supernova explosions Global galaxy simulations

Shock finder and CR acceleration

Comparing simulations to novel exact solutions that include CR acceleration

Algorithm Supernova explosions Global galaxy simulations

Shock finder and CR acceleration

Comparing simulations to novel exact solutions that include CR acceleration

Algorithm Supernova explosions Global galaxy simulations

Shock finder and CR acceleration

Comparing simulations to novel exact solutions that include CR acceleration

Algorithm Supernova explosions Global galaxy simulation

Shock finder and CR acceleration

C.P., Pakmor, Schaal, Simpson, Springel (2017)

Algorithm Supernova explosions Global galaxy simulations

Shock finder and CR acceleration

C.P., Pakmor, Schaal, Simpson, Springel (2017)

CR acceleration:

● shock surface: cell with most converging flow along ∇7

Algorithm Supernova explosions Global galaxy simulations

Shock finder and CR acceleration

C.P., Pakmor, Schaal, Simpson, Springel (2017)

CR acceleration:

- shock surface: cell with most converging flow along ∇7
- collect pre- and post-shock energy at shock surface
- inject CR energy to shock and post-shock cell

Algorithm Supernova explosions Global galaxy simulations

Shock finder and CR acceleration

CR acceleration:

- shock surface: cell with most converging flow along ∇7
- collect pre- and post-shock energy at shock surface
- inject CR energy to shock and post-shock cell

Algorithm Supernova explosions Global galaxy simulations

Sedov explosion

density

1.0 4.0 3.5 0.8 3.0 0.6 2.5 2.0 ີ 0.4 1.5 1.0 0.2 0.5 0.0 0.2 0.4 0.6 0.8 1.0

C.P., Pakmor, Schaal, Simpson, Springel (2017)

specific thermal energy

Algorithm Supernova explosions Global galaxy simulations

Sedov explosion with CR acceleration

density

C.P., Pakmor, Schaal, Simpson, Springel (2017)

Algorithm Supernova explosions Global galaxy simulations

Sedov explosion with CR acceleration

adiabatic index

shock evolution

AIP

C.P., Pakmor, Schaal, Simpson, Springel (2017)

Algorithm Supernova explosions Global galaxy simulations

Galaxy simulation setup: 1. cosmic ray advection

C.P., Pakmor, Schaal, Simpson, Springel (2017) Simulating cosmic ray physics on a moving mesh MHD + cosmic ray advection: $\{10^{10}, 10^{11}, 10^{12}\} M_{\odot}$

Algorithm Supernova explosions Global galaxy simulations

Time evolution of SFR and energy densities

C.P., Pakmor, Schaal, Simpson, Springel (2017)

- CR pressure feedback suppresses SFR more in smaller galaxies
- energy budget in disks is dominated by CR pressure
- magnetic dynamo faster in Milky Way galaxies than in dwarfs

Algorithm Supernova explosions Global galaxy simulations

MHD galaxy simulation without CRs

C.P., Pakmor, Schaal, Simpson, Springel (2017)

AIP

Algorithm Supernova explosions Global galaxy simulations

MHD galaxy simulation with CRs

C.P., Pakmor, Schaal, Simpson, Springel (2017)

Christoph Pfrommer

Cosmic ray acceleration at shocks

AIP

Algorithm Supernova explosions Global galaxy simulations

Galaxy simulation setup: 2. cosmic ray diffusion

Pakmor, C.P., Simpson, Springel (2016) Galactic winds driven by isotropic and anisotropic cosmic ray diffusion in isolated disk galaxies

MHD + CR advection + diffusion: $10^{11} M_{\odot}$

Algorithm Supernova explosions Global galaxy simulations

MHD galaxy simulation with CR diffusion

Pakmor, C.P., Simpson, Springel (2016)

- CR diffusion launches powerful winds
- simulation without CR diffusion exhibits only weak fountain flows

Algorithm Supernova explosions Global galaxy simulations

Cosmic ray driven wind: mechanism

CR streaming in 3D simulations: Uhlig, C.P.+ (2012), Ruszkowski+ (2017) CR diffusion in 3D simulations: Jubelgas+ (2008), Booth+ (2013), Hanasz+ (2013), Salem & Bryan (2014), Pakmor, C.P.+ (2016), Simpson+ (2016), Girichidis+ (2016), Dubois+ (2016), C.P.+ (2017), Jacob+ (2018)

Christoph Pfrommer

Algorithm Supernova explosions Global galaxy simulations

Galaxy simulation setup: 3. non-thermal emission

C.P., Pakmor, Simpson, Springel (2017a,b) Simulating radio synchrotron and gamma-ray emission in galaxies MHD + CR advection + diffusion: $\{10^{10}, 10^{11}, 10^{12}\} M_{\odot}$

Algorithm Supernova explosions Global galaxy simulations

Simulation of Milky Way-like galaxy, t = 0.5 Gyr

Christoph Pfrommer Cosmic ray acceleration at shocks

AIP

Algorithm Supernova explosions Global galaxy simulations

Simulation of Milky Way-like galaxy, t = 1.0 Gyr

C.P.+ (2017a,b)

Christoph Pfrommer Cosmic ray acceleration at shocks

AIP

Algorithm Supernova explosions Global galaxy simulations

Simulation of Milky Way-like galaxy, t = 1.0 Gyr

Algorithm Supernova explosions Global galaxy simulations

γ -ray and radio emission of Milky Way-like galaxy

Algorithm Supernova explosions Global galaxy simulations

Far infra-red – gamma-ray correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays

Algorithm Supernova explosions Global galaxy simulations

Far infra-red – gamma-ray correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays

Algorithm Supernova explosions Global galaxy simulations

Far infra-red – gamma-ray correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays

Algorithm Supernova explosions Global galaxy simulations

Far infra-red – gamma-ray correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays

Algorithm Supernova explosions Global galaxy simulations

Conclusions

Cosmic ray shock acceleration in galaxies and clusters is critical for

- cosmic ray feedback in galaxies (and galaxy clusters)
- non-thermal emission (radio to gamma rays)

< 🗇

Algorithm Supernova explosions Global galaxy simulations

Conclusions

Cosmic ray shock acceleration in galaxies and clusters is critical for

- cosmic ray feedback in galaxies (and galaxy clusters)
- non-thermal emission (radio to gamma rays)
 - messengers to understand physics of shock-acceleration
 - key to understanding galaxy and cluster formation
 - characterizing galactic magnetism & cluster properties

Algorithm Supernova explosions Global galaxy simulations

CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtioN

Christoph Pfrommer

Cosmic ray acceleration at shocks

Algorithm Supernova explosions Global galaxy simulations

Literature for the talk

Cosmological formation shocks and cluster simulations:

- Pfrommer, Springel, Enßlin, Jubelgas, Detecting shock waves in cosmological smoothed particle hydrodynamics simulations, 2006, MNRAS.
- Pfrommer, Springel, Enßlin, Jubelgas, Dolag, Simulating cosmic rays in clusters of galaxies - I. Effects on the Sunyaev-Zel'dovich effect and the X-ray emission, 2007, MNRAS.
- Pfrommer, Springel, Enßlin, Simulating cosmic rays in clusters of galaxies II. A unified scenario for radio halos and relics with predictions of the gamma-ray emission, 2008, MNRAS.
- Pfrommer, Simulating cosmic rays in clusters of galaxies III. Non-thermal scaling relations and comparison to observations, 2008, MNRAS.

Cosmic ray feedback in galaxies:

- Pfrommer, Pakmor, Schaal, Simpson, Springel, *Simulating cosmic ray physics on a moving mesh*, 2017, MNRAS.
- Pfrommer, Pakmor, Simpson, Springel, Simulating Gamma-ray Emission in Star-forming Galaxies, 2017, ApJL.
- Pakmor, Pfrommer, Simpson, Springel, Galactic winds driven by isotropic and anisotropic cosmic ray diffusion in isolated disk galaxies, 2016, ApJL.

Algorithm Supernova explosions Global galaxy simulations

Additional slides

э

イロト イポト イヨト イヨト

Algorithm Supernova explosions Global galaxy simulations

MHD galaxy simulation with CR isotropic diffusion

Pakmor, C.P., Simpson, Springel (2016)

- CR diffusion strongly suppresses SFR
- strong outflow quenches magnetic dynamo to yield $B \sim 0.1 \, \mu {
 m G}$

Algorithm Supernova explosions Global galaxy simulations

MHD galaxy simulation with CR anisotropic diffusion

Pakmor, C.P., Simpson, Springel (2016)

- anisotropic CR diffusion also suppresses SFR
- reactivation of magnetic dynamo: growth to observed strengths

Algorithm Supernova explosions Global galaxy simulations

γ -ray and radio emission of Milky Way-like galaxy

Algorithm Supernova explosions Global galaxy simulations

Far infra-red – radio correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow radio

Algorithm Supernova explosions Global galaxy simulations

Far infra-red – radio correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow radio

Algorithm Supernova explosions Global galaxy simulations

Far infra-red – radio correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow radio

Algorithm Supernova explosions Global galaxy simulations

Far infra-red – radio correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow radio

Algorithm Supernova explosions Global galaxy simulations

Far infra-red – radio correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow radio

Algorithm Supernova explosions Global galaxy simulations

Far infra-red – radio correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow radio

