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ABSTRACT
We develop a formalism for the identification and accurate estimation of the strength of struc-
ture formation shocks during cosmological smoothed particle hydrodynamics simulations.
Shocks not only play a decisive role for the thermalization of gas in virialising structures but
also for the acceleration of relativistic cosmic rays (CRs) through diffusive shock accelera-
tion. Our formalism is applicable both to ordinary non-relativistic thermal gas, and to plasmas
composed of CRs and thermal gas. To this end, we derive an analytical solution to the one-
dimensional Riemann shock tube problem for a composite plasma of CRs and thermal gas. We
apply our methods to study the properties of structure formation shocks in high-resolution hy-
drodynamic simulations of the Lambda cold dark matter (ΛCDM) model. We find that most
of the energy is dissipated in weak internal shocks with Mach numbers M ∼ 2 which are
predominantly central flow shocks or merger shock waves traversing halo centres. Collapsed
cosmological structures are surrounded by external shocks with much higher Mach numbers
up to M ∼ 1000, but they play only a minor role in the energy balance of thermalization.
This is because of the higher pre-shock gas densities within non-linear structures, and the sig-
nificant increase of the mean shock speed as the characteristic halo mass grows with cosmic
time. We show that after the epoch of cosmic reionisation the Mach number distribution is
significantly modified by an efficient suppression of strong external shock waves due to the
associated increase of the sound speed of the diffuse gas. Invoking a model for CR acceler-
ation in shock waves, we find that the average strength of shock waves responsible for CR
energy injection is higher than that for shocks that dominate the thermalization of the gas.
This implies that the dynamical importance of shock-injected CRs is comparatively large in
the low-density, peripheral halo regions, but is less important for the weaker flow shocks oc-
curring in central high-density regions of haloes. When combined with radiative dissipation
and star formation, our formalism can also be used to study CR injection by supernova shocks,
or to construct models for shock-induced star formation in the interstellar medium.

Key words: Shock waves – intergalactic medium – galaxies: clusters: general – cosmology:
large-scale structure of universe – cosmic rays – methods: numerical

1 INTRODUCTION

1.1 Structure formation shock waves

Cosmological shock waves form abundantly in the course of struc-
ture formation, both due to infalling pristine cosmic plasma which
accretes onto filaments, sheets and haloes, as well as due to su-
personic flows associated with merging substructures (Quilis et al.
1998; Miniati et al. 2000; Ryu et al. 2003; Gabici & Blasi 2003;
Pavlidou & Fields 2005). Additionally, shock waves occur due to
non-gravitational physics in the interstellar and intracluster media,

? e-mail: pfrommer@cita.utoronto.ca (CP); volker@mpa-garching.mpg.de
(VS); ensslin@mpa-garching.mpg.de (TAE); jubelgas@mpa-
garching.mpg.de (MJ)

e.g. as a result of supernova explosions. Structure formation shock
waves propagate through the cosmic tenuous plasma, which is com-
pressed at the transition layer of the shock while a part of the kinetic
energy of the incoming plasma is dissipated into internal energy
of the post-shock gas. Because of the large collisional mean free
path, the energy transfer proceeds through collective electromag-
netic viscosity which is provided by ubiquitous magnetic irregular-
ities (Wentzel 1974; Kennel et al. 1985).

Cosmologically, shocks are important in several respects. (1)
Shock waves dissipate gravitational energy associated with hierar-
chical clustering into thermal energy of the gas contained in dark
matter haloes, thus supplying the intrahalo medium with entropy
and thermal pressure support. Radiative cooling is then required
to compress the gas further to densities that will allow star forma-
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tion. (2) Shocks also occur around moderately overdense filaments,
which leads to a heating of the intragalactic medium. Sheets and fil-
aments are predicted to host a warm-hot intergalactic medium with
temperatures in the range 105 K < T < 107 K whose evolution is
primarily driven by shock heating from gravitational perturbations
breaking on mildly nonlinear, non-equilibrium structures (Hell-
sten et al. 1998; Cen & Ostriker 1999; Davé et al. 2001; Furlan-
etto & Loeb 2004; Kang et al. 2005). Thus, the shock-dissipated
energy traces the large scale structure and contains information
about its dynamical history. (3) Besides thermalization, collision-
less shocks are also able to accelerate ions of the high-energy tail
of the Maxwellian through diffusive shock acceleration (DSA) (for
reviews see Drury 1983; Blandford & Eichler 1987; Malkov &
O’C Drury 2001). These energetic ions are reflected at magnetic ir-
regularities through magnetic resonances between the gyro-motion
and waves in the magnetised plasma and are able to gain energy
in moving back and forth through the shock front. This accelera-
tion process typically yields a cosmic ray (CR) population with a
power-law distribution of the particle momenta. Nonlinear studies
of DSA have shown that a considerable part of the kinetic energy
flux passing through shocks can be channelled into non-thermal
populations, up to about one-half of the initial kinetic energy of
the shock (Berezhko et al. 1995; Ellison et al. 1996; Malkov 1998,
1999; Kang et al. 2002). Note that CRs have sufficient momentum
not to resonate with the electromagnetic turbulence in the shock
front itself. They hence experience the shock as a discontinuity,
i.e. the CR population is adiabatically compressed by the shock
(e.g., Drury 1983).

Indeed, CR electrons have been observed in the intra-cluster
medium (ICM) of galaxy clusters through their diffuse synchrotron
emission (Kim et al. 1989; Giovannini et al. 1993; Deiss et al.
1997). In addition to these extended radio haloes which show a
similar morphology compared to the thermal X-ray emission, there
have been extended radio relics observed in the cluster periph-
ery (e.g., Röttgering et al. 1997) which might well coincide with
merger shock waves as proposed by Enßlin et al. (1998). Some
clusters have also been reported to exhibit an excess of hard X-
ray emission compared to the expected thermal bremsstrahlung of
the hot ICM, most probably produced by inverse Compton up-
scattering of cosmic microwave background photons by relativis-
tic electrons (Fusco-Femiano et al. 1999; Sanders et al. 2005). It
has been proposed that a fraction of the diffuse cosmological γ-
ray background radiation originates from the same processes (Loeb
& Waxman 2000; Miniati 2002; Reimer et al. 2003; Berrington &
Dermer 2003; Kuo et al. 2005).

To date, there are two different scenarios explaining these
non-thermal emission processes. (1) Reacceleration processes of
‘mildly’ relativistic electrons (γ ' 100 − 300) being injected
over cosmological timescales into the ICM by sources like radio
galaxies, supernova remnants, merger shocks, or galactic winds,
which all can provide an efficient supply of highly-energetic CR
electrons. Owing to their long lifetimes of a few times 109 years
these ‘mildly’ relativistic electrons can accumulate within the ICM
(Sarazin 2002), until they experience continuous in-situ accelera-
tion either via shock acceleration or resonant pitch angle scattering
on turbulent Alfvén waves (Jaffe 1977; Schlickeiser et al. 1987;
Brunetti et al. 2001; Ohno et al. 2002; Brunetti et al. 2004). (2) In
the ICM, the CR protons have lifetimes of the order of the Hubble
time (Völk et al. 1996), which is long enough to diffuse away from
the production site and to maintain a space-filling distribution over
the cluster volume. These CR protons can interact hadronically
with the thermal ambient gas producing secondary electrons, neu-

trinos, and γ-rays in inelastic collisions throughout the cluster vol-
ume, generating radio haloes through synchrotron emission (Den-
nison 1980; Vestrand 1982; Blasi & Colafrancesco 1999; Dolag &
Enßlin 2000; Pfrommer & Enßlin 2003, 2004a,b). Cosmological
simulations support the possibility of a hadronic origin of cluster
radio haloes (Miniati et al. 2001).

1.2 Hydrodynamical simulations

Hydrodynamical solvers of cosmological codes are generally clas-
sified into two main categories: (1) Lagrangian methods like
smoothed particle hydrodynamics (SPH) which discretise the mass
of the fluid, and (2) Eulerian codes, which discretise the fluid vol-
ume. SPH methods were first proposed by Gingold & Monaghan
(1977) and Lucy (1977) and approximate continuous fluid quanti-
ties by means of kernel interpolation over a set of tracer particles.
Over the years, SPH techniques have been steadily improved and
found widespread applications in cosmological problems (Evrard
1988; Hernquist & Katz 1989; Navarro & White 1993; Springel &
Hernquist 2002).

In contrast, Eulerian methods discretise space and represent
continuous fields on a mesh. Originally, Eulerian codes employed
a mesh which is fixed in space (Cen & Ostriker 1993; Yepes et al.
1995) or adaptively moving (Pen 1998), while more recently, adap-
tive mesh refinement (AMR) algorithms have been developed for
cosmological applications (Berger & Colella 1989; Bryan & Nor-
man 1997; Norman & Bryan 1999; Abel et al. 2002; Kravtsov et al.
2002; Refregier & Teyssier 2002), which can adapt to regions of
interest in a flexible way.

Grid-based techniques offer superior capabilities for captur-
ing hydrodynamical shocks. In some algorithms, this can be done
even without the aid of artificial viscosity, thanks to the use of Rie-
mann solvers at the cell-level, so that a very low residual numeri-
cal viscosity is achieved. However, codes employing static meshes
still lack the resolution and flexibility necessary to tackle structure
formation problems in a hierarchically clustering universe, which
is characterised by a very large dynamic range and a hierarchy of
substructure at all stages of the evolution. For example, techniques
based on a fixed mesh are seriously limited when one tries to study
the formation of individual galaxies in a cosmological volume, sim-
ply because the internal galactic structure such as disk and bulge
components can then in general not be sufficiently well resolved.
A new generation of AMR codes which begin to be applied in cos-
mology may in principle resolve this problem. However, a number
of grid-based problems remain even here, for example the dynam-
ics is not Galilean-invariant, and there can be spurious advection
and mixing errors, especially for large bulk velocities across the
mesh.

These problems can be avoided in SPH, which thanks to its
Lagrangian nature and its accurate treatment of self-gravity is par-
ticularly well suited for structure formation problems. SPH adap-
tively and automatically increases the resolution in dense regions
such as galactic haloes or centres of galaxy clusters, which are the
regions of primary interest in cosmology. One drawback of SPH is
the dependence on the artificial viscosity which has to deliver the
necessary entropy injection in shocks. While the parametrization
of the artificial viscosity can be motivated in analogy with the Rie-
mann problem (Monaghan 1997), the shocks themselves are broad-
ened over the SPH smoothing scale and not resolved as discon-
tinuities, but post-shock quantities are calculated very accurately.
However, to date it has not been possible to identify and measure
the shock strengths instantaneously with an SPH simulation.
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Being interested in dynamical implications of CRs on struc-
ture formation and galaxy evolution, one faces not only the prob-
lem of the interplay of gravity and hydrodynamics of a plasma
composed of CRs and thermal particles but in addition radiative
processes such as cooling and supernova feedback. To date, AMR
codes have not yet matured to the point that they can address all
these requirements throughout a cosmological volume, although
there are recent efforts along these lines (e.g. Kang & Jones 2005;
Jones & Kang 2005). It would therefore be ideal if SPH codes for
structure formation could acquire the ability to detect shocks reli-
ably during simulations. Previous work on shock detection in SPH
simulations (Keshet et al. 2003) was restricted to a posteriori anal-
ysis of two subsequent simulation time-slices, which can then be
used to approximately detect a certain range of shocks as entropy
jumps.

1.3 Motivation and structure

This article seeks to close this gap in order to allow studies of the
following questions. (1) The cosmic evolution of shock strengths
provides rich information about the thermal history of the baryonic
component of the Universe: where and when is the gas heated to
its present temperatures, and which shocks are mainly responsible
for it? Does the missing baryonic component in the present-day
universe reside in a warm-hot intergalactic medium? (2) CRs are
accelerated at structure formation shocks through diffusive shock
acceleration: what are the cosmological implications of such a
CR component? (3) Shock waves are modified by nonlinear back-
reaction of the accelerated CRs and their spatial diffusion into the
pre-shock regime: does this change the cosmic thermal history or
give rise to other effects? (4) Simulating realistic CR profiles within
galaxy clusters can provide detailed predictions for the expected
radio synchrotron and γ-ray emission. What are the observational
signatures of this radiation that is predicted to be observed with
the upcoming new generation of γ-ray instruments (imaging atmo-
spheric Čerenkov telescopes and the GLAST1 satellite) and radio
telescopes (LOFAR2 and extended Very Large Array)?

The purpose of this paper is to study the properties of struc-
ture formation shock waves in cosmological simulations, allowing
us to explore their role for the thermalization of the pristine plasma,
as well as for the acceleration of relativistic CRs through DSA.
In particular, we develop a framework for quantifying the impor-
tance of CRs during cosmological structure formation, including
an accounting of the effects of adiabatic compressions and rarefac-
tions of CR populations, as well as of numerous non-adiabatic pro-
cesses. Besides CR injection by structure formation shocks, the
latter include CR shock injection of supernova remnants, in-situ
re-acceleration of CRs, spatial diffusion of CRs, CR energy losses
due to Coulomb interactions, Bremsstrahlung, and hadronic inter-
actions with the background gas, and the associated γ-ray and ra-
dio emission due to subsequent pion decay. A full description of
these CR processes and their formulation for cosmological appli-
cations is described in Enßlin et al. (2006), while the numerical im-
plementation within the SPH formalism is given by Jubelgas et al.
(2006). In this work we provide a crucial input for this modelling:
a formalism for identifying and accurately estimating the strength
of structure formation shocks on-the-fly during cosmological SPH
simulations.

1 Gamma-ray Large Area Space Telescope, http://glast.gsfc.nasa.gov/
2 LOw Frequency ARray, http://www.lofar.org/

The paper is structured as follows. The basic cosmic ray vari-
ables are introduced in Section 2. The formalism for identifying
and measuring the Mach number of shock waves instantaneously
within an SPH simulation is described in Section 3 for a purely
thermal gas as well as for a composite plasma of CRs and thermal
gas. The numerical implementation of the algorithm is discussed in
Section 4. In Section 5, we compare shock tube simulations to ana-
lytic solutions of the Riemann problem which are presented in Ap-
pendices A and B. Finally, in Section 6, we perform cosmological
non-radiative simulations to study CR energy injection at shocks,
and the influence of reionisation on the Mach number distribution.
A summary in Section 7 concludes the paper.

2 BASIC COSMIC RAY VARIABLES

Since we only consider CR protons3, which are at least in our
Galaxy the dominant CR species, it is convenient to introduce the
dimensionless momentum p = Pp/(mp clight). CR electrons with
γ < 100 experience efficient Coulomb losses such that their energy
density is significantly diminished compared to the CR energy den-
sity (Sarazin 2002). The differential particle momentum spectrum
per volume element is assumed to be a single power-law above the
minimum momentum q:

f (p) =
dN

dp dV
= C p−α θ(p − q). (1)

θ(x) denotes the Heaviside step function. Note that we use an effec-
tive one-dimensional distribution function f (p) ≡ 4πp2 f (3)(p). The
CR population can hydrodynamically be described by an isotropic
pressure component as long as the CRs are coupled to the ther-
mal gas by small scale chaotic magnetic fields. The differential CR
spectrum can vary spatially and temporally (although for brevity
we suppress this in our notation) through the spatial dependence of
the normalisation C = C(r, t) and the cutoff q = q(r, t).

Adiabatic compression or expansion leaves the phase-space
density of the CR population unchanged, leading to a momentum
shift according to p→ p′ = (ρ/ρ0)1/3 p for a change in gas density
from ρ0 to ρ. Since this is fully reversible, it is useful to introduce
the invariant cutoff and normalisation q0 and C0 which describe the
CR population via equation (1) if the inter-stellar medium (ISM)
or ICM is adiabatically compressed or expanded to the reference
density ρ0. The actual parameters are then given by

q(ρ) =

(
ρ

ρ0

)1/3

q0 and C(ρ) =

(
ρ

ρ0

)(α+2)/3

C0. (2)

These adiabatically invariant variables are a suitable choice to be
used in a Lagrangian description of the CR population.

The CR number density is

nCR =

∫ ∞

0
dp f (p) =

C q1−α

α − 1
, (3)

3 α-particles carry a significant fraction of the total CR energy. Neverthe-
less, the assumption of considering only CR protons is a reasonable ap-
proximation, since the energy density of α-particles can be absorbed into
the proton spectrum. A GeV energy α-particle can be approximated as an
ensemble of four individual nucleons travelling together due to the rela-
tively weak MeV nuclear binding energies compared to the kinetic energy
of relativistic protons.
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provided, that α > 1. The kinetic energy density of the CR popula-
tion is

εCR =

∫ ∞

0
dp f (p) Tp(p) =

C mp c2
light

α − 1
×

[
1
2
B 1

1+q2

(
α − 2

2
,

3 − α
2

)
+ q1−α (√

1 + q2 − 1
)]
, (4)

where Tp(p) = (
√

1 + p2 −1) mp c2
light is the kinetic energy of a pro-

ton with momentum p, and Bx(a, b) denotes the incomplete Beta-
function which is defined by Bx(a, b) ≡

∫ x

0
ta−1(1 − t)b−1dt. The

integral of equation (4) is well-defined if we assume α > 2. The
CR pressure is

PCR =
mpc2

light

3

∫ ∞

0
dp f (p) β p

=
C mpc2

light

6
B 1

1+q2

(
α − 2

2
,

3 − α
2

)
, (5)

where β ≡ υ/clight = p/
√

1 + p2 is the dimensionless velocity of
the CR particle. Note that for 2 < α < 3 the kinetic energy density
and pressure of the CR populations are well defined for the limit
q→ 0, although the total CR number density diverges.

The adiabatic exponent of the CR population is defined by

γCR ≡ d log PCR

d log ρ

∣∣∣∣∣
S

, (6)

while the derivative has to be taken at constant entropy S . Using
equations (2) and (5), we obtain for the CR adiabatic exponent

γCR =
ρ

PCR

(
∂PCR

∂C
∂C
∂ρ
+

∂PCR

∂q
∂q
∂ρ

)

=
α + 2

3
− 2

3
q2−α β(q)

[
B 1

1+q2

(
α − 2

2
,

3 − α
2

)]−1

. (7)

Note that in contrast to the usual adiabatic exponent, the CR adia-
batic exponent is time dependent due to its dependence on the lower
cutoff of the CR population, q. The ultra-relativistic limit (q → ∞)
of the adiabatic exponent, where γCR → 4/3, can easily be ob-
tained by using the integral representation of the incomplete Beta-
function and applying a Taylor expansion to the integrand. In the
non-relativistic limit (q � 1 and α > 3), the adiabatic exponent
approaches γCR → 5/3. This can be seen by evaluating the CR

pressure in this limit, PCR =
mpc2

light

3 (α−3) C q3−α and applying the defini-
tion of γCR in equation (6). Considering a composite of thermal and
CR gas, it is appropriate to define an effective adiabatic index by

γeff ≡ d log(Pth + PCR)
d log ρ

∣∣∣∣∣
S

=
γth Pth + γCR PCR

Pth + PCR
. (8)

3 MACH NUMBERS WITHIN THE SPH FORMALISM

The shock surface separates two regions: the upstream regime (pre-
shock regime) defines the region in front of the shock whereas the
downstream regime (post-shock regime) defines the wake of the
shock wave. The shock front itself is the region in which the mean
plasma velocity changes rapidly on small scales given by plasma
physical processes. All calculations in this section are done in the
rest frame of the shock which we assume to be non-relativistic.
This assumption is justified in the case of cosmological structure
formation shock waves for which typical shock velocities are of
the order of 103 km s−1.

Particles are impinging on the shock surface at a rate per unit
shock surface, j, while conserving their mass:

ρ1υ1 = ρ2υ2 = j. (9)

Here υ1 and υ2 indicate the plasma velocities (relative to the shock’s
rest frame) in the upstream and downstream regime of the shock,
respectively. The mass densities in the respective shock regime are
denoted by ρ1 and ρ2. Momentum conservation implies

P1 + ρ1υ
2
1 = P2 + ρ2υ

2
2, (10)

where Pi denotes the pressure in the respective regime i ∈ {1, 2}.
The energy conservation law at the shock surface reads

(ε1 + P1) ρ−1
1 +

υ2
1

2
= (ε2 + P2) ρ−1

2 +
υ2

2

2
. (11)

εi denotes the internal energy density in the regime i ∈ {1, 2}. Com-
bining solely these three equations without using any additional
information about the equation of state, we arrive at the following
system of two equations:

j2 = ρ2
1M2

1c2
1 =

(P2 − P1) ρ1ρ2

ρ2 − ρ1
(12)

ρ2

ρ1
=

2ε2 + P1 + P2

2ε1 + P1 + P2
. (13)

Here we introduced the Mach number in the upstream regime,
M1 = υ1/c1, which is the plasma velocity in units of the local
sound speed c1 =

√
γP1/ρ1.4

3.1 Polytropic gas

Non-radiative polytropic gas in the regime i ∈ {1, 2} is characterised
by its particular equation of state,

εi =
1

γ − 1
Pi or equivalently Pi = P0

(
ρi

ρ0

)γ
, (14)

where γ denotes the adiabatic index. This allows us to derive the
well-known Rankine-Hugoniot conditions which relate quantities
from the upstream to the downstream regime solely as a function
ofM1:

ρ2

ρ1
=

(γ + 1)M2
1

(γ − 1)M2
1 + 2

, (15)

P2

P1
=

2γM2
1 − (γ − 1)

γ + 1
, (16)

T2

T1
=

[
2γM2

1 − (γ − 1)
] [

(γ − 1)M2
1 + 2

]

(γ + 1)2M2
1

. (17)

In cosmological simulations using a Lagrangian description
of hydrodynamics such as SPH, it is infeasible to identify the rest
frame of each shock and thusM1 unambiguously, especially in the
presence of multiple oblique structure formation shocks. As an ap-
proximative solution, we rather propose the following procedure,
which takes advantage of the entropy-conserving formulation of
SPH (Springel & Hernquist 2002). For one particle, the instanta-
neous injection rate of the entropic function due to shocks is com-
puted, i.e. dA/dt, where A denotes the entropic function A(s) de-
fined by

P = A(s)ργ, (18)

4 Note, that the symbol c (sometimes with subscript) denotes the sound
velocity.
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and s gives the specific entropy. Suppose further that the shock is
broadened to a scale of order the SPH smoothing length fhh, where
fh ∼ 2 denotes a factor which has to be calibrated against shock-
tubes. We can roughly estimate the time it takes the particle to pass
through the broadened shock front as ∆t = fhh/υ, where one may
approximate υ with the pre-shock velocity υ1. Assuming that the
present particle temperature is a good approximation for the pre-
shock temperature, we can also replace υ1 withM1c1.5

Based on these assumptions and using ∆A1 ' ∆t dA1/dt, one
can estimate the jump of the entropic function the particle will re-
ceive while passing through the shock:

A2

A1
=

A1 + ∆A1

A1
= 1 +

fhh
M1c1A1

dA1

dt
, (19)

A2

A1
=

P2

P1

(
ρ1

ρ2

)γ
= fA(M1), (20)

where

fA(M1) ≡ 2γM2
1 − (γ − 1)

γ + 1

[
(γ − 1)M2

1 + 2

(γ + 1)M2
1

]γ
, (21)

using equations (15) and (16). Combining equations (19) and (20),
we arrive at the final equation which is a function of Mach number
only:

[
fA(M1) − 1

]M1 =
fhh

c1A1

dA1

dt
. (22)

The right-hand side can be estimated individually for each particle,
and the left-hand side depends only on M1. Determining the root
of the equation hence allows one to estimate a Mach number for
each particle.

3.2 Composite of cosmic rays and thermal gas

In the presence of a gas composed of cosmic rays and thermal com-
ponents, equations (9) to (13) are still applicable if one identifies
the energy density εi and the pressure Pi with the sum of the indi-
vidual components in the regime i ∈ {1, 2},
εi = εCRi + εthi, (23)

Pi = PCRi + Pthi. (24)

The sound speed of such a composite gas is ci =
√
γeff,iPi/ρi, where

γeff,i is given by equation (8). Note that in contrast to the single-
component fluid, for the general case there is no equivalent to the
equation of state (equation 14) in terms of the total energy density
εi, because of the additivity of both pressure and energy density.
For later convenience, we introduce the shock compression ratio xs

and the thermal pressure ratio ys,

xs =
ρ2

ρ1
and ys =

Pth2

Pth1
. (25)

While taking the equation of state (equation 14) for the ther-
mal gas component, we assume adiabatic compression of the CRs
at the shock6,

PCR2 = PCR1 xγCR
s and εCR2 = εCR1 xγCR

s . (26)

5 Extensions of this approach that apply to particles within the SPH broad-
ened shock surface will be described in Section 4.1.
6 Due to their much larger gyro-radii and high velocities, CR protons
should not participate in the plasma processes of collisionless shock waves.

Here we assume a constant CR spectral index over the shock which
holds only approximately owing to the weak dependence of the CR
lower momentum cutoff q on the density (equation 2).

For the composite of thermal and CR gas, it is convenient to
define the effective entropic function Aeff and its time derivative,

Aeff = (Pth + PCR) ρ−γeff , (27)
dAeff

dt
=

dAth

dt
ργth−γeff . (28)

The expression for the time derivative of the effective adiabatic
function uses the approximation of adiabatic compression of the
CRs at the shock. Using the same assumptions like in the non-
radiative case, we estimate the jump of the entropic function for
the particle on passing through the shock made of composite gas:

Aeff,2

Aeff,1

=

(
PCR2 + Pth2

)
ρ
−γeff,2
2(

PCR1 + Pth1

)
ρ
−γeff,1
1

= 1 +
fhh

M1c1Aeff,1

dAeff,1

dt
. (29)

Combining equations (12), (13), (26), and (29), we arrive at
the following system of equations,

f1(xs, ys) = xs

[
P2(xs, ys) − P1

]

×
[
P2(xs, ys)(xsρ1)−γeff,2(xs ,ys) − P1ρ

−γeff,1
1

]2

− P2
1(xs − 1) ρ

1−2γeff,1
1

(
fhh

Aeff,1

dAeff,1

dt

)2

= 0, (30)

f2(xs, ys) = 2ε2(xs, ys) + P1 + P2(xs, ys)

− xs [2ε1 + P1 + P2(xs, ys)] = 0. (31)

The effective adiabatic index in the post-shock regime is given by

γeff,2(xs, ys) =
γCRPCR2(xs) + γthysPth1

P2(xs, ys)
. (32)

Given all the quantities in the pre-shock regime, we can solve
for the roots xs and ys of this system of two non-linear equations.
This system of equations turns out to be nearly degenerate for plau-
sible values of pre-shock quantities such that it might be convenient
to apply the following coordinate transformation:

(xs, ys)→ (xs, zs) with zs =
ys − xs

4
. (33)

The Mach number M1 and the jump of internal specific energies
can then be obtained by

M1 =

√
(P2 − P1)xs

ρ1c2
1(xs − 1)

and (34)

u2

u1
=

ys

xs
where u =

Pth

(γth − 1) ρ
. (35)

4 NUMERICAL IMPLEMENTATION

4.1 Polytropic gas

Applying the algorithm of inferring the shock strength within the
SPH formalism in a straightforward manner will lead to system-
atically underestimated values of the Mach number for SPH parti-
cles which are located within the SPH broadened shock surface: the
proposed algorithm of Section 3 assumes that the present particle
quantities such as entropy, sound velocity, and smoothing length
are good representations of the hydrodynamical state in the pre-
shock regime, which is not longer the case for particles within
the SPH broadened shock surface. To overcome this problem, we

c© 2005 RAS, MNRAS 000, 1–20



6 C. Pfrommer, V. Springel, T. A. Enßlin, M. Jubelgas

define a decay time interval ∆tdec = min[ fhh/(M1c),∆tmax], dur-
ing which the Mach number is set to the maximum value that
is estimated during the transition from the pre-shock regime to
the shock surface. At this maximum, the corresponding particle
quantities are good approximations of the hydrodynamical val-
ues in the pre-shock regime. We thus have a finite temporal res-
olution for detecting shocks, which is of order the transit time
through the broadened shock front. Note that ∆tmax is just intro-
duced as a safeguard against too long decay times for very weak
shocks. In the case of cosmological simulations, which are con-
veniently carried out in a computational domain that is comov-
ing with the cosmological expansion, we redefine the decay time
∆(ln a)dec = min[H(a) fhh/(M1c),∆(ln a)max] where a denotes the
cosmic scale factor and H(a) = ȧ/a is the Hubble function. An ap-
propriate choice for the safeguard parameter is ∆(ln a)max = 0.0025.

Secondly, there is no universal value fh which measures the
SPH shock broadening accurately irrespective of the Mach number
of the shock, especially in the regime of strong shocks. We there-
fore use the original algorithm (with fh = 2) only for estimated
Mach numbers withMest < 3, while for stronger shocks, we apply
an empirically determined formula (calibrated against shock-tubes)
which corrects for the additional broadening of strong shocks and
smoothly joins into the weak shock regime:

Mcal =
(
aMMbM

est + cM exp−Mest/3
)
Mest, (36)

where aM = 0.09, bM = 1.34, and cM = 1.66. These numbers may
depend on the viscosity scheme of the SPH implementation.

4.2 Composite of cosmic rays and thermal gas

Our formalism of inferring the jump conditions for a composite of
cosmic rays and thermal gas yields the density jump, xs = ρ2/ρ1,
and the thermal pressure jump at the shock, ys = Pth2/Pth1 (Sec-
tion 3.2). As described in the previous section (Section 4.1), the
values for the estimated jump conditions are systematically under-
estimated in the regime of strong shocks (M1 & 5) implying an
additional broadening of the shock surface. Thus, we proceed the
same way as above: using the value of the density jump xs, we
derive the Mach number of the shock through equation (34) and
recalibrate it for strong shocks. In addition, we use the decay time
∆tdec as before in the thermal case to obtain reliable Mach number
estimates. The post-shock density is then obtained by multiplying
the stored pre-shock density with the density jump xs.

In the case of a thermal pressure jump at the shock ys, we de-
cided not to derive another empirical formula but rather exploit CR
physics at non-relativistic shocks. Since the CR population is adi-
abatically compressed at the shock in the limit of strong shocks,
the total pressure jump is nearly solely determined by the jump of
the thermal pressure in the post-shock regime, i.e. we can safely
neglect the contribution of CRs to the pressure jump. This assump-
tion is justified as long as the CR pressure is not dominated by sub-
relativistic CRs of low energy which is on the other hand a very
short lived population owing to Coulomb interactions in the ICM.
Thus, the thermal post-shock pressure forM1 & 5 is estimated as

Pth2 '
2γthM2

1 − (γth − 1)

γth + 1
P1, (37)

whereM1 is obtained by equation (36), and P1 denotes the stored
total pre-shock pressure.

5 SHOCK TUBES

To assess the reliability of our formalism and the validity of our
numerical implementation, we perform a sequence of shock-tube
simulations with Mach numbers ranging from M = 1.4 up to
M = 100. We use a three-dimensional problem setup which is more
demanding and more realistic than carrying out the computation in
one dimension. Here and in the following, we drop the subscript
‘1’ of the pre-shock Mach number for convenience. By compar-
ing with known analytic solutions, we are able to demonstrate the
validity of our implemented formalism.

There exists an analytic solution of the Riemann shock-tube
problem in the case of a fluid described by a polytropic equation
of state, ε = P/(γ − 1) (cf. Appendix A). Unfortunately, a com-
posite of thermal gas and CRs does not obey this relation. Thus,
we derive an analytic solution to the Riemann shock-tube problem
for the composite of CRs and thermal gas in Appendix B. This an-
alytic solution assumes the CR adiabatic index (equation 6) to be
constant over the shock-tube and neglects CR diffusion such that
the problem remains analytically treatable.

5.1 Polytropic thermal gas

We consider eight standard shock-tube tests (Sod 1978) which pro-
vide a validation of both the code’s solution to hydrodynamic prob-
lems and our Mach number formalism. We consider first an ideal
gas with γ = 5/3, initially at rest. The left-half space (x < 250)
is filled with gas at unit density, ρ2 = 1, and P2 = (γ − 1) 105,
while x > 250 is filled with low density gas ρ1 = 0.2 at low
pressure. The exact value of the low pressure gas has been cho-
sen such that the resulting solutions yield the Mach numbersM =
{1.4, 2, 3, 6, 10, 30, 60, 100} (cf. Appendix A). We set up the initial
conditions in 3D using an irregular glass-like distribution of a total
of 3 × 104 particles of equal mass in hydrostatic equilibrium. They
are contained in a periodic box which is longer in x-direction than
in the other two dimensions, y and z.

In the left-hand panel of Fig. 1, we show the result for the
case of the Mach number M = 10 obtained with the -2
code (Springel 2005; Springel et al. 2001) at time t = 0.5. Shown
are the volume averaged hydrodynamical quantities 〈ρ(x)〉, 〈P(x)〉,
〈υx(x)〉, and 〈M(x)〉 within bins with a spacing equal to the inter-
particle separation of the denser medium and represented by solid
black lines. One can clearly distinguish five regions of gas with dif-
ferent hydrodynamical states. These regions are separated by the
head and the tail of the leftwards propagating rarefaction wave,
and the rightwards propagating contact discontinuity and the shock
wave. The overall agreement with the analytic solution is good,
while the discontinuities are resolved within 2 − 3 SPH smooth-
ing lengths. Despite the shock broadening, the post-shock quanti-
ties are calculated very accurately. Our formalism is clearly able to
detect the shock and precisely measure its strength, i.e. the Mach
number M. The pressure quantity drawn is not the hydrodynam-
ically acting pressure of the SPH dynamics but P = (γ − 1)ρu, a
product of two fields that are calculated each using SPH interpo-
lation. Thus, the observed characteristic pressure blip at the con-
tact discontinuity has no real analogue either in the averaged x-
component of the velocity 〈υx(x)〉 or in the averaged Mach number
〈M(x)〉. The x-component of the velocity 〈υx(x)〉 shows tiny post-
shock oscillations which might be damped with higher values of the
artificial viscosity in the expense of a broader shock surface. The
leftwards propagating rarefaction wave seems to exhibit a slightly
faster signal velocity compared to the sound velocity. This might be

c© 2005 RAS, MNRAS 000, 1–20



Shocks in cosmological SPH simulations 7

Polytropic thermal gas: Composite of CRs and thermal gas:
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Figure 1. Shock-tube test carried out in a periodic three-dimensional box which is longer in x-direction than in the other two dimensions where a shock with
the Mach numberM = 10 develops. The numerical result of the volume averaged hydrodynamical quantities 〈ρ(x)〉, 〈P(x)〉, 〈υx(x)〉, and 〈M(x)〉 within bins
with a spacing equal to the interparticle separation of the denser medium is shown in black and compared with the analytic result in colour. Left-hand panels:
Shock-tubes are filled with pure thermal gas (γ = 5/3). Right-hand panels: Shock-tubes are filled with a composite of cosmic rays and thermal gas. Initially,
the relative CR pressure is XCR = PCR/Pth = 2 in the left-half space (x < 250), while we assume pressure equilibrium between CRs and thermal gas for
x > 250.

attributed to the SPH averaging process which obtains additional
information on the SPH smoothing scale.

In the left-hand panel of Fig. 2, we show the Mach number dis-
tributions weighted by the change of dissipated energy per time in-
terval,

〈
du̇th/(d logM)

〉
for our eight shock-tubes. The sharp peaks

of these distributions around their expected values logM are appar-
ent. This demonstrates the reliability of our formalism to precisely
measure shock strengths instantaneously during SPH simulations.
The bottom panel shows their integral, i.e. the change of dissipated
energy per time interval, 〈u̇th〉. The rising dissipated energy with
growing Mach number reflects the larger amount of available ki-
netic energy for dissipation.

We additionally calculate the shock-injected CR energy using

our formalism of diffusive shock acceleration described in Enßlin
et al. (2006). However, the injected CR energy

〈
u̇CR,inj

〉
was only

monitored and not dynamically tracked. For comparison, we also
show the theoretically expected injected CR energy

〈
u̇theory

CR,inj

〉
=

ζinj 〈u̇th〉, where ζinj is the energy efficiency due to diffusive shock
acceleration (cf. Enßlin et al. 2006,for details). The good compari-
son of the simulated and theoretically expected shock-injected CR
energy demonstrates that our formalism is reliably able to describe
the on-the-fly acceleration of CRs during the simulation.

c© 2005 RAS, MNRAS 000, 1–20



8 C. Pfrommer, V. Springel, T. A. Enßlin, M. Jubelgas

Polytropic thermal gas: Composite of CRs and thermal gas:
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Figure 2. Mach number distributions weighted by the change of dissipated energy per time interval,
〈
d u̇th/(d logM)

〉
for our eight three-dimensional shock-

tubes. Left-hand panels: Shock-tubes are filled with pure thermal gas (γ = 5/3). Right-hand panels: Shock-tubes are filled with a composite of cosmic rays and
thermal gas. Initially, the relative CR pressure is XCR = PCR/Pth = 2 in the left-half space, while we assume pressure equilibrium between CRs and thermal
gas. Bottom panels: Shown are the change of dissipated energy per time interval, 〈 u̇th〉 (shown with ×), the shock-injected CR energy 〈 u̇CR,inj〉 (+), and the

theoretically expected injected CR energy 〈 u̇theory
CR,inj〉 (◦) which is calculated following Enßlin et al. (2006).

5.2 Composite of cosmic rays and thermal gas

Again, we consider eight shock-tube simulations containing a com-
posite of cosmic rays and thermal gas, providing a useful validation
of our CR implementation in solving basic hydrodynamic problems
as well as our Mach number formalism in the presence of CRs.
In these simulations, we neither inject shock-accelerated CRs nor
consider CR diffusion: these processes would lead to CR modified
shock structures and shall be the subject of a companion paper.

To characterise this composite fluid, we define the relative CR
pressure XCR = PCR/Pth. Our composite gas is initially at rest,
while the left-half space (x < 250) is filled with gas at unit den-
sity, ρ2 = 1, XCR2 = 2, and Pth2 = (γ − 1) 105, while x > 250
is filled with low density gas ρ1 = 0.2, XCR1 = 1, at low pres-
sure. The exact value of the low pressure gas has again been
chosen such that the resulting solutions yield the Mach numbers
M = {1.4, 2, 3, 6, 10, 30, 60, 100} (cf. Appendix B). Otherwise, we
use the same initial setup as in Section 5.1. This CR load represents
a rather extreme case and can be taken as the limiting case for our
Mach number formalism in the presence of CRs. Cosmologically,
it may find application in galaxy mergers where the outer regions
might be composed of an adiabatically expanded composite gas
containing a high CR component.

In the right-hand panel of Fig. 1, we show the result for the
case of the Mach number M = 10 obtained with -2 at time
t = 0.3. The agreement with the analytic solution is good, while the
discontinuities are resolved within 2 − 3 SPH smoothing lengths.
Despite the shock broadening, the post-shock quantities are calcu-
lated very accurately. In the case of composite gas, our formalism
is clearly able to detect the shock and measure its strength with a
Mach number accuracy better than 10%. Although the total pres-
sure remains constant across the contact discontinuity, the partial
pressure of CRs and thermal gas interestingly are changing. This
behaviour reflects the adiabatic compression of the CR pressure
component across the shock wave. A posteriori, this justifies our
procedure of inferring the thermal pressure jump at the shock for a
composite of CRs and thermal gas in equation (37).

In the right-hand panel of Fig. 2, we show the Mach num-
ber distributions weighted by the change of dissipated energy per
time interval,

〈
du̇th/(d logM)

〉
for our eight shock-tubes. While our

formalism is able to measure the shock strength with a Mach num-
ber accuracy better than 10%, the distributions are sharply peaked.
This demonstrates the reliability of our formalism to measure shock
strengths for the composite gas instantaneously during SPH simu-
lations.

The bottom panel shows the change of dissipated energy per

c© 2005 RAS, MNRAS 000, 1–20



Shocks in cosmological SPH simulations 9

time interval, 〈u̇th〉 together with the shock-injected CR energy〈
u̇CR,inj

〉
. Concerning the amount of injected CR energy, we ne-

glected cooling processes such as Coulomb interactions with ther-
mal particles: this would effectively result in a density dependent
recalibration of the maximum CR energy efficiency ζmax of the oth-
erwise arbitrary absolute value of our fiducial density. In the case
of high Mach numbers, there is a good agreement between the sim-
ulated and theoretically expected shock-injected CR energy while
there are discrepancies at low Mach numbers: our formalism es-
timates volume averaged Mach numbers with an accuracy better
than 10%; this uncertainty translates to estimates of the density
jump xs and the thermal pressure jump ys with a scatter among
different SPH particles. In the regime of weak shocks, the CR en-
ergy efficiency due to diffusive shock acceleration ζinj is extremely
sensitive to these two quantities, leading to larger uncertainties for
the shock-injected CR energy in the case of a high CR load. How-
ever, the overall trend for the shock-injected CR energy can still be
matched in such an extreme physical environment.

6 NON-RADIATIVE COSMOLOGICAL SIMULATIONS

6.1 Simulation setup

As a first application of our formalism, we are here interested in
studying the spatial distribution of cosmological structure forma-
tion shocks in combination with Mach number statistics. We focus
on the “concordance” cosmological cold dark matter model with a
cosmological constant (ΛCDM). The cosmological parameters of
our model are: Ωm = Ωdm + Ωb = 0.3, Ωb = 0.04, ΩΛ = 0.7,
h = 0.7, n = 1, and σ8 = 0.9. Here, Ωm denotes the total matter
density in units of the critical density for geometrical closure, ρcrit =

3H2
0/(8πG).Ωb andΩΛ denote the densities of baryons and the cos-

mological constant at the present day. The Hubble constant at the
present day is parametrized as H0 = 100 h km s−1Mpc−1, while n
denotes the spectral index of the primordial power-spectrum, and
σ8 is the rms linear mass fluctuation within a sphere of radius
8 h−1Mpc extrapolated to z = 0. This model yields a reasonable fit
to current cosmological constraints and provides a good framework
for investigating cosmological shocks.

Our simulations were carried out with an updated and ex-
tended version of the distributed-memory parallel TreeSPH code
-2 (Springel 2005; Springel et al. 2001) including now
self-consistent cosmic ray physics (Enßlin et al. 2006; Jubelgas
et al. 2006). Our reference simulation employed 2 × 2563 par-
ticles which were simulated within a periodic box of comov-
ing size 100 h−1Mpc, so the dark matter particles had masses of
4.3 × 109 h−1 M� and the SPH particles 6.6 × 108 h−1 M�. The SPH
densities were computed from 32 neighbours which leads to our
minimum gas resolution of approximately 2 × 1010 h−1 M�. The
gravitational force softening was of a spline form (e.g., Hern-
quist & Katz 1989) with a Plummer-equivalent softening length of
13 h−1kpc comoving. In order to test our numerical resolution, we
additionally simulated the same cosmological model with 2 × 1283

particles, with a softening length twice that of the reference simu-
lation.

Initial conditions were laid down by perturbing a homoge-
neous particle distribution with a realization of a Gaussian ran-
dom field with the ΛCDM linear power spectrum. The displace-
ment field in Fourier space was constructed using the Zel’dovich
approximation, with the amplitude of each random phase mode
drawn from a Rayleigh distribution. For the initial redshift we chose

1 + zinit = 50 which translates to an initial temperature of the gas
of Tinit = 57 K. This reflects the fact that the baryons are thermally
coupled to the CMB photons via Compton interactions with the
residual free electrons after the universe became transparent until it
eventually decoupled at 1 + zdec ' 100(Ωbh2/0.0125)2/5. In all our
simulations, we stored the full particle data at 100 output times,
equally spaced in log(1 + z) between z = 40 and z = 0.

In order to investigate the effects of reionisation on the Mach
number statistics, we additionally perform two similar simulations
which contain a simple reionisation model where we impose a min-
imum gas temperature of T = 104 K at a redshift of z = 10 to all
SPH particles. We decided to adopt this simplified model to study
its effect on the Mach number statistics rather than a more compli-
cated reionisation history. A more realistic scenario might be to add
energy only to gas within haloes above a certain density in combi-
nation with energy input from QSO activity, and to describe the
merging of the reionisation fronts and their evolution into the lower
density regions (e.g., Ciardi et al. 2003).

The simulation reported here follow only non-radiative gas
physics. We neglected several physical processes, such as radia-
tive cooling, galaxy/star formation, and feedback from galaxies and
stars including cosmic ray pressure. Our primary focus are shocks
that are mostly outside the cluster core regions. Thus, the conclu-
sions drawn in this work should not be significantly weakened by
the exclusion of these additional radiative processes.

In contrast to the idealised shock tube experiment where all
particles that are shocked experience the same shock strength, in
cosmological simulations there might be a a distribution of Mach
numbers for a given region of space because of curvature effects,
multiple shocks, etc. Thus the Mach number estimation in shock
tubes involves averaging over many particles all of which are expe-
riencing a shock of a given Mach number, whereas in the cosmo-
logical simulations the averaging has to be done over Mach number
also. This might introduce a scatter to the Mach number estimation
of a single particle in cosmological simulations which is difficult to
quantify. We are confident that this effect has only a minor impact
on our results because they agree well with results of similar stud-
ies that used Eulerian structure formation simulations (Ryu et al.
2003).

6.2 Visualisation of the Mach number

In the SPH formalism, continuous fields A(x) such as the hydrody-
namical quantities are represented by the values Ai at discrete par-
ticle positions ri = (xi, yi, zi) with a local spatial resolution given by
the SPH smoothing length hi. To visualise a scalar quantity in two
dimensions we employ the mass conserving scatter approach for
the projection, where the particle’s smoothing kernel is distributed
onto cells of a Cartesian grid which is characterised by its physical
mesh size g. The line-of-sight integration of any quantity A(x) at
the pixel at position r = (x, y, z) is determined as the average of
integration of all lines of sight passing through the pixel,

〈a(x⊥)〉los = g−2
∑

i

h−3
i

[∫ x+g/2

x−g/2
dxi

∫ y+g/2

y−g/2
dyi

∫ hi

−hi

dziK
(

r
hi

)
Ai

]
, (38)

with r =
√

(xi − x)2 + (yi − y)2 + z2
i , and where the summation is

extended over all particles in the desired slice of projection. The
functionK is the dimensionless spherically symmetric cubic spline
kernel suggested by Monaghan & Lattanzio (1985).
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Figure 3. Visualisation of a non-radiative cosmological simulation at redshift z = 2 (top panels) and z = 0 (bottom panels). Shown are the overdensity of
the gas (left-hand side) and the density weighed gas temperature (right-hand side). These pictures have a comoving side length of 100 h−1 Mpc while the
projection length along the line-of-sight amounts to 10 h−1 Mpc.

The left-hand side of Fig. 3 shows the time evolution of the
density contrast δ averaged over the line-of-sight with a comoving
projection length Lproj = 10 h−1 Mpc:

〈
1 + δgas(x⊥)

〉
los
=
〈Σ(x⊥)〉los

Lproj ρcritΩb
, (39)

where Σ denotes the surface mass density. The fine-spun cosmic
web at high redshift evolves into a much more pronounced, knotty
and filamentary structure at late times, as a result of the hierarchical
structure formation process driven by gravity.
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Figure 4. Mach number visualisation of a non-radiative cosmological simulation at redshift z = 2 (top panels) and z = 0 (bottom panels). The colour hue of the
maps on the left-hand side encodes the spatial Mach number distribution weighted by the rate of energy dissipation at the shocks, normalised to the simulation
volume. The maps on the right-hand side show instead the Mach number distribution weighted by the rate of CR energy injection above q = 0.8, the threshold
of hadronic interactions. The brightness of each pixel is determined by the respective weights, i.e. by the energy production density. These pictures have a
comoving length of 100 h−1 Mpc on a side. Most of the energy is dissipated in weak shocks which are situated in the internal regions of groups or clusters,
while collapsed cosmological structures are surrounded by strong external shocks (shown in blue).
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The right-hand side of Fig. 3 shows the time evolution of
the density weighted temperature averaged over the line-of-sight.
Again, the growth of galaxy clusters visible as large bright regions
with temperatures around 107K is clearly visible. Through dissipa-
tion, the shock waves convert part of the gravitational energy asso-
ciated with cosmological structure formation into internal energy of
the gas, apart from the additional contribution due to adiabatic com-
pression caused by the material that falls in at later times and itself
is compressed at these shock waves. The large black regions show
voids which cool down during cosmic evolution due to two effects:
while the universe expands, non-relativistic gas is adiabatically ex-
panded and cools according to T ∝ V1−γ ∝ a−2 for γ = 5/3 when
shock heating is still absent. Secondly, matter is flowing towards
filaments during structure formation, hence the voids get depleted,
providing an additional adiabatic expansion of the remaining mate-
rial.

Fig. 4 shows a visualisation of the responsible structure for-
mation shocks and their corresponding strengths. The colour scal-
ing represents the spatial Mach number distribution weighted by
the rate of energy dissipation at the shocks, and normalised to the
simulation volume (left-hand side). The Mach number distribution
weighted by the rate of CR energy injection is shown in the right-
hand side, again normalised to the simulation volume. The bright-
ness of these pixels scales with the respective weights, i.e. by the
rates of energy dissipation or injection, respectively. The spatial
Mach number distribution impressively reflects the nonlinear struc-
tures and voids of the density and temperature maps of Fig. 3. It is
apparent that most of the energy is dissipated in weak shocks which
are situated in the internal regions of groups or clusters while col-
lapsed cosmological structures are surrounded by external strong
shocks (shown in blue). These external shocks are often referred
to as ‘first shocks’, because here the compressed gas has been pro-
cessed for the first time in its cosmic history through shock waves.

Following Ryu et al. (2003), we classify structure formation
shocks into two broad populations which are labelled as internal
and external shocks, depending on whether or not the associated
pre-shock gas was previously shocked. Rather than using a ther-
modynamical criterion such as the temperature, we prefer a crite-
rion such as the overdensity δ in order not to confuse the shock
definition once we will follow radiatively cooling gas in galaxies
(in practice, we use the criterion of a critical pre-shock overdensity
δ > 10 for the classification of an internal shock). External shocks
surround filaments, sheets, and haloes while internal shocks are lo-
cated within the regions bound by external shocks and are created
by flow motions accompanying hierarchical structure formation.
For more detailed studies, internal shocks can be further divided
into three types of shock waves: (1) accretion shocks caused by in-
falling gas from sheets to filaments or haloes and from filaments to
haloes, (2) merger shocks resulting from merging haloes, and (3)
supersonic chaotic flow shocks inside nonlinear structures which
are produced in the course of hierarchical clustering.

In contrast to the present time, the comoving surface area of
external shock waves surpasses that of internal shocks at high red-
shift, due to the small fraction of mass bound in large haloes and
the simultaneous existence of an all pervading fine-spun cosmic
web with large surface area. Also, there the thermal gas has a low
sound velocity c =

√
γP/ρ =

√
γ(γ − 1)u owing to the low temper-

ature, so once the diffuse gas breaks on mildly nonlinear structures,
strong shock waves develop that are characterised by high Mach
numbersM = υs/c. Nevertheless, the energy dissipation rate in in-
ternal shocks is always higher compared to external shocks because
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as saturation value of the CR energy injection efficiency, i.e. ζmax = 0.5
(Ryu et al. 2003).

the mean shock speed and pre-shock gas densities are significantly
larger for internal shocks.

We use the same colour and brightness scale for the Mach
number distribution weighted by the injected CR energy rate nor-
malised to the simulation volume (right-hand side of Fig. 4). We
emphasize two important points which have fundamental implica-
tions for the CR population in galaxy clusters. (1) There is an ab-
sence of weak shocks (shown in yellow) when the Mach number
distribution is weighted by the injected CR energy. This reflects the
Mach number dependent energy injection efficiency: the CR injec-
tion is saturated for strong shocks which leads to similar spatial dis-
tribution of both weightings, by dissipated energy as well as by in-
jected CR energy. In contrast, most of the dissipated energy is ther-
malized in weak shocks and only small parts are used for the accel-
eration of relativistic particles (compare Fig. 5). (2) The mechanism
of energy dissipation at shocks is very density dependent, implying
a tight correlation of weak internal shocks and the amount of dis-
sipated energy. This can be seen by the strongly peaked brightness
distribution of the dissipated energy rate towards the cluster cen-
tres. For the CR-weighted case, this correlation is counteracted by
the CR energy injection efficiency leading to a smoother brightness
distribution of the CR energy injection. This has the important im-
plication that the ratio of CR injected energy to dissipated thermal
energy is increasing as the density declines. Relative to the thermal
non-relativistic energy density, the CR energy density is dynami-
cally more important at the outer cluster regions and dynamically
less important at the cluster centres.

6.3 Mach number statistics

6.3.1 Influence of reionisation

To quantify previous considerations, we compute the differential
Mach number distribution weighted by the dissipated energy nor-
malised to the simulation volume d2εdiss(a,M)/(d log a d logM) at
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different redshifts. The top left-hand panel of Fig. 6 shows this
Mach number distribution for our reference simulation with reion-
isation (showing a resolution of 2 × 2563), while the top right-
hand panel shows this distribution for the simulation without reion-
isation. The lower left-hand panel shows both distributions inte-
grated over the scale factor, dεdiss(M)/(d logM), in addition to the
Mach number distribution weighted by the injected CR energy nor-
malised to the simulation volume, dεCR(M)/(d logM) (see Sec-
tion 6.3.2). Internal shocks are shown with dotted lines and exter-
nal shocks with dashed lines. The lower right-hand panel shows the
evolution of the dissipated energy due to shock waves with scale
factor, dεdiss(a)/(d log a), for the models with and without reionisa-
tion.

Several important points are apparent. (1) The median of the
Mach number distribution weighted by the dissipated energy de-
creases as cosmic time evolves, i.e. the average shock becomes
weaker at later times. (2) There is an increasing amount of en-
ergy dissipated at shock waves as the universe evolves because the
mean shock speed is significantly growing when the characteris-
tic mass becomes larger with time. This trend starts to level off at
redshift z ' 1 although the median Mach number in shocks con-
tinuous to decrease. (3) Reionisation influences the Mach number
distribution predominantly at early times (however after reionisa-
tion took place) and suppresses strong external shock waves effi-
ciently. The reason is that reionisation of the thermal gas increases
its sound speed c =

√
γnkT/ρ dramatically, so that weaker shocks

are produced for the same shock velocities. (4) The time integrated
Mach number distribution weighted by the dissipated energy peaks
at Mach numbers 1 . M . 3. The main contribution in terms
of energy dissipation originates from internal shocks because of
enhanced pre-shock densities and mean shock speeds. (5) Exter-
nal shocks dominate the Mach number distribution at early times
while internal shocks take over at z ' 9 (depending somewhat on
the resolution of the simulation). Their amount of dissipated energy
surpasses that in external shocks by over an order of magnitude at
the present time. Internal shocks play a more important role than
external shocks in dissipating energy associated with structure for-
mation.

The total shock-dissipated energy in our simulation box
amounts to Ediss = 2.27 × 1064 erg. This translates to a mean en-
ergy deposition per particle of Ediss µ/(ρcritΩbV) = 0.63 keV, where
µ = 4mp/(3 + 5XH) is the mean particle weight assuming full ioni-
sation and XH = 0.76 is the primordial hydrogen mass fraction. Our
results agree well with those of Ryu et al. (2003) in the case of in-
ternal shocks while our external shocks tend to be weaker. This can
be attributed to our differing definition of internal/external shocks
as we prefer a density criterion and use the critical pre-shock over-
density δ > 10 for the classification of an internal shock.

6.3.2 Cosmic ray acceleration

In our non-radiative cosmological simulations we additionally cal-
culate the expected shock-injected CR energy using our formalism
of diffusive shock acceleration described in Enßlin et al. (2006).
This formalism follows a model based on plasma physics for
the leakage of thermal ions into the CR population. However,
in the present analysis, the injected CR energy duCR,inj/(d log a)
was only monitored and not dynamically tracked. In our model,
the CR population is described by single power-law distribution
which is uniquely determined by the dimensionless momentum
cutoff q, the normalisation C, and the spectral index α. Consid-
ering shock injected CRs only, the spectral index is determined by

α = (xs + 2)/(xs − 1), where xs denotes the density jump at the
shock.

Our simplified model for the diffusive shock acceleration fails
in the limit of weak shocks and over-predicts the injection effi-
ciency. Especially in this regime, Coulomb losses have to be taken
into account which remove the low-energetic part of the injected
CR spectrum efficiently on a short timescale giving rise to an ef-
fective CR energy efficiency. Thus, the instantaneous injected CR
energy duCR,inj/(d log a) depends on the simulation timestep and the
resolution. To provide a resolution independent statement about the
injected CR energy, we decided to rethermalise the injected CR
energy below the cutoff qthreshold = 0.83. This cutoff has the de-
sired property, that it coincides with the kinematic threshold of the
hadronic CR p-p interaction to produce pions which decay into sec-
ondary electrons (and neutrinos) and γ-rays:

π± → µ± + νµ/ ν̄µ → e± + νe/ ν̄e + νµ + ν̄µ

π0 → 2γ .

Only CR protons above this kinematic threshold are therefore visi-
ble through their decay products in both the γ-ray and radio bands
via radiative processes, making them directly observationally de-
tectable.

The lower left-hand panel of Fig. 6 shows the Mach num-
ber distribution weighted by the injected CR energy rate and
normalised to the simulation volume, dεCR(M)/(d logM) (solid
green). The effect of the CR injection efficiency ζinj = εCR/εdiss

can easily be seen: while the CR injection is saturated for strong
shocks to ζmax = 0.5, in weak shocks most of the dissipated en-
ergy is thermalized and only small parts are used for the acceler-
ation of relativistic particles. Effectively, this shifts the maximum
and the mean value of the Mach number distribution weighted by
the shock-dissipated energy towards higher values in the case of
the distribution weighted by the injected CR energy. This effect
is even stronger when considering only CRs with a lower cut-
off q = 10, 30 which are responsible for radio haloes observed
at frequencies above 100 MHz, assuming typical magnetic field
strengths of B = 10, 1 µG, respectively. This follows from the
mono-energetic approximation of the hadronic electron production
and synchrotron formula,

νs =
3eB

2πmec
γ2

e , where γe ' q
16

mp

me
(40)

and e denotes the elementary charge.
As the regime of strong shocks is dominated by external

shocks where the CR injection is saturated, CRs are dynamically
more important in dilute regions and dynamically less important
at the cluster centres compared to the thermal non-relativistic gas.
As weak shocks are mainly internal shocks we have to distinguish
between their different appearance: strong internal shocks are most
probably accretion shocks produced by infalling gas from sheets
or filaments towards clusters, or peripheral merger shocks which
steepen as they propagate outwards in the shallow cluster potential,
highlighting the importance of CR injection in the outer cluster re-
gions relative to thermally dissipated gas at shocks. In contrast, CR
injection is dynamically less important in the case of flow shocks
at the cluster centres or merging shock waves traversing the clus-
ter centre. From these considerations we again draw the important
conclusion that the ratio of CR injected energy to dissipated ther-
mal energy at shocks is an increasing function of decreasing den-
sity. Such a CR distribution is required within galaxy clusters to ex-
plain the diffuse radio synchrotron emission of galaxy clusters (so-
called radio haloes) within the hadronic model of secondary elec-
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Figure 6. Influence of reionisation on the Mach number statistics of non-radiative cosmological simulations. The top left-hand panel shows the differential
Mach number distribution d2εdiss(a,M)/(d log a d logM) for our reference simulation with reionisation while the top right-hand panel shows this distribution
for the simulation without reionisation. The lower left-hand panel shows both distributions integrated over the scale factor, dεdiss(M)/(d logM) in addition to
the Mach number distribution weighted by the injected CR energy rate normalised to the simulation volume, dεCR(M)/(d logM) (green). Internal shocks are
shown with dotted lines and external shocks with dashed lines. The lower right-hand panel shows the evolution of the dissipated energy due to shock waves
with scale factor, dεdiss(a)/(d log a). The models with and without reionisation lie on top of each other.

trons. For that, we assume a stationary CR electron spectrum which
balances hadronic injection of secondaries and synchrotron and
inverse Compton cooling processes (Brunetti 2002; Pfrommer &
Enßlin 2004a,b). However, to make more precise statements about
the origin of cluster radio haloes, more work is needed which stud-
ies the effect of the CR dynamics including CR diffusion and other
CR injection processes such as supernovae driven galactic winds.

6.3.3 Resolution study

To study numerical convergence we perform two additional simu-
lations with a resolution of 2 × 1283, respectively, for our models

with and without reionisation. Fig. 7 shows this resolution study for
non-radiative cosmological simulations with a reionisation epoch at
z = 10. The lower right-hand panel of Fig. 7 shows the evolution
of the density-weighted temperature with redshift, 〈(1 + δ)T 〉V (z).
Shown are different resolutions in our models with and without
reionisation. The two differently resolved simulations (2×2563 and
2 × 1283) have converged well at redshifts z . 4. In our reference
simulation, the adiabatic decay of the mean temperature is halted at
slightly higher redshift: because of the better mass resolution of this
simulation, nonlinear structures of smaller mass can be resolved
earlier while converting part of their gravitational binding energy
into internal energy through structure formation shock waves. In
the simulation with reionisation, the temperature increases discon-
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tinuously at z = 10, declines again with the adiabatic expansion,
until shock heating takes over at z ∼ 7 − 8 (depending on the
resolution of the simulation). At z = 0, all simulations yield a
mean density-weighted temperature of ' 0.3 keV. Comparing this
density-weighted energy to the shock-deposited mean energy per
particle of Ediss ' 0.63 keV, we obtain the mean adiabatic com-
pression factor of the cosmic plasma, {kT/[(γ−1)Ediss]}1/(γ−1) ' 0.6.
After the plasma has been shock-heated, relaxation processes in the
course of virialisation let the plasma expand adiabatically on aver-
age. Secondly, mildly non-linear structures characterised by a shal-
low gravitational potential are partly effected by the Hubble flow
which forces them to adiabatically expand.

The top left-hand panel shows the differential Mach number

distribution d2εdiss(a,M)/(d log a d logM) for our reference sim-
ulation with a resolution of 2 × 2563 while the top right-hand
panel shows this distribution for the simulation with a resolution
of 2 × 1283. The lower left-hand panel shows both distributions in-
tegrated over the scale factor, dεdiss(M)/(d logM). Internal shocks
are shown with dotted lines and external shocks with dashed lines.
One immediately realizes that the question if the first shocks are
fully converged among simulations of different resolution is not
well posed because nonlinear structures of smaller mass can be re-
solved collapsing earlier in higher resolution simulations. Accord-
ingly, the differential Mach number distribution is not well con-
verged at redshifts z & 6 while the distribution is well converged
for z . 3. Since most of the energy is dissipated at late times, where
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our differential Mach number distribution is well converged, the in-
tegrated distribution dεdiss(M)/(d logM) shows only marginal dif-
ferences among the differently resolved simulations. In particular,
our statements about CR injection at structure formation shocks are
robust with respect to resolution issues.

7 SUMMARY AND CONCLUSIONS

We provide a formalism for identifying and estimating the strength
of structure formation shocks in cosmological SPH simulations on-
the-fly, both for non-relativistic thermal gas as well as for a plasma
composed of a mixture of cosmic rays (CRs) and thermal gas. In
addition, we derive an analytical solution to the one-dimensional
Riemann shock tube problem for the composite plasma of CRs and
thermal gas (Appendix B). In the case of non-relativistic thermal
gas, shock-tube simulations within a periodic three-dimensional
box that is longer in x-direction than in the other two dimensions
show that our formalism is able to unambiguously detect and accu-
rately measure the Mach numbers of shocks, while in the case of
plasma composed of cosmic rays (CRs) and thermal gas, the Mach
numbers of shocks are estimated with an accuracy better than 10%.
In both cases, we find a very good agreement of the averaged simu-
lated hydrodynamical quantities (such as density, pressure, and ve-
locity) and the analytical solutions. Using our formalism for diffu-
sive shock acceleration, we additionally calculate and monitor the
shock-injected CR energy, but without dynamically tracking this
CR energy component; the latter will be studied in forthcoming
work. The good agreement between the simulated and theoretically
expected shock-injected CR energy demonstrates that our formal-
ism is reliably able to accelerate CRs instantaneously during the
simulation.

Subsequently, we identified and studied structure formation
shock waves using cosmological N-body/hydrodynamical SPH
simulations for a concordance ΛCDM universe in a periodic cu-
bic box of comoving size 100 h−1Mpc. We performed simulations
with and without a reionisation epoch at z = 10 in order to inves-
tigate the effects of reionisation on the Mach number distribution.
Our sets of simulations follow only non-radiative gas physics where
we neglected additional physical processes, such as radiative cool-
ing, star formation, and feedback from galaxies and stars includ-
ing cosmic ray pressure. Since we are mainly interested in shock
waves situated mostly outside the cluster core regions, the conclu-
sions drawn in this article should not be significantly weakened
by the exclusion of those radiative processes. Furthermore, these
simplifications align our work with the mesh-based simulations of
Ryu et al. (2003) and enable a direct comparison and verification
of our results. We classify cosmological shock waves as internal
and external shocks, depending on whether or not the associated
pre-shock gas was previously shocked (cf. Ryu et al. 2003). Rather
than using a thermodynamical criterion such as the temperature, we
prefer a density criterion such as the overdensity δ in order not to
confuse the shock definition once we will follow radiatively cool-
ing gas in galaxies. External shocks surround filaments, sheets, and
haloes where the pristine adiabatically cooling gas is shocked for
the first time. Internal shocks on the other hand are located within
the regions bound by external shocks and are created by flow mo-
tions accompanying hierarchical structure formation. Their popula-
tion includes accretion shocks produced by infalling material along
the filaments into clusters, merger shocks resulting from infalling
haloes, and flow shocks inside nonlinear structures which are ex-
cited by supersonic motions of subclumps.

The Mach number distribution weighted by the dissipated en-
ergy shows in detail that most of the energy is dissipated in weak
shocks which are situated in the internal regions of groups or clus-
ters while collapsed cosmological structures are surrounded by ex-
ternal strong shocks which have a minor impact on the energy bal-
ance. The evolution of the Mach number distribution shows that
the average shock strength becomes weaker at later times while
there is an increasing amount of energy dissipated at shock waves
as cosmic time evolves because the mean shock speed increases
together with the characteristic mass of haloes forming during cos-
mic structure formation. For the same reason, internal shocks play
a more important role than external shocks in dissipating energy as-
sociated with structure formation, especially at small redshift. The
energy input through reionisation processes influences the Mach
number distribution primarily during a period following the reion-
isation era and suppresses strong external shock waves efficiently
because of the significant increase of the sound speed of the inter-
galactic medium.

Weighting the Mach number distribution by the injected CR
energy shows the potential dynamical implications of CR popula-
tions in galaxy clusters and haloes: the maximum and the mean
value of the Mach number distribution, weighted by the shock-
dissipated energy, is effectively shifted towards higher values of the
Mach number when the distribution is weighted by the injected CR
energy. In other words, the average shock wave responsible for CR
energy injection is stronger compared to the average shock which
thermalizes the plasma. The fundamental reason for this lies in the
theory of diffusive shock acceleration at collisionless shock waves
and can be phenomenologically described by a CR injection effi-
ciency: while the CR injection is saturated to an almost equiparti-
tion value between injected CR energy and dissipated thermal en-
ergy for strong shocks, in weak shocks most of the dissipated en-
ergy is thermalized and only small parts are used for the accelera-
tion of relativistic particles. Relative to the thermal non-relativistic
energy density, the shock-injected CR energy density is dynami-
cally more important at the outer dilute cluster regions and less
important at the cluster centres since weak shock waves predom-
inantly occur in high-density regions. This has the crucial conse-
quence that the ratio of CR injected energy to dissipated thermal
energy is an increasing function as the density declines. Such a
CR distribution within galaxy cluster is required to explain the dif-
fuse radio synchrotron emission of galaxy clusters (so-called radio
haloes) within the hadronic model of secondary electrons. In or-
der to draw thorough conclusions about the origin of cluster radio
haloes, more work is needed which studies the effect of the CR dy-
namics comprising of CR injection and cooling processes as well
as CR diffusion mechanisms.

We note that our new formalism for shock-detection in SPH
simulations should have a range of interesting applications in sim-
ulations of galaxy formation. For example, when combined with
radiative dissipation and star formation, our method can be used
to study CR injection by supernova shocks, or to construct models
for shock-induced star formation in the interstellar medium (e.g.
Barnes 2004). It should also be useful to improve the accuracy of
predictions for the production of γ-rays by intergalactic shocks (e.g.
Keshet et al. 2003).
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APPENDIX A: RIEMANN SHOCK-TUBE PROBLEM

The Riemann shock-tube calculation of Sod (1978) has become a generally accepted test of numerical hydrodynamical codes. As a baseline
for later extension, we present in the section the quasi-analytical solution for the Riemann problem in the standard case of a polytropic
gas. Then, in Appendix B we derive the quasi-analytic solution in the case of a gas composed of CRs and thermal gas, where the effective
adiabatic index depends on the different equations of state and changes across the shock-tube.

In the following, we summarise the key considerations which lead to the solution of the Riemann problem, for completeness (see e.g.
Courant & Friedrichs 1948; Toro 1997; Rasio & Shapiro 1991, for a compact representation). For the initial state, we assume a state with
higher pressure in the left-half space without loss of generality. At any time t > 0, this leads to the development of five regions of gas with
different hydrodynamical states which are numbered in ascending order from the right-hand side. These regions are separated by the head
and the tail of the leftwards propagating rarefaction wave, and the rightwards propagating contact discontinuity and the shock wave. Mass,
momentum and energy conservation laws are represented by the generalised Rankine-Hugoniot conditions for a given coordinate system:

υd[ρ] = [ρυ],

υd[ρυ] = [ρυ2 + P], (A1)

υd

[
ρ
υ2

2
+ ε

]
=

[(
ρ
υ2

2
+ ε + P

)
υ

]
.

Here υd denotes the speed of the discontinuity under consideration with respect to our coordinate system and we introduced the abbreviation
[F] = Fi − F j for the jump of some quantity F across the discontinuity. Within the leftwards propagating rarefaction wave, the generalised
Riemann invariants yield an isentropic change of state, ds = 0, and conserve the quantity Γ+:

Γ+ = υ +

∫ ρ

0

c(ρ′)
ρ′

dρ′ = υ +
2 c(ρ)
γ − 1

= const. (A2)

For the last step, we assumed a polytropic equation of state P = Aργ. Appropriately combining these equations, the solution can be expressed
as follows:

ρ(x, t) =



ρ5, x 6 −c5t,

ρ5

[
−µ2 x

c5t + (1 − µ2)
]2/(γ−1)

, −c5t < x 6 −υtt,

ρ3, −υtt < x 6 υ2t,
ρ2, υ2t < x 6 υst,
ρ1, x > υst,

(A3)

P(x, t) =



P5, x 6 −c5t,

P5

[
−µ2 x

c5t + (1 − µ2)
]2γ/(γ−1)

, −c5t < x 6 −υtt,

P2 = P3, −υtt < x 6 υst,
P1, x > υst,

(A4)

υ(x, t) =



0, x 6 −c5t,
(1 − µ2)

( x
t + c5

)
, −c5t < x 6 −υtt,

υ2 = υ3, −υtt < x 6 υst,
0, x > υst.

(A5)

Here µ2 = (γ− 1)/(γ+ 1), c1 =
√
γP1/ρ1, and c5 =

√
γP5/ρ5 are the speeds of sound, υt is the speed of propagation of the rarefaction wave’s

tail, and υs is the shock speed. The post-shock pressure is obtained by solving (numerically) the non-linear equation, which is derived from
the Rankine-Hugoniot conditions over the shock while ensuring the conservation of the two Riemann invariants of equation (A2):

(
P2

P1
− 1

) √
1 − µ2

γ (P2/P1 + µ2)
− 2

(γ − 1)
c5

c1

1 −
(

P2

P5

)(γ−1)/(2γ) = 0. (A6)

The density on the left-hand side of the contact discontinuity is ρ3 = ρ5(P2/P5)1/γ, since the gas is adiabatically connected to the left-hand
side. The post-shock density ρ2 is also derived from the Rankine-Hugoniot conditions,

ρ2 = ρ1

(
P2 + µ

2P1

P1 + µ2P2

)
. (A7)

The post-shock gas velocity υ2 is obtained from the rarefaction wave equation, x/t = υ − c, and usage of the Riemann invariant Γ+:

υ2 = υ3 =
2c5

(γ − 1)

1 −
(

P2

P5

)(γ−1)/(2γ) , (A8)

and from equation (A5) we derive the speed of propagation of the rarefaction wave’s tail υt = c5 − υ2/(1 − µ2). Finally, mass conservation
across the shock yields

υs =
υ2

1 − ρ1/ρ2
. (A9)

c© 2005 RAS, MNRAS 000, 1–20



Shocks in cosmological SPH simulations 19

APPENDIX B: RIEMANN SHOCK-TUBE PROBLEM FOR A COMPOSITE OF COSMIC RAYS AND THERMAL GAS

B1 Derivation

In contrast to the previous case, the composite of CRs and thermal gas does not obey a polytropic equation of state. In this section, we
present an analytical derivation of the Riemann shock-tube problem for the composite of polytropic gas and a component that is adiabatically
compressed at the shock such as relativistic gas or a homogeneous magnetic field which is parallel to the shock front. For the analytical
derivation, we adopt the following two approximations: (i) we assume the CR adiabatic index (equation 6) to be constant over the shock-
tube, and (ii) we neglect CR diffusion. The first assumption is justified as long as the CR pressure is not dominated by trans-relativistic CRs
of low energy while the second assumption is a strong simplification with respect to simulating realistic shocks including CRs (Kang & Jones
2005). However, including CR diffusion complicates the problem significantly such that it is not any more analytically tractable.

For the initial state, we again assume a state with higher pressure in the left-half space. At any time t > 0, five regions of gas with
different hydrodynamical states coexist, and are numbered in ascending order from the right-hand side. We use the notation Pi = PCR,i + Pth,i

and εi = εCR,i +εth,i for the composite quantities in region i. The full solution of the initial value problem consists of determining 12 unknown
quantities in the regions (2) and (3): ρ2, υ2, PCR2, Pth2, εCR2, εth2, and ρ3, υ3, PCR3, Pth3, εCR3, εth3. The thermal gas obeys a polytropic equation
of state, i.e. εth,i = Pth,i/(γth − 1) for i ∈ {2, 3} and the regions (2) and (3) are separated by a contact discontinuity, implying vanishing mass
flux through it and thus, υ 2 = υ3 and P2 = P3. This reduces the dimensionality of our problem to 8 unknowns. In our approximation, the CRs
are adiabatically expanded over the rarefaction wave and adiabatically compressed at the shock while obeying a polytropic equation of state:

PCR3 = PCR5

(
ρ3
ρ5

)γCR

, εCR3 = εCR5

(
ρ3
ρ5

)γCR

,

PCR2 = PCR1

(
ρ2
ρ1

)γCR

, εCR2 = εCR1

(
ρ2
ρ1

)γCR

,

(B1)

which further reduces the dimensionality by 4 unknowns. Moreover, the thermal gas is also adiabatically expanded over the rarefaction wave
yielding Pth3 = Pth5(ρ3/ρ5)γth . Hence, we need 3 more linearly independent equations for the solution: 2 are obtained by considering the
Rankine-Hugoniot conditions (equation A1) in a stationary system of reference with υd = υs. The last equation is given by the Riemann
invariant Γ+, where the effective speed of sound is given by c =

√
γeffP/ρ:

Γ+ = υ +

∫ ρ

0

c(ρ′)
ρ′

dρ′ = υ + I(ρ) = const. with I(ρ) =
∫ ρ

0

√
ÃCR xγCR−3 + Ãthxγth−3dx. (B2)

Here, we use the abbreviations Ãi = γiAi where i ∈ {th,CR} and Ai = Pi ρ
−γi denotes the invariant adiabatic function over the rarefaction

wave. Introducing the difference of the adiabatic indices of the two populations, ∆γ = γth − γCR, the solution to the integral I(ρ) is given by

I(ρ) =

√
ÃCR

∆γ

(
ÃCR

Ãth

)(γCR−1)/(2∆γ)

Bx(ρ)

(
γCR − 1

2∆γ
,

1 − γth

2∆γ

)
with x(ρ) =

Ãth ρ
γth

ÃCR ργCR + Ãth ργth
. (B3)

Although the second argument of the incomplete Beta-function is always negative, I(ρ) is well defined as long as we consider a non-zero CR
pressure which is characterised by ÃCR > 0, and γCR sufficiently far from γth, i.e. ∆γ > 0. For ÃCR = 0, the integral can be solved in closed
form, yielding I(ρ) = 2c(ρ)/(γth − 1).

B2 Solution of the Riemann problem

The densities leftwards and rightwards of the contact discontinuity, ρ3 and ρ2, are obtained by solving (numerically) the following non-linear
system of equations. It is derived from matching the possible post-shock states (pressure and density) with the possible post-rarefaction wave
states while simultaneously ensuring the conservation laws over the rarefaction wave and the shock:

f1(xs, xr) ≡ [P2(xr) − P1] (xs − 1) − ρ1 xs
[
I(ρ5) − I(xrρ5)

]2
= 0,

f2(xs, xr) ≡ [P2(xr) + P1] (xs − 1) + 2[xsε1 − ε2(xs, xr)] = 0.
(B4)

Here we introduced the shock compression ratio xs ≡ ρ2/ρ1 and the rarefaction ratio xr ≡ ρ3/ρ5. Furthermore, the implicit dependences on
xs and xr can explicitly be expressed as follows,

P2(xr) = P3(xr) = PCR5 xγCR
r + Pth5 xγth

r , (B5)

PCR2(xs) = PCR1 xγCR
s , (B6)

ε2(xs, xr) = εCR1 xγCR
s +

1
γth − 1

[P2(xr) − PCR2(xs)]. (B7)

The roots of the non-linear system of equations (equation B4) immediately yield the post-shock pressure of the fluid via equation (B5). The
post-shock velocity υ2 = υ3 and the shock speed υs are then obtained from the Rankine-Hugoniot relations,

υ2 =

√
[P2(xr) − P1]

ρ2 − ρ1

ρ2ρ1
, (B8)

υs =
ρ2υ2

ρ2 − ρ1
. (B9)
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Using the previous results, we can construct the solution to the generalised Riemann problem for CRs and thermal gas as follows:

ρ(x, t) =



ρ5, x 6 −c5t,
ρ(x, t), −c5t < x 6 −υtt,
ρ3, −υtt < x 6 υ2t,
ρ2, υ2t < x 6 υst,
ρ1, x > υst,

(B10)

P(x, t) =



P5, x 6 −c5t,
ACR ρ(x, t)γCR + Ath ρ(x, t)γth , −c5t < x 6 −υtt,
P2 = P3, −υtt < x 6 υst,
P1, x > υst,

(B11)

υ(x, t) =



0, x 6 −c5t,
x
t +

√
ÃCR ρ(x, t)γCR−1 + Ãth ρ(x, t)γth−1, −c5t < x 6 −υtt,

υ2 = υ3, −υtt < x 6 υst,
0, x > υst.

(B12)

Here c5 =
√
γeff5P5/ρ5 is the effective speed of sound, υt is the speed of propagation of the rarefaction wave’s tail, and υs is the shock speed.

Matching the rarefaction wave equation to the density of the post-contact discontinuity yields υt:

υt = I(ρ3) − I(ρ5) +
√

ÃCR ρ
γCR−1
3 + Ãth ρ

γth−1
3 . (B13)

The density within the rarefaction regime is obtained by solving (numerically) the non-linear equation for a given (x, t), which is derived
from the rarefaction wave equation,

I[ρ(x, t)] − I(ρ5) +
x
t
+

√
ÃCR ρ(x, t)γCR−1 + Ãth ρ(x, t)γth−1 = 0. (B14)
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