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ABSTRACT

High-resolution X-ray observations have revealed cavities and ‘cold fronts’ with
sharp edges in temperature, density, and metallicity within galaxy clusters. Their pres-
ence poses a puzzle since these features are not expected to be hydrodynamically sta-
ble, or to remain sharp in the presence of diffusion. However, a moving core or bubble
in even a very weakly magnetized plasma necessarily sweeps up enough magnetic field
to build up a dynamically important sheath around the object; the layer’s strength is
set by a competition between ‘plowing up’ of field and field lines slipping around the
core, and to first order depends only on the ram pressure seen by the moving object.
We show that a two-dimensional approach to the problem as suggested in previous
literature is quite generally not possible as the field cannot slip around. In three di-
mensions, we show with analytic arguments and in numerical experiments, that this
magnetic layer modifies the dynamics of a plunging core, greatly modifies the effects
of hydrodynamic instabilities on, and thus mixing of, the core, modifies the geometry
of stripped material, and even slows the fall of the core through magnetic tension. We
derive an expression for the maximum magnetic field strengthand the thickness of the
layer, as well as for the opening angle of the magnetic wake. The morphology of the
magnetic draping layer implies the suppression of thermal conduction across the layer,
thus conserving strong temperature gradients over the contact surface. The intermit-
tent amplification of the magnetic field as well as the injection of MHD turbulence in
the wake of the core is identified to be due to vorticity generation within the magnetic
draping layer. These results have important consequences for understanding the phys-
ical properties and the complex gasdynamical processes of the intra-cluster medium,
and apply quite generally to motions through other magnetized environments,e.g.the
ISM.

Subject headings:hydrodynamics — magnetic fields — MHD — turbulence — galax-
ies: clusters: general — diffusion
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1. INTRODUCTION

Recent observations of very sharp ‘cold fronts’ in galaxy clusters raise unanswered questions
in the hydrodynamics of galaxy clusters (see for instance the review of Markevitch and Vikhlinin
2007), for such abrupt transitions are not expected to be stable against either hydrodynamical
motions or diffusion for extended periods of time.

It has been known for some decades in the space science community that an object moving
super-Alfvénically in a magnetized medium can very rapidly sweep up a significant magnetic layer
which is then ‘draped’ over the projectile (e.g., Bernikov and Semenov 1980). For concreteness
in discussing the process, we show in Fig. 1 a picture of this mechanism taken from one of our
simulations, which will be described in more detail in latersections.

There has been significant interest in applying this idea of magnetic draping in galaxy clusters
(e.g., Vikhlinin et al. 2001; Lyutikov 2006; Asai et al. 2004, 2005, 2006) as such a magnetic field
could naturally inhibit thermal conduction across a front (e.g., Ettori and Fabian 2000) allowing
it to remain sharp over dynamically long times. Although such draping has been explored in the
past, in the space sciences the resulting dynamics is relatively simpler, as generally the object
being draped is a solid body, with little interior dynamics of its own. However, in the case of for
instance a merger of gas-rich clusters, the hydrodynamics of the draped plunging core can also
be modified, with the strong magnetic layer providing some stabilization against instabilities that
would otherwise occur (Dursi 2007).

The effect of a strong draped magnetic layer could be even greater for underdense objects,
such as for bubbles moving through the intercluster medium,as seen at the centers of many cool-
core clusters (e.g., McNamara et al. 2005; Bı̂rzan et al. 2004). In this case, thebubble would be
quickly disrupted on rising absent some sort of support (e.g., Robinson et al. 2004). However, the
draping of a pre-existing magnetic field may strongly alter the dynamics and suppress hydrody-
namic instabilities, as seen recently in simulations (Ruszkowski et al. 2007b). The morphology of
the draped magnetic field may be able to suppress transport processes across the bubble interface
such as cosmic ray diffusion and heat conduction. This has important consequencesfor cosmic ray
confinement in these buoyantly rising bubbles and may explain re-energized radio ‘relic’ sources,
broad central abundance profiles of clusters, and the excitation of the Hα line in filaments trailing
behind bubbles (Ruszkowski et al. 2007a). Although the analytics and simulations we discuss here
focus on the case of an overdense ‘core’ moving in an externalfield, we expect the basic magnetic
dynamics to also extend to the case of an underdense bubble probably depending on the magnetic
energy density of the plasma.

Because we are interested here in the fundamentals of a basicprocess — that of the draping
of a field around an object and the resulting hydrodynamical effect on the object and its interaction
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with the external medium — we consider for this paper, in bothour analytic and computational
work, the simplest possible case; an overdense, non-self-gravitating ‘blob’ moving through a qui-
escent medium with a magnetic field uniform on the scales considered. (The term we will use for
this blob will depend on the situation; when discussing astrophysical implications, we will speak
of ‘cores’ or ‘bullets’, depending on the circumstances, or‘bubbles’ for underdense regions; for
the case of our numerical simulations, we will refer to ‘projectiles’, as the overdense fluid in the
simulations differs in structure from cores or bullets in lacking self gravity; in our analytic work
where the blob is a rigid sphere, we will refer to the blob as a sphere or spherical body.)

We further consider the case of the object moving subsonically; while the case of supersonic
motion is interesting and highly relevant, we anticipate that in the usual case where the bow shock
is well separated from the magnetic layer – that is where the standoff distance∆ ≈ ρ0

ρs
R∼ R, (where

R is the radius of the core,ρ0 is the ambient density, andρs is the shocked density) is much greater
than the magnetic layer thicknessl ≈ M−2

A R≪ R, (wherel is the approximate magnetized layer
thickness andMA the alfvénic Mach number, as discussed in more detail in thenext section) that
the arguments here will also hold, so we save the more complicated geometry and larger parameter
space of the compressible case for future work.

In §2 we give an overview of the physics of draping, putting our work in the context of
previous results; in§3 we describe our analytic and computational approaches; in§4 we compare
the results of our two approaches, and from the understanding gained there in§5 we describe
characteristics of draping; we discuss the effect of instabilities in§6, consider the limitations of
our results and consider applying them to later times in§7, and finally conclude in§8.

2. GENERAL PHYSICS OF MAGNETIC DRAPING

Previous work (e.g., Bernikov and Semenov 1980; Lyutikov 2006) has looked at thebasic
picture of magnetic draping in a simplified way in some detail; we summarize some of their key
results as well as our new insight into this problem here. In these works, the known potential
flow around a solid sphere is taken as an input, and a purely kinematic magnetic field, uniform
and perpendicular to the direction of motion, is added. The derivation of Bernikov and Semenov
(1980) is clarified, and a novel set of useful approximationsfor the resulting field near the solid
sphere are given, in Appendix A.

Because in this case the flow falls quickly to zero at the surface of the moving sphere, mag-
netic field rapidly ‘builds up’ around the projectile, and inthe kinematic limit eventually becomes
infinite. The high degree of symmetry along the stagnation line (the axis of symmetry of the ob-
ject pointing in the direction of motion) greatly simplifiesthe mathematics, and as shown in for
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Fig. 1.— A rendering of one of the three-dimensional simulations (referred to as Run F later in
this work) performed for this work, discussed in more detailin later sections but included here
to illustrate the physical picture. An overdense projectile is sent through a uniformly magnetized
medium, sweeping up magnetic field ahead of it. Plotted is a density isosurface, corresponding to
the mean density of the bullet, and some fiducial magnetic field lines. The cut-plane is coloured
by magnetic energy density, as are the field lines. The magnetic field is ‘draped’ into a thin layer
forming a bow wave, leaving turbulence in a wake behind the bullet. Magnetic field lines pile up
along the stagnation line of this initially axisymmetric bullet, while in the plane perpendicular to
the initial field, the field lines can slip around the bullet.

instance Lyutikov (2006), the magnetic field strength directly along the stagnation line is given by

|B|
ρ
=

B0

ρ0

1
√

1−
(

R
R+s

)3
(1)

whereB0 is the ambient magnetic field,ρ0 is the ambient density,R is the radius of the solid sphere
projectile, ands is the distance along the stagnation line from the surface ofthe sphere.

The analytic works cited, and presented here, considered purely incompressible flow; for our
simulations, we consider only very modest compressibility, with projectile motions through the
ambient fluid quite subsonic, so it suffices for the moment to consider in the external medium
ρ = ρ0. The fluid here is further considered to be infinitely conducting; however, the buildup of
magnetic field without a corresponding buildup of mass does not violate the ‘flux-freezing’ condi-
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Fig. 2.— Interactive 3D version of Figure 1 above, followingBarnes and Fluke (2007).

tion, as shown in the cartoon Fig. 3 as incoming fluid elementsare ‘squished’ along the sides of the
incoming sphere, so that the magnetic flux coming out the sides of the fluid element remains con-
stant, even as the concentration of field lines builds up along the stagnation line. Further increase
in magnetic energy comes from the stretching of field lines inthe direction of motion of the core.

In reality, of course, the magnetic field does back-react onto the flow, and the kinematic
potential flow solution fails for two reasons – buildup of a strong magnetic field layer (which
violates the kinematic assumption) and creation of vorticity (in conflict with the potential flow
assumptions).

The magnetic field should exert a significant back-reaction when the resulting magnetic pres-
sure is comparable to the ram pressure of the incoming material: B2/8π ∼ ρ0u2, whereu is the
speed of the core through the quiescent ambient fluid. The first place this will happen is along the
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Fig. 3.— A cartoon showing the distortion of incoming fluid elements and stretching of field lines
as a red spherical projectile moves upwards through the ambient medium.

stagnation line, which by symmetry will be the location of the largest magnetic energy density.
The layer of magnetic field with this magnitude is expected (from Eq. 1 and assumingl ≪ R) to
be of thickness

l =
1

6αM2
A

R (2)

whereMA = u/υA is the Alfvénic Mach number of the core,υ2
A = B2

0/4πρ0 is the ambient Alfvén
speed, andα is the constant of proportionality describing the maximum magnetic pressure in units
of the incoming ram pressure,B2

max/8π = αρ0u2. We will see thatα ≈ 2 and fiducial values for the
situations considered here will involveM2

A ≈ 3, so that a typical value forl will be approximately
R/36. Even such a very thin layer can have important effects, both in terms of suppressing thermal
conduction (Ettori and Fabian 2000) and hydrodynamic instabilities (Dursi 2007).

It should be noted here that when we use the Alfvénic Mach numberMA through this work
it should really be considered a dimensionless ratio of ram pressure to magnetic pressure (M2

A =

ρ0u2/(2PB0)), or at the least, some caution should be used when interpreting it as a ratio of velocities
(u/υA) as the velocities are oriented in different directions; in the work presented here, the velocity
of the draped object will always be completely orthogonal tothe ambient direction of propagation
of Alfvén waves. Thus there is an important sense in which our projectiles are always (infinitely)
super-Alfvénic, which is not captured in the ratioMA.

Sweeping up such a magnetic field will occur on a timescalet/tc ∼
√
α(l/R)MA ∼ (

√
αMA)−1,

wheretc = 2R/u is the projectile’s own crossing time. This result means that, because the mag-
netic layer is very thin, a strong field can be built up extremely quickly. Crucially, particularly
for the propagation of bubbles, the sweep-up time can be significantly smaller than a single cross-
ing time; this is relevant because a purely hydrodynamic bubble will generally self-disrupt into
a torus, or smaller fragments in a turbulent medium, in on order a crossing time (Robinson et al.
2004; Pavlovski et al. 2007).
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Fig. 4.— A cartoon showing the expected geometry of the draped magnetic field (blue) over the
object (red). Seen in the plane of the direction of the ambient field, panel (a), with the direction
of the ambient field shown, a clean bow wave is presented with awell-defined opening angle. In
the plane perpendicular to the ambient field, panel (b), the field lines can slip around the projectile,
and the flow would close back in on a stagnation line on the other side of the object except for
largely-2d vortical motions induced by instabilities at the magnetic interface. The geometry of the
flow in the region indicated by dashed box depends heavily on the final shape, and thus internal
structure, of the moving object.

This buildup of magnetic field will greatly effect the flow in the direction of the ambient field
lines, and the projectile will leave a magnetic bow wave behind it; by analogy with other similar
bow waves, we expect it to have an opening angle of tanθ ≈ υA/u. In the plane perpendicular
to the ambient magnetic field, however, the magnetic field will have a much less direct effect as
field lines can simply slip around the projectile and instabilities can occur. In the potential flow
simulation, the flow smoothly reattaches at the rear of the projectile; however, in this case, vortical
motions generated at the magnetic contact (where the magnetic pressure and magnetic tension
force is misaligned with the density gradient) and by instabilities at the magnetic interface (which
are not stabilized in this plane) detach the wake from the object, leaving largely two-dimensional
vortical motions along the field lines in this plane. The resulting expected geometry is shown in
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Fig. 5.— We compare the draped magnetic pressure and ram pressure in the plane that is parallel
(perpendicular) to the initial magnetic field in the top (bottom) panels with a logarithmic color
scale. In the parallel plane, the overpressure of the magnetic draping layer is only partly com-
pensated by a deficit in ram pressure and eventually is responsible for decelerating the core due
to magnetic tension. In the perpendicular plane, the ram pressure in the wake of the core attains
much higher values and the draping layer closes towards the symmetry axis unlike the parallel
plane where a nice opening cone forms. Shown here is a zoom-inon a small region of our compu-
tational domain.

a cartoon in Fig. 4 and for our simulation in Fig. 5. This showsthat the draping layer becomes
dynamically important and fills in the deficit of ram pressure. The sum of the magnetic and ram
pressure shows an over-pressure ahead of the core that leadsto a deceleration of the projectile.
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3. METHODOLOGY

In order to understand the full non-linear physics of magnetic draping around a dynamically
evolving dense projectile moving in a magnetized plasma we perform our analysis in two steps.
First, we analytically study the properties of the flow of an ideally conducting plasma with a
frozen-in magnetic field around a sphere to explore the characteristics of the magnetic field near
the surface of the body. To this end, we disregard any possible change in the flow pattern by means
of the back-reaction of the magnetic field. While the derivation of this problem can be found in
Appendix A, we summarize the key results in this section. In the second step, we compare this
analytical solution to an MHD adaptive mesh refinement simulation and explore it quantitatively.

3.1. Analytical solution

The potential flow solution for an incompressible flow arounda spherical body reads as

υ = er

(

R3

r3
− 1

)

ucosθ + eθ

(

R3

2r3
+ 1

)

usinθ, (3)

whereRdenotes the radius of the sphere andu is the speed of the core through the quiescent ambi-
ent fluid. Using this solution, we solve for the resulting frozen-in magnetic field while neglecting
its back-reaction onto the flow. For convenience, we show here the approximate solution which is
valid near the sphere,

Br =
2
3

B0

√

3s
R

sinθ
1+ cosθ

sinφ, (4)

Bθ = B0 sinφ

√

R
3s
, (5)

Bφ = B0 cosφ

√

R
3s
, (6)

where we introduced a radial coordinate from the surface of the sphere, namelys = r − R. These
approximate solutions uniformly describe the field near thesphere with respect to the angleθ. As
described in Appendix A, the energy density of the magnetic field forming in the wake behind the
body is predicted to diverge logarithmically. We point out that the validity of the potential flow
solution heavily relies on the smooth irrotational fluid solution where the magnetic back-reaction
is negligible. We will see that these assumptions are naturally violated in the wake.
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3.2. Numerical solution

3.2.1. Setup

The simulations presented in this paper are set up as shown inFig. 6. For clarity of under-
standing the physical picture, we consider only the magnetohydrodynamics (MHD); no external-
or self-gravity is considered, and we defer other physics such as self-consistent inclusion of ther-
mal conductivity to future work. In this report, we also consider only the magnetic field of the
external medium, and assume that it is uniform over the scales of interest here.

In the code units we consider here, the ambient material has adensity ofρ0 = 1, and a gas
pressureP = 1. The (unmagnetized) fiducial projectile has a radius that we vary in our runs
betweenR = 0.5 and 2, and a maximum density ofρmax = 750. With the density profile chosen
ρ(r) = ρmax(1 + cos(πr/R))/2, the mean density of the projectile is (1− 6/π2)ρmax/2 ≈ 0.2ρmax.
Both the ambient and projectile material are treated as ideal, perfectly conducting fluids with ratio
of specific heatsγ = 5/3, and so the adiabatic sound speed in the ambient medium is

√
5/3. The

pressure inside the projectile is chosen so that the material is initially in pressure equilibrium.

The projectile initial velocity is typically chosen to be 1/4, for a Mach number into the the
ambient medium of≈ 0.32. The simulation in the transverse directions range from [−4, 4], and
in the direction of motion of the projectile ranges from [0, 28] for an aspect ratio of 2:7; in most
of the simulations with projectiles larger than the fiducialR = 1, the domain size is increased
proportionately. The initial magnetic field strength can bedefined in terms ofα0 = ρu2/PB0; a
typical value used in these simulations is 25/4, or PB0 = 1/100. Periodic boundary conditions
are used in the directions perpendicular to the direction ofmotion, and zero-gradient ‘outflow’
conditions are used in thez direction. Experiments with different horizontal boundary conditions
produced no major differences in results.

The projectile fluid is initially tagged with a passive scalar, so that the material corresponding
to the projectile can be traced throughout the simulation.

3.2.2. Code Choice

As can be seen from analytic arguments, and is shown in some detail in §2, two features char-
acterize the problem of magnetic draping: the formation of anarrow strongly-magnetized layer,
and the relative simplicity of the dynamics, in that a potential flow solution with only magnetic
field kinematics captures much of the problem, lacking only the magnetic field back-reaction.

Because of the separation of scales (a relatively large object moving through an ambient
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Fig. 6.— Diagram showing the geometry of the simulations presented here. A spherical projectile
with a smooth density profileρmax(1 + cos(πr/R))/2 is sent in the+z direction with an initial
velocity υ through an ambient medium with densityρ0 and a uniform magnetic field pointed in
the+y direction. The magnetic field strength ‘turns on’ through the domain with a tanh-profile
in the direction of motion of the projectile, as indicated bythe shading of the box; this allows
us to start the core in an essentially field-free region and smoothly enter the magnetized region.
Periodic boundary conditions are used in the directions perpendicular to the direction of motion,
and zero-gradient ‘outflow’ conditions are used in thez direction.
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medium and a relatively small layer forming around it), the highest resolution requirements would
impose a large cost on the simulations if the resolution had to be everywhere uniform; indeed, it is
only a small portion of the simulation domain which needs to be resolved at the highest level. This
is especially true since the simulations we will need to perform are three-dimensional (as we will
see in the next sub-section, it is impossible to do meaningful simulations of magnetic draping in
two dimensions). Thus, a simulation code which allows some adaptivity of meshing is extremely
helpful for approaching this problem.

The relatively straightforward magnetic field dynamics means that, unlike in problems of (for
instance) studying the details of MHD turbulence, we do not require high-order finite difference
methods; this is particularly true because of the sharpnessof the thin layers and the large density
gradients in this problem. Instead, an MHD solver which can accurately deal with sharp gradients
is valued.

As a result of the importance of AMR for these simulations, the code we’ve chosen to per-
form these simulations with is the F code (Fryxell et al. 2000; Calder et al. 2002). F is
an adaptive-mesh general purpose astrophysical hydrodynamics code which is publicly available1.
The MHD solver we use here is a dimensionally-split second-order accurate 8-wave Godunov-
type solver which is described in more detail in Powell et al.(1999). The smallness of spu-
rious magnetic monopoles is ensured by a diffusion-type ‘div-B’ clean operation. This diffu-
sive cleaning approach can be problematic near strong shocks, where diffusion cannot operate
quickly enough; however, no such shocks occur in these simulations. F has been often
used for related problems such as hot and magnetized bubblesin the intercluster medium (e.g.,
Robinson et al. 2004; Pavlovski et al. 2007; Heinz et al. 2006; Roediger et al. 2006; Gardini 2006;
Pope et al. 2005; Dalla Vecchia et al. 2004; Heinz et al. 2003;Brüggen 2003; Brüggen and Kaiser
2002).

3.2.3. Parameters

Performing simulations of draping over a projectile with anexplicit hydrodynamics code (so
that compressibility effects will be included, for ease of comparison with later, supersonic, work)
with a finite resolution places some restrictions on the range of parameter space which can be
explored.

For simulating these cases with no leading shock, we requirethat the velocity of the pro-
jectile, u, be less than the sound speed in the ambient fluid – but to take areasonable number

1http://flash.uchicago.edu

http://flash.uchicago.edu
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of timesteps (avoiding computational expense and spuriousdiffusion) requires that the projectile
velocity remain of the order of the sound speed; thusu . cs, or ρ0u2

. γP, whereρ0 andP are
the unperturbed density and pressure of the ambient medium.For the hydrodynamics of draping
to be realistic, the magnetic pressure in the fluid must be significantly less than the gas pressure,
PB0 ≪ P. Finally, resolution requirements for resolving the thickness of the magnetic layer will
put some constraint on the thickness of the magnetic layerl > R/N from Eq. 2, withN being the
number of points which resolve the radius of the projectile;typically the size of the domain (if at
full resolution) will be 8N×8N×28N. This constraint, expressed in terms of the relevant pressures
(ram pressure and initial magnetic pressure)PB0 & 3α(ρ0u2)/N. Combined, these constraints give

γP & ρ0u
2 ≫ PB0 &

3αρ0u2

N
(7)

For a givenu – which is more or less arbitrary, fixed to be near the (arbitrary) sound speed – there
is thus a relatively narrow range of initial magnetic pressures in terms of the ram pressure of the
ambient material onto the projectile which can be efficiently simulated. As we will see,α ≈ 2, and
for the simulations presented here,N ∼ 32− 64, meaning we are constrained to study roughly that
part of parameter space whereρ0u2/PB0 ≈ 1− 10.

3.2.4. Two Dimensional Results

In two dimensions, the imposition of a symmetry greatly limits possible magnetic field ge-
ometries. In an axisymmetric geometry, the only meaningfuluniform field geometry is parallel to
the axis of symmetry, which in this case would also be the direction of motion of the projectile;
in this somewhat artificial case magnetic field could somewhat constrain a projectile (or a bubble;
Robinson et al. (2004)) but draping could not occur.

In planar symmetry, the field can have components out of the plane, in the plane parallel to
the direction of motion, or in the plane perpendicular to thedirection of motion. A component
out of the plane will only have the dynamical effect of adding to an effective gas pressure ((e.g.,
Chandrasekhar 1981)); the component along the direction ofmotion of the projectile cannot be
draped.

Previous work (e.g., Asai et al. 2005) has examined the case with two dimensionalplanar
symmetry with a magnetic field in the plane of the simulation and perpendicular to the direction of
motion of the projectile. However, in this case, field lines cannot cannot slip around the projectile,
and so as more and more magnetic field gets swept up by the projectile, magnetic tension grows
monotonically and linearly ahead of the projectile until the forces becomes comparable not only
to the ram pressure seen by the projectile of the ambient medium, but to the ram pressure of the
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projectile as seen by the ambient medium. At this point, the projectile trajectory is reversed. A
figure describing this is shown in Fig. 7, where the magnetic tension forces are seen to compress
the projectile (with mean density≈ 150 times that of the magnetized medium) before repelling it.

This outcome is hinted at in Fig. 4 of Asai et al. (2005), wherein 2d the magnetic energy
increases linearly and without bound, while the 3d models reach a maximum magnetic energy.

3.2.5. Three Dimensional Simulations

A listing of the eight main runs done for this work are shown inTable 3.2.5, and the basic
setup follows the discussion earlier. The parameters varied are the size of the projectile, its velocity,
and the strength of the ambient magnetic field. Other runs (the equivalent of run B but with half
the resolution, or with the same resolution but differing boundary conditions) were run to confirm
that the results did not change; they are not listed here.

Run R u Pb,0 ρu2/Pb,0 R/∆x
A 1

2
1
4

1
100 6.25 64

B 1 1
4

1
100 6.25 64

C 2 1
4

1
100 6.25 32

D 1 1
4

1
50 3.125 64

E 1
2

1
8

1
100 1.5625 32

F 1
2

1
4

1
100 6.25 32

G 1
2

1
2

1
100 25 32

H 2 1
4

1
250 15.625 128

Table 1: Details of 3-dimensional simulations run for this work. Simulations were run with an
ambient density and pressure of 1 in code units, andγ = 5/3. Simulations were run until maximum
magnetic field on stagnation line was approximately constant, typically 40-80 time units.

To show that these runs were producing results independent of resolution, the maximum mag-
netic field strength along the stagnation line for all the runs with the samePB0 andρu2

0 are plotted
versus time in Fig. 8. The maximum field strength is sensitiveto the resolution of the magnetic
field layer, but we see here that varying the resolution by a factor of two does not effect the results,
as the field layer is adequately resolved (but only marginally in the case ofR/∆x = 32). We also
see, as we’d expect from the discussions in§2, that the field strength in the layer does not depend
on the size of the core.

The magnetic layer in Run G is under-resolved; while the value of R/∆x is the same as other
runs, the velocity is higher, so that by Eq. 2 the layer is thinner. We include this run because it
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Fig. 7.— The above is a plot of the projectile position (calculated here by the maximum height
at which there is significant projectile material at any given time) over time in a two dimensional
draping simulation. At about time 75, the projectile is actually bounced back under the extremely
strong magnetic tension which in two dimensions must grow ahead of the projectile. The top panel
showsB2 in a closeup of the simulation domain at three representative times during the bounce,
with a white contour indicating the position of the originalprojectile material.
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R = 1 , R / $ x = 6 4 ( B )R = 0 . 5 , R / $ x = 3 2 ( A )R = 1 , R / $ x = 3 2R = 2 , R / $ x = 3 2 ( C )R = 0 . 5 , R / $ x = 6 4 ( F )
Fig. 8.— A plot of the maximum magnetic field strength along the stagnation line for runs with
three different projectile sizes and two different resolutions across the projectile, all with the same
velocity into the ambient medium and the same ambient magnetic field. Plotted is the maximum
magnitude of the magnetic field along the stagnation line vs the time (scaled to the crossing time
of the projectile). The projectile initially sits in an unmagnetized region. The maximum magnetic
field strength along the stagnation line is a sensitive measure of whether the structure of the draped
magnetic field is being resolved; we see here clear evidence that with the resolution used in this
simulation the draped layer is being adequately resolved. In the low-resolutionR = 1 simulation,
which also was run in a somewhat smaller box, towards the end of the run the draping layer begins
to leave the top of the simulation domain, leading to the sudden rapid drop in magnetic field
strength.
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demonstrates certain robustness of results; although the layer structure is not adequately resolved
at the stagnation point, other global properties of the magnetic layer (geometry and dynamical
effects) otherwise remain robust.

Indeed, one should be careful about what one means by ‘resolved’. This discussion should
not be taken to mean that the other simulations are in all respects resolved. In particular, as we
will see in§4 and§5, and as suggested by Dursi (2007), the flow around the bubblein thexzplane
(e.g., transverse to the initial magnetic field) is unstable to Kelvin-Helmholtz and Rayleigh-Taylor
instabilities, not stabilized by the presence of magnetic field. Since we have not prescribed any
small-scale dissipative physics in these simulations, these instabilities will never properly converge
with increased resolution (e.g., Calder et al. 2002) as new unstable scales are added. This can only
be corrected by adding small-scale physics,e.g. thermal diffusion; this is left for future work, as
the relevant microphysics is itself a current research problem Lyutikov (2007); Schekochihin et al.
(2007). While the rate of development of the instabilities and their properties is very important for
long-term mixing of the material of the moving object with that of the surrounding medium, we
restrict ourselves here to studying the development of the magnetic layer and its global properties.

Another thing worth noting in our runs is that for run E,M2
A = 1/2(ρu2/PB0) ≈ 0.78< 1; that

is, this run has the projectile moving sub-Alfvénically, if only marginally. However, because of the
field geometry, we will see that this makes essentially no difference for the draping. This is simply
because the Alfvén speed in the direction of motion of the projectile is zero – no component of the
magnetic field points in that direction. While the exact imposition of this condition in our initial
conditions is somewhat artificial in this case, it is always true that it is only the component of the
magnetic field that lies transverse to the direction of motion that will be draped.

4. COMPARISON OF THEORY AND SIMULATIONS

4.1. Magnetic field along the stagnation line

The first comparison we make is to the one-dimensional predictions made along the stagna-
tion line, for instance in Lyutikov (2006), where a very specific prediction is made for the ramp
up, with a particular functional form, of the magnetic field strength given in Eq. 1, and it is not
necessarily clear that such a prediction will hold when the projectile begins to deviate significantly
from spherical.

To make this comparison, we extract the magnetic field strength along the stagnation line for
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an output, and fit it to the equation

|B|
ρ
=

B0

ρ0

1
√

1−
(

R
(z−z0)

)3
(8)

whereB0, ρ0 are known, and the fit is for the parametersR, which would correspond to the radius
of the sphere, andz0, which would be the position of the centre of the sphere. Results for a typical
output are shown in Fig. 9. Not only do the fits well represent the behaviour magnetic field strength,
but they also suggest a physical interpretation for the functional forms interpretation even when the
projectile becomes significantly non-spherical;R becomes the radius of curvature of the working
surface of the projectile at the stagnation line. As the projectile becomes more distorted,R can
become significantly larger than the initial radius of the projectile; in this example, the expansion
is a relatively modest 15%.
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Fig. 9.— Shown is, left, the magnetic field along the stagnation line in the simulation (’+’) and a
fitted theory prediction, with the two fitting parameters being the position of the peak and a radius
giving a characteristic fall off of the field strength. On the right are cut-planes along and across the
initial magnetic field of the density of the projectile, witha circle of radius and position given by
the fit to the magnetic field structure, left. The radius givenby the fit corresponds with the radius of
curvature at the working surface of the projectile. Resultsare taken from run B at timet = 38.75;
results from other simulations and other times give similarly good fits.

4.2. Comparison of the velocity field

To compare the potential flow calculations, done in the frameof the spherical body, with
those of the numerical simulations, we transform the numerical simulations into the frame of the
projectile. Because the projectile slows down over time, wedo not use the initial velocityu0 for
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Fig. 10.— Comparison of the velocity field of the analytical solution in the kinematic approxima-
tion (top panels) with our numerical simulation (bottom panels) in the plane of the initial magnetic
field. While the velocity fields resemble each other very wellin the upper half-space, there are
distinct differences in the lower half-space. These are due to the non-linear back-reaction of the
dynamically important magnetic field in the draping layer onthe MHD flow that generates vorticity
in the wake of the projectile (cf.§5.4). Shown here and in the next figures is a zoom-in on a small
region of our computational domain that extends up to 112 length units and is four times larger in
x andy direction. Note that we symmetrized the color map of theυx-component in order not to be
dominated by one slightly larger eddy.
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Fig. 11.— Comparison of the ram pressure in our numerical simulation (left panel) with the an-
alytical solution in the kinematic approximation (right panel). Ahead of the projectile, the ram
pressure resembles an exact potential flow behavior up to thedraping layer which can be seen as a
black layer around the projectile with a deficit of hydrodynamical pressure. Non-linear magnetic
back-reaction of the draping layer causes the flow to depart from the potential flow solution and to
develop vorticity.
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this transformation, but measure the instantaneous mass-weighted velocity of the projectile, by
making use of the fact that we are tracking the fluid that initially resided in the projectile by use of
an advected passive scalar,a. Thus we measure the instantaneous velocity of the projectile as

u =
〈ρaυz〉
〈ρa〉 . (9)

The top panels of Fig. 10 show the analytical solution of the velocity field around the spher-
ical body with radiusR in the kinematic approximation. For convenience and to simplify the
comparison to the magnetic field visualization, we show the Cartesian components of the velocity
field. At infinity, the fluid is characterized by a uniform velocity υ = −ez u. The quadrupolar
flow structure results from the fluid decelerating towards the stagnation line, the successive ac-
celeration around the sphere untilθ = π/2 and mirroring this behavior in the lower half-plane by
symmetry. The bottom panels of Fig. 10 show the numerical solution of the velocity field around
an initially spherical projectile that deformed in response to the non-linear evolution of the mag-
netized plasma. The white line reflects the 0.9 contour of the‘projectile fluid’ and corresponds to
an iso-density contour.2 The quadrupolar flow structure in the upper half-plane resembles nicely
the analytic potential flow solution. As the flow approaches the projectile and surrounds it, there
are important differences visible. In the analytical solution, the flow accelerates forθ ≤ π/2 and
decelerates for larger anglesθ. In the numerical solution, the magnetic draping layer is stationary
with respect to the projectile. This causes the flow almost comes to rest in the magnetic draping
layer. The back-reaction of the magnetic draping layer on the flow casts a ‘shadow’ on the wake
of the projectile. It prevents the flow to converge towards the symmetry axis and suppresses the
deceleration of the flow. Instead, vorticity is generated atthe draping layer which will be studied
in detail in§5.4. The comparison of the ram pressure in Fig. 11 underpins this argument.

4.3. Comparison of the magnetic field

It is instructive to compare the analytic solution of the frozen-in magnetic field in the kine-
matic approximation to the numerical solution in the planesthat are parallel and perpendicular to
the initial magnetic field. We compare the individual Cartesian components of the field (Fig. 12
and 13) as well as the magnetic energy density in Fig. 14. Notethat we only show a Taylor expan-
sion of the highly complex exact solution as derived in Appendix A. Strictly, this solution applies
only near the sphere with an accuracy toO((r − R)3/2) as well as for flow lines that have small

2Note that the apparent grid structure seen in the upper part of our simulatedυx-component is an artifact of our
plotting routine as well as small grid noise. The interpolation scheme of the plotting routine falsely interpolates a
smooth velocity gradient with an entire AMR block while it actually drops quickly to the velocity value at infinity.
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Fig. 12.— Comparison of the magnetic field in our numerical simulation (bottom panels) with
the Taylor expansion of the analytical solution in the kinematic approximation that strictly applies
only near the sphere (top panels). We show the Cartesian components (left to right,x, y, z) of the
magnetic field in the plane that is parallel to the initial magnetic field. There is a nice agreement
between both solutions in the upper half-space, while thereare again distinct differences in the
lower half-space. The magnetic shoulders behind the projectile can be identified that prevents the
draping layer from contracting towards the symmetry axis. In addition, MHD turbulence starts to
develop in the wake of the projectile.
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Initial magnetic field out of the plane:
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Fig. 13.— Same as previous figure, but in the the plane that is perpendicular to the initial magnetic
field. Shown is, left to right, thex, y, z components. As expected from our analytic solutions,
the draping layer forms by piling up magnetic field lines ahead of the projectile. The irregular
magnetic field in the wake is generated by the vorticity that is absent by definition in our potential
flow solution.
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Initial magnetic field out of the plane:
B2 around draped projectile
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Fig. 14.— Comparison of the magnetic energy density in our numerical simulation (left panel)
with the analytical solution in the kinematic approximation (right panel). The top (bottom) panels
show the plane that is parallel (perpendicular) to the initial magnetic field. In the analytical solu-
tion there is a narrow magnetic layer draped around the spherical body, while in our simulations
the draping layer peels off behind the projectile due to vorticity generation. The geometry of the
magnetic draping layer in the upper half-plane is very similar in both planes suggesting there an
approximately spherical symmetry. In the wake of the projectile, the draping layer forms a char-
acteristic opening angle while the field lines can swipe around the projectile in the perpendicular
plane and the draping layer closes towards the symmetry axis.
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impact parameters initially at infinity. Using a different expansion, we verified that the general
solution has the appropriate behavior of the homogeneous magnetic field at infinity in the upper
half-space pointing towards the positivey-coordinate axis, i.e. rightwards in Fig. 12. As expected,
they-component of the magnetic field increases as we approach thesphere since the field lines are
moving closer to each other. In the immediate vicinity of thesphere, theB field attains a dipolar
z-component as the field lines are carried around the sphere with the fluid and causes them to bend
in reaction to the ram pressure of the sphere. As pointed out by Bernikov and Semenov (1980) the
magnetic lines of force that end at the stagnation point are strongly elongated as the swipe around
the sphere parallel to the line of flow reaching from the stagnation point into the rear. This leads
to the unphysical increase of the magnetic field as it approaches the line of symmetry in the wake
and eventually to a logarithmic divergence of the magnetic energy density there.

In the upper half-plane, the analytic solution matches the numerical one closely. Interestingly,
in the region behind the deformed projectile, amagnetic draping conedevelops that stems from the
dynamically important draping layer that has swiped aroundthe sphere and advected downstream
the projectile. In addition, the magnetic pressure in the wake of the projectile is also amplified by a
moderate factor of roughly five (cf. Fig. 14). We will show further down, that this field is generated
together with vorticity in the draping layer. In theparallel planeto the initial magnetic field, the
magnetic draping cone causes the stationary flow not to converge towards the symmetry axis and
protects the region in the wake against the increase of the magnetic energy without bounds. The nu-
merical solution can qualitatively be obtained by remapping the analytic solution forθ > π/2 onto
the coordinate along the magnetic draping cone. In theperpendicular planeto the initial magnetic
field, there is even better agreement between the analytic and the numerical solution. The magnetic
field in that plane lies primarily in its initialy-direction. This behaviour can easily be understood in
terms of the field lines sweeping around the sphere in a laminar flow. Numerically, we simulate the
response of the geometry of the projectile to the hydrodynamics. Vortices in the wake deform the
projectile leading to a cap-geometry and a mushroom shape ofthey-component of the magnetic
field. This implies that the flow lines detach from the dense material of the projectile generating
furthermore vorticity and MHD turbulence in the wake. The turbulent field mixes the Cartesian
components which can be nicely seen in the Fig. 13. The magnetic pressure summarizes our results
nicely showing the draping cone in the parallel plane and themushroom shaped magnetic energy
density in the plane perpendicular to that (cf. Fig. 11). Note that we choose the same color scale
as derived from the simulations which leads to a saturation of the magnetic energy density in the
kinematic approximation at the contact of the spherical body and on the axis in the wake.
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5. CHARACTERISTICS OF MAGNETIC DRAPING

5.1. Field strength in draping layer

The kinematic solution predicts the magnetic pressure diverges at the stagnation point, which
is clearly unphysical. From our discussions in§2 and§4, we expect that the magnetic pressure
in the draping layer should be on orderρu2, at which point the magnetic back-reaction begins
to strongly effect the flow; to first order there is no dependence on other parameters, such as
background magnetic field. One would expect, too, from looking at figures such as Fig. 5 that
the maximum magnetic pressure should exceed the ram pressure by some factor, as the magnetic
pressure distribution at the head of the drape is responsible for redirecting the flow in the plane of
the draping.

We can test this by plotting, for all our runs, the steady maximum magnetic pressure at the
stagnation line (the field quantity that is easiest to consistently characterize) versus the mean ram
pressure seen by the projectile,ρ〈u〉2, where〈u〉 is the mean of the projectile velocity (calculated
as in by Eqn. 9) during the run, andρ is the ambient density. The plot is shown in Fig. 15 and
verifies our expectation.

5.2. Opening Angle

The magnetic bow wave behind the projectile is expected to propagate transversely away from
the projectile atυA along the field lines, and of course to fall behind the projectile at velocityu.
This suggests a natural opening angle in the plane along the magnetic field, tanθ = υA/u. That the
direction of the scaling is correct can be determined by qualitative inspection of a sequence of 3d
renderings of simulation outputs as the velocity changes; e.g., Figs. 16,1,18 foru = 1/8, 1/4, 1/2
andυA fixed at 0.1414.

Although the field lines are stretched during the draping, itis the initialυA that is relevant,
as the stretching of the field lines in thez-direction do not effect the propagation speed in they-
direction. For instance, consider aẑ-velocity shear iny, υ = (0, 0, y/τ), with B = (0, B0, 0). The
induction equation gives uṡB = ∇ × (υ × B) = (0, 0, B0/τ), so that the magnetic field is only
changed in thêz-direction; thusυAy = υA · ŷ = υAB̂ · ŷ = (|B|/

√

4πρ)(B · ŷ)/|B| = By/
√

4πρ = υA,0

One can quantify the agreement with this scaling by measuring the opening angle for the
drapes in our simulations. The maxima of magnetic field on either side of the stagnation line in
they− z plane are found and tabulated along thez direction of the simulations, and – omitting the
regions above or near the projectile itself, and the region below which the drape becomes weaker
than transient features in the wake – lines are fit, and the slope gives the (half-)opening angle.
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Fig. 15.— A plot for the 3d runs presented here showing the magnetic pressure on the stagnation
line once a steady value had been achieved for this quantity as a function of the mean ram pressure
(ρ〈u〉2) as seen by the projectile. Omitted is run G, for which the magnetic layer was under-resolved
and thus the maximum magnetic field strength in the layer falls much lower; however, as we will
see, even this under-resolution does not strongly effect other global properties of the magnetic
drape.
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The results of the fitting procedure are shown for the same three simulations in Fig. 20, and a
scatter plot for all are runs are given in Fig. 21. The scatterfor this quantity, and agreement with
the prediction, is somewhat worse than for the other quantities we consider, possibly because the
large-scale geometry of the draping is more sensitive to theboundaries and the finite size of the
domain than other, more local, quantities.

5.3. Deceleration by magnetic tension

In the scatter plots presented above, we use the mean velocity 〈u〉 of the projectile over time,
because there is a measurable deceleration of the projectile. An example, for run F, is shown in
Fig. 22. Before the projectile encounters the magnetic fieldat z = 10, hydrodynamic drag – in
principle either (numerical) viscous drag or the the drag force caused by the creation of a turbulent
wake – is all that can play a role, and for the simulations presented here, it is the second which
dominates. The well-known form for the drag on a sphere isFD = 1/2ρu2ACD, or in terms of a
deceleration,

u̇D = −
3
8
ρu2

〈ρp〉R
CD (10)

whereCD is the drag coefficient, experimentally known to be between 0.07− 0.5, with 0.5 for a
turbulent wake,ρp is the density andA is the cross-sectional area of the projectile in the direction
of motion.

However, once the magnetized region is reached and a magnetic layer built up, then another
force acts on the projectile – the magnetic tension from the stretched field-lines. This transition can
be seen in Fig. 22 for run F; other runs behave similarly. We see that the deceleration caused by
the magnetic field draping is actually significantly stronger than the hydrodynamic draping. This
magnetic tension force isFT = B2/(4πR); we know the magnetic strength in the draping layer
scales asρu2 (§5.1) and so we can write the deceleration as

u̇T = −
3
8
ρu2

〈ρp〉R
CG (11)

whereCG is a geometric term taking into account the fact that both themagnetic field strength
and radius of curvature of the field lines vary over the ‘cap’ of the projectile, and we have chosen
to normalizeCG so that Eqns. 10 and 11 have the same numeric prefactor for convenience in
comparison. We can test this scaling, and at the same time empirically obtainCG, by plotting the
decelerations for our different runs, as is done in Fig. 23; we findCG ≈ 1.87.

It is interesting to note first that the two deceleration terms scale in the same way, so that
their relative importance remains constant; and that said ordering is such that the magnetic tension
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deceleration is always more important, by a factor of≈ 3.7, for the case of highly turbulent (Re≈
1000) hydrodynamic drag ofCD = 0.5. In the case of our simulations, we do not have the resolution
to achieve that highly turbulent state. The effective Reynolds number of our simulations can be
estimated by examining the hydrodynamic drag, for example in the first 20 time units of Fig. 23.
This does not quite give enough data to make a good reading, sowe ran four simulations with the
fiducial parameters (R= 1,∆x/R= 32), varyingu, (0.125, 0.25, 0.5, 0.75) and outputting onlyu(t).
An excellent fit to the data is provided byCD ≈ 0.77, which corresponds to (see,e.g., Fig. 34 in
IV,§45 of Landau and Lifshitz (1987)) a Re of just under 200; even in this more viscous case, the
magnetic draping deceleration exceeds the hydrodynamic deceleration by a factor of 2.5.

5.4. Vorticity generation

The flow pattern around a moving body looks as follows for large Reynolds numbers. The
flow is laminar and reflects a potential flow solution in almostthe entire volume except for a
narrow boundary layer and the turbulent wake. The characteristic drag coefficient decreases as
the Reynolds number increases (Landau and Lifshitz 1987). This turbulent wake exerts a drag on
the body that decelerates it as described in§5.3 and shown in Fig. 22. This figure shows two
distinctive deceleration regimes where only the turbulentdrag is present in the initial phase, where
the magnetic field has not been switched on, and a magnetic tension dominated drag phase at later
times.

An independent argument is provided by Fig. 24. In the pure hydrodynamic case, we do
not expect any statistical anisotropy of the flow pattern around the moving body. However in
our MHD flow, there is an unambiguous anisotropy visible for the stream lines. In the plane
perpendicular to the ambient initial magnetic field, the fluid flows smoothly over the projectile
with only mild perturbations for streamlines near the boundary layer. In the plane of the initial
magnetic field where the draping cone forms, the stream linesare bend towards the turbulent wake
and experience the generation of vorticityω = ∇×υ. The magnitude of vorticity in our simulations
is shown in Fig. 26. Vorticity is generated as the fluid entersthe region in the draping layer where
magnetic field lines are slipping around the projectile, in particular in the plane transverse to the
initial magnetic field. The resulting velocity field can not any more be described by the potential
flow solution which causes the analytical solution to break down at the magnetic draping layer and
behind the magnetic shoulder. The vorticity in the wake suggests the presence of MHD turbulence
that might be responsible for stretching and amplifying themagnetic field furthermore.

We are interested how exactly the topology of the magnetic draping layer can be responsible
for generating vorticity into an initially vorticity-freeflow pattern. The equation of motion for an
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inviscid and magnetized fluid without gravity may be writtenin the form

ρ
dυ

dt
= ρ
∂υ

∂t
+ ρ (υ · ∇) υ = −∇P+ j × B = −∇

(

P+
B2

8π

)

+
1
4π

(B · ∇) B, (12)

where we define the convective derivative in the first step andapplied∇ ×B = 4π j in the last step.
The first term on the right-hand side describes the potentialforce due to the sum of the isotropic
thermal pressureP and magnetic pressureB2/(8π), while the second term describes the magnetic
tension force. Applying the curl operator to Eqn. (12) and identifying the vorticityω = ∇ × υ, we
arrive at the equation governing the evolution of vorticity:

d
dt

(

ω

ρ

)

=

(

ω

ρ
· ∇

)

υ +
1

4π ρ2
∇ × (B · ∇) B +

1
ρ3
∇ρ ×

[

∇
(

P+
B2

8π

)

− 1
4π

(B · ∇) B
]

. (13)

This equation describes the condition that the vorticity is‘frozen’ in the plasma if the last two
terms are negligible.3 Vorticity is necessarily generated, if the curl of the forcefield generated by
magnetic tension does not vanish (referred to ascurl-tension term). Another source of vorticity is
given by a flow where∇ρ is not aligned with the potential force due to thermal or magnetic pressure
as well as the magnetic tension force (referred to asbaroclinic-type term). Figure 27 studies the
relative importance of both source terms. Due to the large density gradient, the baroclinic-type
term dominates the vorticity injection in the magnetic draping layer. The curl of the magnetic
tension force seems to be the dominant injection mechanism in the wake. We caution the reader
that we cannot quantify the level of vorticity injected by means of a turbulent boundary layer and
refer to our phenomenological argument at the beginning of this section that clearly indicates the
importance of the magnetic draping layer for the vorticity injection.

6. INSTABILITIES

The magnetic tension force as well as the magnetic layer geometry has implications for the
instabilities experienced by the projectile. In§2 and§5, we saw that the flow in the plane paral-
lel to the initial magnetic field is stable and the hydrodynamic instabilities are suppressed by the

3This can be seen by considering the evolution of an infinitesimal vectorδx connecting two neighboring fluid
parcels, as the fluid moves with the velocity field. The point initially at positionx at timet will be displaced to the
positionx + υ(x)∆t at timet + ∆t. The neighboring point initially atx + δx at timet will be displaced to the position
x + δx + υ(x + δx)∆t at timet + ∆t. Hence this ‘frozen’ connecting line evolves according to

d
dt

(δx) = (δx · ∇)υ. (14)

which resembles Eqn. (13) if we neglect the last two terms andidentify δx = εω/ρ initially, whereε > 0 is a small
quantity. Since the differential equation is true for any time, the same relation will hold for all times for the vorticity.
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magnetic draping layer (suggested by Dursi 2007). In contrast, the flow around the projectile in
the plane transverse to the initial magnetic field is unstable to Kelvin-Helmholtz and Rayleigh-
Taylor instabilities, not stabilized by the presence of magnetic field. We will show that the Kelvin-
Helmholtz instability remains stronger and leads to gradual disruption of the projectile, although
the impact of the Rayleigh Taylor instability in our MHD caseis greater than the purely hydrody-
namical case because of the greater deceleration. For an homogeneous initial magnetic field the
induced vorticity remains largely two-dimensional.

The projectile is being decelerated by magnetic tension as shown in §5.3. This makes the
projectile subject toRayleigh-Taylor instabilitieswith a characteristic frequency (Chandrasekhar
1981)

ω2
RT =

〈ρp〉 − ρ0

〈ρp〉 + ρ0
u̇T k ≃ 3

8
2π ρ0 CG

〈ρp〉
u2

R2

k
k0
≥ 3π ρ0 CG

4〈ρp〉
u2

R2
, (15)

wherek0 = 2π/R defines the the smallest wavenumber of the system and we work in the limit
where〈ρp〉 ≫ ρ0.

The flow around the projectile causes a shear at the interfaceof the projectile that can get non-
linear by means of theKelvin-Helmholtz instabilityand has the characteristic frequency (Chandrasekhar
1981)

ωKH =

√

〈ρp〉 ρ0

〈ρp〉 + ρ0
∆u k≃ 3π u

R

√

ρ0

〈ρp〉
k
k0
≥ 3π u

R

√

ρ0

〈ρp〉
. (16)

Here we neglect the self-gravity of the projectile and applythe maximal velocity shear from the
potential flow solution around a spherical body,υ = 3/2ueθ, which is valid atr = R andθ = π/2.

Which instability will eventually dominate and set the relevant timescale? It turns out that the
ratio of the characteristic frequencies is independent of the projectile properties and only depends
on the wave number of the considered mode,

ω2
KH

ω2
RT

≃ 12π
CG

k
k0
≥ 12π

CG
≃ 20. (17)

where from the previous section,CG ≈ 1.87 takes into account the fact that both the magnetic field
strength and radius of curvature of the field lines vary over the ‘cap’ of the projectile. The largest
length scale of the problem is given by the size of the projectile in the direction of motion and sets
the largest timescale of the problem,

TKH

TRT
≃ 1

2

√

CG k0

3π k
≤ 0.22. (18)

Thus, we expect the Kelvin-Helmholtz instability in the plane transverse to the initial magnetic field
to be responsible for the eventual disintegration of the projectile. These considerations allow us to
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estimate the associated time- and length-scale on which we expect to see the projectile material in
the boundary layer to become unstable,

LKH = TKH u =
2π u
ωKH

≃ 2R
3

√

〈ρp〉
ρ0

k0

k
≤ 2R

3

√

〈ρp〉
ρ0
≃ 16.3 (19)

in terms of the length units in the code. This explains nicelythe instability features in the wake of
Fig. 28 that appear every 10 length units and indicate that a mode that is slightly smaller than the
projectile dimension is becoming unstable and leads to a deposition of projectile material.

7. DISCUSSION AND LIMITATIONS

We have investigated in detail the rapid formation of a magnetic draping layer over a projec-
tile, and examined some of the immediate dynamical consequences. It is worth considering how
well these insights continue to hold over longer timescales, and whether the draped field can offer
much protection over significant distances.

While details of how mixing might take place will depend sensitively on the structure of
the object in question, one requirement for a projectile to mix significantly into the surrounding
medium will be for the projectile to sweep past on order its own mass in the ambient medium; only
then will there have been enough shear to significantly disrupt the moving object. This requires
the projectile to traverse a distanceL ∼ (〈ρp〉/ρ0)R. For the runs considered in previous sections,
modeling this while continuing to resolve the magnetic draping layer would require extremely
costly simulations, even with AMR.

However, at the cost of complicating direct comparison withprevious simulations, one can
gain some insight into what will happen over longer times by considering those regions of param-
eter space which make the computation more feasible. In particular, for this section we perform
an analog to run B made with a maximum projectile density reduced by a factor of 10, so that
〈ρp〉/ρ0 ≈ 15. With this reduced density contrast, mixing happens moreeasily and the projectile
sweeps past its own mass in a computationally approachable time. Results from this run are shown
in Fig 29, at a time when the projectile has approximately swept through its own mass of ambient
medium.

In this run, the same features are seen as in previous sections; the development of the strong
narrow magnetic field layer, the opening angle∼ υA/u, and the large-scale vorticity oriented pri-
marily along field lines generated in the wake. However, overlong times the anisotropy imposed by
the direction preferred by the magnetic field, and as suggested in Fig.4, becomes much more pro-
nounced, as the projectile becomes extremely aspherical; it is greatly flattened along the direction
of the magnetic field lines.
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The long-time distortion of the projectile by the magnetic field – which, again, is initially
strongly subthermal (β ∼ 100) and a factor of 6 less than the ram pressure seen by the projectile
– is particularly evident when seen compared to the results of the same projectile moving in the
absence of a magnetic field, as in Fig. 30. In this case, density is plotted in two cut planes at
the same time for the simulation with and without magnetic field. Three dimensional interactive
density isosurfaces are also plotted in Fig. 31.

Several features are immediately apparent. The first is the significantly different density dis-
tributions between the two scenarios. The densest materialis more contained in the case with
magnetic draping, but in the plane along the magnetic field, material which is stripped off is more
extended, piling up along the draped magnetic contact. The plane across the initial magnetic
field lines is even more interesting; here the stripped material is much more contained, even with
the presence of the Kelvin-Helmholtz instability. Here stripped material stays almost completely
within a cylinder of radiusR= 1, the initial radius of the projectile, along the path of theprojectile.

Also evident is that, although the two simulations are examined at the same time, the projectile
without magnetic fields is significantly further ahead in thedomain than the simulation with the
magnetic field; this is the result of the deceleration demonstrated in§ 5.3.

In this work we have made several simplifying assumptions toallow us to begin to under-
stand the process of the draping. We have neglected consideration of the interior structure of the
projectile, by for instance omitting any self gravity whichwould be relevant for a minor merger.
This will effect the rate of stripping of material off of the core, and thus long-term evolution, but
is unlikely to directly effect the draping process itself. We have also not considered any gradient
of properties in the medium the projectile moves through; while this again would effect long term
behaviour, the set-up of the magnetic draping layer occurs so quickly that it is unlikely that any
background quantities would greatly change over the small distances involved.

We have also omitted explicit treatment of dissipative microphysics Lyutikov (2007); Schekochihin et al.
(2007). Following up with simulations which included theseeffects self-consistency will be im-
portant for examining in detail the resulting sharpness of the cold fronts (as done, for example,
by Asai et al. (2006)) and the different dissipation physics may also well effect the long time be-
haviour of mixing. However, the initial draping layer is setup, and its properties are determined,
on timescales much faster than the dissipative timescales,so these results will be unaffected.

We have also considered here only subsonic motions through the ambient medium. Many
of the astrophysical processes where draping is relevant can be supersonic, and so an important
next step is to consider this case, where a bow shock will occur before the magnetic draping layer.
While the bow shock will almost certainly be well separated from the magnetic draping layer, the
shock will affect both the geometry of the flow onto the draping layer and greatly amplify the



– 34 –

importance of the thermal pressure. On the other hand, behind the bow shock the flow will be
subsonic, so much of the discussion here will directly apply. Similar detailed studies of draping in
the supersonic case will be considered in future work. Perhaps more seriously, we have considered
here only the simplest case of an initial magnetic field uniform over the scales of interest. It will
be necessary to consider more realistic field geometries. This, too, is being considered in future
work, and will require much more careful treatment of the detailed magnetic structure of the field.

8. CONCLUSION

This work aims at understanding the morphology and the dynamical properties of magnetic
draping to set a solid ground for its astrophysical applications. A core, bullet, or bubble that moves
super-alfvénically in even a very weakly magnetized plasma necessarily sweeps up enough mag-
netic field to build up a dynamically important sheath aroundthe object; the layer’s strength is set
by a competition between ‘plowing up’ of field and field lines slipping around the core, and to first
order depends only on the ram pressure seen by the moving object. This layer is developed very
quickly, potentially faster than a crossing time of the projectile. The energy density in the draped
layer, at its maximum, exceeds the ram pressure by a factor oftwo, necessary to anisotropically
redirect the flow. This effect has important implications for galaxy cluster physics as it suppresses
hydrodynamic instabilities at the interface of AGN bubbles. It naturally explains so-called ‘cold
fronts’ by keeping temperature and density interfaces of merging cores sharp that would otherwise
be smoothed out by thermal conduction and diffusion. Other important astrophysical implications
of this effect include draping of the solar wind magnetic field at the bowshock of the Earth as well
as pulsar wind nebulae.

In this paper, we compare a simplified analytical solution ofthe problem that neglects the
back-reaction of the dynamically important magnetic field on the potential flow with a high-
resolution AMR simulation and find very good agreement between both solutions in the region
ahead of the bubble. Non-linear back-reaction of the magnetic field in the draping layer necessar-
ily implies the generation of vorticity in the flow. The induced vortices in the wake deform the core
hydrodynamically and eventually cause the magnetic sheathto peel off. There is a strong indica-
tion that the vorticity generation is responsible for the intermittent amplification and stretching of
the magnetic fields as well as the injection of MHD turbulencein the wake of the core. If this with-
stands further critical analysis, this mechanism might have profound astrophysical implications for
the amplification and generation of large-scale magnetic fields in the inter-galactic medium.

The magnetic layer, once fully developed, has a characteristic geometry which we have
shown here to be roughly conical in the plane along the magnetic field lines, with opening angle
θ ∼ arctan(υA/u), and remains contained in the perpendicular plane, with the Kelvin-Helmholtz
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instability acting on the object interface. The magnetic tension in the layer significantly decelerates
the object, dominating over any hydrodynamic drag.

Over long times, the anisotropy imposed by the field – despitethe fact that the field is initially
highly subthermal and with an energy density significantly less than the kinetic energy of the
ambient medium in the frame as the projectile – can significantly distort the projectile, keeping
it significantly more constrained in the plane perpendicular to the ambient field, and keeping any
stripped material inside the drape.

If a magnetic draping layer such as generated in these simulations were astrophysically ob-
servable, it would be possible to get independent measurements of the magnetic field strength in
the ambient medium provided the local gas density and the velocity of the moving object is known.
The tools are both the opening angle of the drape and the thickness of the magnetic field layer –
but not through the layer’s field strength. Similarly, for a known magnetic field strength, we would
have an alternate measure of the velocity of the projectile.
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and M. Zingale, Y. Lithwick, and M. Lyutikov for helpful suggestions on this manuscript. The
authors gratefully acknowledge the financial support of theNational Science and Engineering Re-
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Chicago. All computations were performed on CITA’s McKenzie and Sunnyvale clusters which
are funded by the Canada Foundation for Innovation, the Ontario Innovation Trust, and the Ontario
Research Fund. 3D renderings were performed with OpenDX. This work made use of NASA’s As-
trophysical Data System.
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Fig. 16.— As in Fig. 1, but for Run E; that is, with the projectile’s velocity reduced by a factor of
one-half (so thatu = 0.125 in code units).
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Fig. 17.— Interactive 3D version of Figure 16 above.
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Fig. 18.— As in Fig. 1, but for run G; that is, with the projectile’s velocity increased by a factor of
two (so thatu = 0.5 in code units).
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Fig. 19.— Interactive 3D version of Figure 18 above.
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Fig. 20.— Plot of magnetic energy density in they,z plane for simulations withR = 0.5 and, left
to right,u = 0.125, 0.25, 0.5; shown with black lines are the fitted opening angles of the magnetic
draping layer, omitting the region including the material from the projectile. The fit slopes (e.g.,
tanθ) are 1.24, 0.515, 0.261, and those predicted byυA0/〈u〉 are 1.13, 0.566, 0.283; this agreement
is within 10%.



– 41 –

0 . 2 0 . 4 0 . 6 0 . 8 1 1 . 20 . 20 . 40 . 60 . 8 11 . 2
t anθ

Fig. 21.— A plot for the 3d runs presented here showing the tangent of the fit opening angles of
the drape in theyzplane versusvA/〈u〉. Data from all runs are shown.
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Fig. 22.— A plot showing, with squares, the evolution of projectile velocity (calculated as in by
Eqn.9) over time for run F. Note that the projectile encounters the magnetic field at time 20 in these
units. Plotted as a thin line is the best fit deceleration, ˙u = −5.98× 10−4, for times greater than 20.
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Fig. 23.— A plot for the 3d runs presented here showing the measured deceleration of the projectile
versus the functional form we expect it to take, proportional to 3/8ρu2/(〈ρp〉R), where〈ρp〉 is the
mean density of the projectile (in code units,≈ 150). Because the magnetic field strength and
curvature varies over the draped layer, there is an undetermined geometrical factor in the magnitude
of the deceleration; we find it here to be approximately 1.87.
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Fig. 24.— Plot of streamlines over theR = 2 projectile through aβ = 100 medium. Streamlines
are calculated in the frame of the mean velocity of the projectile. The streamlines are coloured by
the magnitude of velocity, and the plane is once again colored by magnetic energy density. At this
time, no instabilities have developed in the plane perpendicular to the ambient magnetic field, so
fluid flows smoothly over the projectile in this plane; however, fluid traveling close to the other
plane experience a gain of vorticity.
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Fig. 25.— Interactive 3D version of Figure 24 above.
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Fig. 26.— The magnitude of vorticity is shown in color in the plane parallel and transverse to the
initial magnetic field (left and right panel). The dotted lines represent iso-density contours. The
magnetic energy density is shown in the contour plot. Vorticity in the draping layer is generated
predominantly by a baroclinic-type term whereas the vorticity injection in the wake is dominated
by the curl of the magnetic tension force.
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Fig. 27.— Plot of the source terms for the specific vorticity injection rate as defined in Eqn. 13 for
the plane transverse/parallel to the initial magnetic field (left/right panels). The upper panels show
the contribution of the baroclinic-type term where∇ρ is not aligned with the thermal and magnetic
pressure force. Due to the large density gradient, this termdominates the vorticity injection in the
magnetic draping layer as we verified with a linear color scale. The curl of the magnetic tension
force seems to be the dominant injection mechanism in the wake.
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Fig. 28.— Kelvin-Helmholtz instability dissolves the projectile in the plane perpendicular to the
initially homogeneous magnetic field. The flow is accelerated at the density enhancements of the
stripped material due to the Bernoulli effect. In the wake of the projectile, there is a characteristic
length scale of∼ 10 length units between the striped material which corresponds to an unstable
mode with a wavelength of 2/3R.
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Fig. 29.— As in Fig. 1, but for the〈ρp〉 = 15 run, at a time where the projectile has swept past
approximately its own mass in ambient fluid.
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Fig. 30.— Plots of density shown for the〈ρp〉/ρ0 = 15 run, at a time when the projectile has
swept past roughly its own mass of ambient medium. Shown at top are simulations with no initial
magnetic field, and at bottom which a magnetic field as in Run B,with β = 100 andρ0u2/Pb,0 =

6.25. Panels on the left are along they direction (e.g., the direction of the initial magnetic field
lines in the second case) and along thex direction (perpendicular to the magnetic field lines) on
the right. These snapshots are taken at the same simulation time for the two runs; the projectile in
the magnetized case lags because of the deceleration demonstrated in§ 5.3.
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Fig. 31.— Interactive 3D version of Figure 30 above
.
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A. DERIVATION OF THE MHD FLOW AROUND A MOVING BODY

A.1. The exact MHD solution

The full non-linear solution of the MHD flow around a moving and dynamically evolving body
is extremely complex because of its significant three-dimensionality and non-linearity. Owing to
the range of scales involved this problem is perfectly suited for an MHD adaptive mesh refinement
simulation. In order to gain credibility and improve our understanding of the properties of the
numerical solution including its scaling behavior, we solve the problem of an ideally conducting
plasma around a spherical body analytically. To this end, wesolve for the flow of a plasma with
a frozen-in magnetic field around a sphere to explore the characteristics of the magnetic field near
the surface of the body. We disregard any possible change in the flow pattern by means of the back-
reaction of the magnetic field. The same problem has been investigated by Bernikov and Semenov
(1980) who find that the energy density of the magnetic field forming in the wake behind the body
diverges logarithmically. In passing by we correct the misconception that lead to this unphysical
behavior of their solution and derive a criterion for the breakdown of our simplified analytical
solution that we then successfully apply to our numerical solution.

The governing equations of ideal MHD with infinity conductivity are given by

curl(υ × B) = 0 and divB = 0. (A1)

We solve this system of equations outside the sphere for a given velocity field that is derived for
a viscous and incompressible flow around the sphere. Withoutloss of generality, we choose the
origin of our spherical coordinate system to coincide with the center of the sphere with radiusR
(Fig. 1) and thez-axis being anti-parallel to the fluid velocity at infinity. The potential flow solu-
tion of the pure hydrodynamical problem reads in spherical coordinates as follows (Kotschin et al.
1954):

υ = er

(

R3

r3
− 1

)

ucosθ + eθ

(

R3

2r3
+ 1

)

usinθ = −u +
R3

2r3
[3er(u · er) − u] , (A2)

where we employed the coordinate independent representation of the homogeneous fluid velocity
at infinity in the second step,u = er(u·er)+eθ(u·eθ). Since for any stream line holds dr/υr = rdθ/υθ,
we can thus derive the equation of the line of flow using Stoke’s method of the stream function

p = r sinθ

√

1− R3

r3
, (A3)

wherep is the impact parameter of the given line of the flow from thez-coordinate axis on an in-
finitely distant plane in the left half-space. We assume a homogeneous magnetic field at infinity in
the left half-space pointing towards the positivey-coordinate axis yielding the boundary conditions
for B:

Br |∞ = B0 sinθ sinφ, Bθ|∞ = B0 cosθ sinφ, Bφ
∣

∣

∣∞ = B0 cosφ. (A4)
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Writing Eqns. (A1) for the components yields

curlr(υ × B) :
∂

∂θ
[sinθ(υr Bθ − υθBr)] +

∂

∂φ
(υr Bφ) = 0, (A5)

curlθ(υ × B) :
∂

∂r
[r(υr Bθ − υθBr)] −

1
sinθ

∂

∂φ
(υθBφ) = 0, (A6)

curlφ(υ × B) :
∂

∂r
(rυr Bφ) +

∂

∂θ
(υθBφ) = 0, (A7)

divB :
1
r2

[

∂

∂r

(

r2Br

)

]

+
1

r sinθ

[

∂

∂θ
(sinθBθ)

]

+
1

r sinθ

∂Bφ
∂φ
= 0. (A8)

By substituting (A2) into (A7) we obtain the equation forBφ

∂

∂r
Bφ +

υθ

rυr

∂

∂θ
Bφ = −

3BφR3

2r(r3 − R3)
, (A9)

whereυθ/(rυr) = − tanθ (2r3 + R3)/[2r(r3 − R3)]. Equation (A9) is a linear inhomogeneous first-
order partial differential equation which can be solved by the method of characteristics. We taker
as parameter in the characteristic equations and express the variablesθ andφ in terms ofr, using

dBφ
dr
=
∂Bφ
∂r
+
∂Bφ
∂θ

∂θ

∂t
∂t
∂r
+
∂Bφ
∂φ

∂φ

∂t
∂t
∂r
=
∂Bφ
∂r
+
υθ

rυr

∂Bφ
∂θ
. (A10)

Thus, on the line of the flow that is uniquely characterized byits impact parameterp at infinity, we
obtain a first order ordinary differential equation forBφ,

dBφ
dr
= −

3BφR3

2r(r3 − R3)
. (A11)

Integrating this equation by the separation of variables yields the solution forBφ that contains a
constant which is determined from the homogeneous magneticfield at infinity (A4),

Bφ =
B0 cosφ
√

1− R3

r3

. (A12)

To determineBr andBθ, we turn to Eqns. (A5) and (A6). By multiplying Eqn. (A5) withr and
(A6) with sinθ, definingK ≡ r sinθ(υr Bθ − υθBr), and combining (A6) and (A5), we obtain the
equation forK:

∂K
∂r
+
υθ

rυr

∂K
∂θ
= 0. (A13)

Equation (A13) can again be solved by the method of characteristics as (A9) yieldingK = Kp,
whereKp is a constant on each flow line that is labeled with its impact parameterp. Determining
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this constant from Eqn. (A4) and substituting forK andKp their values, we obtain the following
equation that relatesBr andBθ,

r sinθ (υr Bθ − υθBr) = −puB0 sinφ. (A14)

SubstitutingBθ, expressed in terms ofBr , from Eqn. (A14) andBφ from Eqn. (A12) into the
solenoidal condition forB (A8), we obtain the equation forBr . Similarly, substitutingBr , expressed
in terms ofBθ and following the same steps, leads to the equation forBθ:

∂Br

∂r
+
υθ

rυr

∂Br

∂θ
+

[

2
r
− 2r3 + R3

2r(r3 − R3)

(

1+
1

cos2 θ

)]

Br = −
B0 sinφ sinθ

r
√

1− R3

r3 cos2 θ
, (A15)

∂Bθ
∂r
+
υθ

rυr

∂Bθ
∂θ
+

[

2
r
− 2r3 + R3

2r(r3 − R3)
+

9r2R3

(2r3 + R3)(r3 − R3)

]

Bθ =

2B0 sinφ (r3 + 2R3)

r cosθ (2r3 + R3)
√

1− R3

r3

. (A16)

Both equations can again be solved by the method of characteristics, expressing the variablesθ
andφ in terms ofr which we take to be the independent parameter along the flow lines and using
Eqn. (A3). Note that for a potential flow, the variableφ is always constant on the line of the flow
by symmetry. The resulting linear inhomogeneous first-order ordinary differential equations are
easily solved by an integrating factor that is derived from the homogeneous equations, leading to
the solutions forBr andBθ,

Br =
r3 − R3

r3
cosθ















C1 ∓ B0 sinφ
∫ r

ξ

p(r, θ )r ′4 dr ′
(

r ′3 − R3 − p(r, θ)2r ′
)3/2
√

r ′3 − R3















, (A17)

Bθ =
2r3 + R3

r5/2
√

r3 − R3















C2 ± 2B0 sinφ
∫ r

ξ

r ′3 (r ′3 + 2R3)
√

r ′3 − R3 dr ′

(2r ′3 + R3)2
√

r ′3 − R3 − p(r, θ)2 r ′















, (A18)

whereC1 andC2 are integration constants andξ is the initial value for whichBr andBθ are known.
The upper signs refer to the region 0≤ θ ≤ π/2, and the lower signs toπ/2 ≤ θ ≤ π.

A.2. The approximate MHD solution near the sphere

We aim at understanding the behavior of the magnetic field in the region near the sphere.
To this end, we investigate the behavior of the integrals in (A17) and (A18) for small impact
parameters and keep only the main terms with respect top. We find that the integral in (A17)
diverges at the lower limit logarithmically forπ/2 and the integral in (A18) has a linear divergence
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at the lower limit. Thus we will use (A17) in the region 0≤ θ ≤ π/2 and (A18) in the region for
π/2 ≤ θ ≤ π.

We divide the region of integration into two: the first from∞ to r1 wherer1 > R is the radius
of the sphere on which the asymptotic form of the magnetic field changes, and the second fromr1

to r0, wherer0 is the radial value of the flow of line under consideration forθ = π/2. This implies
that the following expansions only apply to small impact parametersp with r0 ≤ r1. By expanding
the integrand of (A17) in powers of 1/r for r > r1 > Rand in the region 0≤ θ ≤ π/2, we determine
C1 = 0 and we recover the homogeneous field at infinity with an accuracy toO(1/r). Near the
surfacer1 > r > r0 we perform a change of the variable tos = r − R. We defines1 = r1 − R and
s0 = r0 − R ands varies withins0 < s < s1. The equation of the line of flow (A3) has the form
p =
√

3sRsinθ with an accuracy toO(s3/2) and from this we obtains0 = p2/(3R) for θ = π/2 and
s= s0.

The value ofBr in this region will be composed of two terms: the value of the integral in
(A17) from∞ to r1 with a factor to leading order∝ s3/2, and the value of the integral froms1 to s,
which behaves likeO(s1/2). Neglecting the first term in comparison with the second, weobtain for
Br with an accuracy toO(s3/2) orO(p3):

Br = −
3s
R

B0 psinφ cosθ
∫ s

s1

sds
9 (s2 − ss0)3/2

. (A19)

For impact parametersp with s0 ≤ s1, we obtain with an accuracy toO(s0/s1):

Br =
2
3

B0

√

3s
R

sinθ
1+ cosθ

sinφ. (A20)

Using Eqn. (A14) leads to the componentBθ. Thus,Bθ andBφ near the sphere are determined by
the formulae

Bθ = B0 sinφ

√

R
3s
, (A21)

Bφ = B0 cosφ

√

R
3s
. (A22)

It turns out that these formulae are also correct for the region π/2 ≤ θ ≤ π as follows from
Eqn. (A18). The integral in this expression is regular fors0, and by computingBθ in the approxi-
mations≪ R for s = s0, we findC2 = sinφR B0/3. ThenBθ is equal to (A21) with an accuracy
to terms of orderO(s1/2). We obtain (A22) by using (A14). Thus, Eqns. (A20) to (A22) uniformly
describe the field near the sphere with respect to the angleθ.

In order to facilitate comparison to our numerical solution, we transform the approximate
solution forB given by the components in the spherical coordinate system (A20) to (A22) into
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Cartesian system yielding

Bx = B0 cosφ sinφ (1− cosθ)

√

R
3s

(

2s
R
− 1

)

, (A23)

By = B0

√

R
3s

[

sin2 φ (1− cosθ)

(

2s
R
− 1

)

+ 1

]

= Bx tanφ + B0

√

R
3s
, (A24)

Bz = B0 sinφ sinθ

√

R
3s

(

2s
R

cosθ
1+ cosθ

− 1

)

. (A25)

Note that we introduced the radial coordinate from the surface of the spheres = r − R and that
this solution applies only near the sphere with an accuracy to O(s3/2) as well as for small impact
parametersp with an accuracy toO(s0/s1).

Using the method of regularization of the integral in (A17) with respect to the lower limit
θ = π/2, Bernikov and Semenov (1980) investigate the behavior of the magnetic field in the wake
of the sphere. They find that, when neglecting a term that scales asO(1/r), Br is given by

Br =
4
3

B0 sinφ
p
, (A26)

which, with proximity to the axis of the wakep→ 0, leads to an unlimited increase ofBr → ∞.
The magnetic lines of force that end at the stagnation point are strongly elongated as the swipe
around the sphere parallel to the line of flow reaching from the stagnation point into the rear. This
leads to the unphysical increase of the magnetic field as it approaches the symmetry line. While
this might be the mathematically correct solution, it leadsto a logarithmic divergence of the energy
density of the magnetic field in the volume near the wall.
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