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1.1 Why are Galaxy Clusters Interesting?

1.1.1 General Syllabus

Galaxy clusters are fascinating objects as they lie at the cross-roads of
astrophysics and cosmology, which makes them unique tools for an-
swering questions that reach into both areas. Let me explain to you why
this is by lying out the general syllabus.

1. Overview and background. We will become familiar with the
various appearances of clusters in a number of different observa-
tional windows; each of which allows us to probe physics that is
either specific to a waveband or probes a common feature of a
given cluster. We will encounter a vast range of (length and time)
scales as well as physical processes. To master this problem, we
need to introduce the powerful technique of order of magnitude
estimates, a very useful tool for contemporary research in astro-
physics that we will frequently use in the course of these lectures.

2. Evolution of the dark component. Most of the matter in the
universe is in form of dark matter that interacts primarily gravi-
tationally with baryonic matter (that is described by the standard
model of particle physics). Galaxy clusters are the largest gravita-
tionally collapsed objects. Hence, they represent a fair sample of
the universe and are also dominated by dark matter. We will first
learn how (the dark component of) a cluster forms and grows.
This knowledge is the basis for using clusters as cosmological
tools.

3. Evolution of the baryonic component. We will then encounter
the rich and interesting astrophysics that governs the assembly
and evolution of baryons in clusters. This chapter starts with basic
thermodynamics and conservation laws and ends with plasma and
high-energy astrophysics.

4. Cluster physics across wavelengths. We will see how we can
take advantage of these physical processes to observe clusters and
deepen our understanding of the underlying fundamental (astro-)
physics.

I will briefly introduce and overview the main motivation to study clus-
ters and present the concepts that we will develop in these lectures. I
hope that those concepts will be of good use for you in your further ca-
reer as (astro-)physicist (even if you won’t be studying galaxy clusters).
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1.1.2 Tools for Cosmology

• Galaxy clusters are the largest and most massive gravitationally
bound structures known in the Universe. As such, they represent
the latest stage of the structure formation, presently assembling
through mergers of smaller groups of galaxies and gas accretion.
Hence they provide us with the opportunity to study an “ecosys-
tem” – a volume that is a high-density microcosm of the rest of
the Universe.

• At the same time, clusters are extremely rare events, forming at
sites of constructive interference of long waves in the primordial
density fluctuations. Hence, they are very sensitive tracers of the
growth of structure in the universe and the cosmological parame-
ters governing it, which puts them into focus of constraining the
properties of Dark Energy or to test whether our understanding of
gravity is complete.

• What are the most basic questions one could ask about clusters?
And what are the concepts that we will develop to answer those?

1. When and where do clusters form? We will learn how
structures grow from tiny perturbations to non-linear struc-
tures and how we describe these by appropriate statistics, in
particular correlation functions and power spectra.

2. How do clusters form? We will develop a simplified model
of the spherical collapse of a perturbation into a (dark mat-
ter) halo that defines all characteristic halo parameters.

3. How many clusters are there? We will study the statistics
of collapsed halos giving rise to the Press-Schechter mass
function.

4. What is the structure of a cluster? We will analyze halo
density profiles and the concept of virial masses.

• These concepts are presented in Chapter 2 and enable us to build
the dark matter backbone of clusters – by understanding the struc-
ture of the gravitational potential of an individual cluster as well
as understanding the distribution of the cluster population as a
whole. The next chapter asks what happens if we fill baryons into
clusters and addresses the beautiful physics associated with this.

1.1.3 Laboratories for Physics

• Galaxy clusters are excellent laboratories for studying the rich
astrophysics of dark matter and baryons. In particular, they allow
us to study plasma and high-energy astrophysics under conditions
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that are unique and not reproducible anywhere else, especially not
in Earth-bound laboratories.

• In Chapter 3, we will “assemble” clusters by starting simple
and consecutively adding more complicated physics. First (in
Sect. 3.1), we consider only non-radiative physics: what is a sta-
ble thermodynamic configuration of the gas in a stratified atmo-
sphere and how do perturbations propagate? Clusters are dynam-
ically evolving systems that are shaken by merging groups and
gas accretions, which has two consequences: 1. perturbations
of an otherwise stable atmosphere can induce vortical motions
that feed turbulence and 2. shock waves can be excited that ir-
reversibly change the thermodynamical cluster state, building a
new equilibrium configuration that we will characterize. We fi-
nally develop powerful cluster scaling relations that link cluster
observables to fundamental cluster properties such as its mass.
Its evolution differs for different cosmologies and as such, allows
to solve for cosmological parameters. However, the scaling rela-
tions are intertwined with cluster physics which causes significant
modifications of the scaling laws. While this enables us to infer
details about complex baryonic processes in clusters, it also com-
plicates the inference of cosmological parameters.

• In a second step (Sect. 3.2), we explore radiative gas physics,
namely radiative cooling, star formation, and energy feedback
by exploding stars in galaxies (supernovae) and accreting super-
massive black holes that are thought to exist at the center of every
galaxy. Detailed physical processes close to the Schwarzschild
horizon are able to launch relativistic outflows that carry enor-
mous momentum and energy to macroscopic scales in clusters,
thereby modifying its thermodynamical structure in an important
way. How this exactly works is currently under intense investi-
gation. We will learn about the strength and weaknesses of vari-
ous promising suggestions, some of which include transport pro-
cesses of gas (turbulence, conduction).

• Last but certainly not least (Sect. 3.3), we will discover the
physics of non-thermal processes such as magnetic fields and rel-
ativistic particle populations in galaxy clusters. We discuss pro-
posals for the origin and transport of cluster magnetic fields and
how magnetic fields modify hydrodynamic turbulence. More-
over, I present basic concepts how particles get accelerated to rel-
ativistic energies and how they interfere with the thermal plasma
of a cluster, an exciting cutting-edge topic in cluster research.
Those can be directly observed in form of giant radio relics and
halos that constitute a puzzling glow of the outer fringes as well
as entire galaxy clusters and enable us to watch powerful shocks
and plasma physics at work.
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1.1.4 Galaxy Formation under a Magnifying Glass

• Observing galaxies in the optical wavelength regime and real-
izing that they like to cluster together was the first window to
galaxy clusters (not surprisingly as the name suggests). Even to-
day, there are many interesting questions about galaxy formation
that take advantage of the increased density of a cluster environ-
ment, which accelerates the formation time of galaxies and en-
ables us look at ancient relics of galaxy formation.

• However, a cluster does not simply represent a museum that con-
serves galaxy properties and supports a passive aging of the stel-
lar populations within them. Instead, the high galaxy density in
a cluster environment transforms galaxy populations via differ-
ent effects, including ram pressure, tidal effects, and dynamical
friction, which we will all study.

• We will learn how the virial theorem can be used to weight a
galaxy cluster. It is interesting to compare the masses obtained
from this method to another approach that assumes the equation
of hydrostatic equilibrium of the cluster gas.

• Finally, galaxy clusters literally act as magnifying glasses for very
distant galaxies that happen to be in projection behind a massive
cluster. The processes of gravitational lensing not only magnifies
the galaxies’ surface brightness but also increases their solid angle
on the sky. We will review the theory of gravitational lensing,
derive the lens equation, and discuss the lensing potential. This
represents a third, independent method of weighting clusters.

1.1.5 General Remarks

This is a course in the Masters program. The lectures aim at students
who

• wish to extend and deepen their understanding of theoretical
physics;

• are interested in astronomy and astrophysics; or

• (intend to) carry out a masters thesis or Ph.D. dissertation on an
astronomical or astrophysical subject.

I assume basic knowledge of Cosmology. While this is not absolutely
necessary to follow most of the lectures, I recommand working through
the Cosmology lecture notes by Prof. Bartelmann. You can download a
revised version freely from my home page if you want to refresh your
memory.
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1.2 What Characterizes a Galaxy Cluster?

A galaxy cluster looks different, depending on how you look at it. Using
observations at various wavelengths, we get a wealth of diverse insights
into physics. This section is meant to provide a general overview of the
various appearances of clusters in a number of different observational
windows. Rather than lying out the most complete and accurate descrip-
tion, I try to convene the basic concepts by using the powerful technique
of order of magnitude estimates, and leave the detailed discussion of the
physics to later chapters.

1.2.1 Optical Window

• In a rich galaxy cluster, there are ∼ 103 galaxies that have to good
approximation a Gaussian velocity distribution with a dispersion
σv ≈ 1200 km s−1. The typical radius of such a cluster is

rcl ≈ 3 Mpc ≈ 107 lyr ≈ 1025 cm. (1.1)

This defines a dynamical cluster timescale, t ≈ rcl/σv ≈ 2 Gyr.

• Assuming that the cluster is a closed system in dynamical equi-
librium, the virial theorem relates the kinetic energy, Ekin, of a
galaxy of mass Mgal to its potential energy, Epot,

2Ekin + Epot = 0, (1.2)

Mgalσ
2
v −

GMclMgal

rcl
= 0, (1.3)

where G is Newtons gravitational constant. Solving for the the
gravitating mass of a cluster, Mcl, we get

Mcl =
rclσ

2
v

G
≈

1025 cm 1.4 × 1016 cm2s−2

7 × 10−8 erg cm g−2

≈ 2 × 1048 g ≈ 1015 M� (1.4)

Note that Mcl sources the high velocity dispersion of galaxies. A
typical mass range for clusters is (1014 . . . 1015) M�.

• However, by adding up the all the luminous stellar mass within
the galaxies, we only get

M∗ ≈
1

50
Mcl. (1.5)

This discrepancy of the gravitating and luminous mass in galaxy
clusters was already noted by Fritz Zwicky in the 1930s and led
him to postulate the existence of dark matter more than 80 years
ago! To be precise, back then the “dark matter” could have been
baryonic in form of compact objects (such as planets) or in form
of diffuse gas.
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1.2.2 X-ray Regime

• With the onset of X-ray astronomy in the 1970s, it was discov-
ered, that galaxy clusters are among the brightest X-ray emitting
sources. Improved angular resolution demonstrated that the X-
rays were not emitted by individual point sources but instead the
entire galaxy cluster is glowing in X-rays, filling in the volume
in between the galaxies. What emission process could produce
X-rays? There are three possibilities:

1. bremsstrahlung emission of hot thermal electrons,

2. line emission from recombination of atoms, or

3. inverse Compton emission: if relativistic electrons interact
with low-energy photons (such as those from the cosmic mi-
crowave background), they can cool by upscattering these
photons into the X-ray regime. This would typically pro-
duce power-law spectra that are imprinted by the power-law
spectra of the underlying non-thermal relativistic electrons.

• The observed X-ray spectrum instead shows a flat spectrum
with an exponential decline that is characteristic of thermal
bremsstrahlung emission. Additionally, there were lines im-
printed on the spectrum. The bremsstrahlung emissivity scales as
jX ∝ neni

√
Te, where Te, ne, and ni are the electron temperature,

density and the ion density, respectively. The amount of X-rays
and the location of the exponential break (as well as the location
of the individual lines) enable to characterize the properties of the
emitting gas,

n ≈ (10−4 . . . 10−3) cm−3, (1.6)

T ≈ (107 . . . 108) K, (1.7)

i.e., a hot, dilute, and thermal gas (as inferred from the exponen-
tial shape of the bremsstrahlung spectrum).

• We usually talk about the temperature of a gas in terms of particle
energies,

kBT ≈ (1 . . . 10) keV = (103 . . . 104) eV, (1.8)

where kB is the Boltzmann factor. At these temperatures, most
of the elements are fully ionized, except for highly-ionized iron,
e.g., hydrogen-like iron which is an iron nucleus with one bound
electron, Fe XXVI. The transition energy of such highly ionized
iron is

Fe XXV : hν ≈ Z(Z − 1) Ry = 26 × 25 × 13.6 eV ≈ 8.8 keV

Fe XXVI : hν ≈ Z2 Ry = 262 × 13.6 eV ≈ 9 keV, (1.9)

i.e., the higher the temperature, the higher the ionization state.
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• Assuming that this hot gas with energy Eth is in hydrostatic equi-
librium with the cluster potential, we have

Eth = Epot, (1.10)
3
2

kBT = µmp
GMcl

rcl
, (1.11)

where mp is the proton mass and the mean molecular weight of
primordial gas is given by µ = 4/(5XH + 3) ≈ 0.588 for a primor-
dial hydrogen fraction XH = 0.24 (see Appendix A.1). Solving
for the gravitating mass of a cluster with kBT = 6 keV yields

Mcl =
3
2

kBTrcl

µmpG
≈

1.5 × 10−8 erg 1025 cm
0.6 × 1.7 × 10−24 g 0.7 × 10−8 erg cm g−2

≈ 2 × 1048 g ≈ 1015 M�. (1.12)

• Resolved X-ray imaging of a galaxy cluster produces an X-ray
surface brightness map. Deprojection enables us to back out the
mass density profile. Integrating that over the cluster volume
yields the total gas mass,

Mgas ≈
1
7

Mcl. (1.13)

Hence, we found some of the matter that was “dark” in the opti-
cal by looking at a different waveband. The rest cannot be directly
seen in any other waveband (at least no significant amounts). It
only can be indirectly inferred through its gravitational interac-
tion. We call this “dark matter”, which reflects our ignorance of
the composition. It dominates the total cluster mass and is mostly
responsible for the gravitational cluster potential.

• We can now summarize an inventory of cluster mass

M∗ ≈ 2% : stars in galaxies,
Mgas ≈ 13% : hot gas (1 − 10 keV), (1.14)
Mdm ≈ 85% : dark matter.

The value of the baryon fraction in a cluster of fb,clus ≈ 0.15 is
somewhat smaller than the cosmic mean of fb,clus ≈ 0.166. This
points to interesting physics, including non-gravitational energy
input from supernovae and super-massive black holes. Interest-
ingly, fb,clus declines toward less massive clusters in which those
feedback processes have a comparably larger impact because of
the shallower cluster potential.
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1.2.3 Gravitational Lensing

• Galaxy clusters or galaxies act as gravitational lenses for galax-
ies behind them. The processes of gravitational lensing not only
magnifies the surface brightness of the source galaxies but also in-
creases their solid angle on the sky. According to general relativ-
ity, light travels on geodesics (straightest possible lines) through
curved space time. Mass acts as a source of gravity, curving space
time at the location of a lensing galaxy cluster or galaxy and caus-
ing the light rays to be deflected by the gravitational potential of
the lensing object. This causes a single galaxy to be mapped onto
multiple images (or even a so-called Einstein ring, provided that
we have a very symmetric configuration and a point-like source).
We define the angular diameter distance to the light-deflecting
cluster or galaxy, Dl, the distance to the source galaxy, Ds, and
the angular diameter distance between deflector and source, Dls.
The drawing on the right explains the geometry of a lensing sys-
tem.

Geometry of a gravitational lensing
system.• Later on in the lectures, we will derive the Einstein radius θE. We

state the result and insert some values to get an idea about the
involved angular scales.

θE =

[
4GM(θE)

c2

Dls

DlDs

]1/2

(1.15)

≈ 3′′
(

M
1012 M�

)1/2 (
D

1 Gpc

)−1/2

(galaxy lensing) (1.16)

≈ 30′′
(

M
1014 M�

)1/2 (
D

1 Gpc

)−1/2

(cluster lensing). (1.17)

Here, D = DlDs/Dls is the lensing efficiency distance. In the case
of galaxy lensing, the approximation of a point lens is justified
whereas for cluster lensing, the size of the lens is much larger
than the size of the source. This makes a detailed mass modeling
necessary since only a fraction of the cluster mass is contained
within the Einstein radius and will contribute to the lensing po-
tential. The inferred values of θE ≈ 30′′ correspond to angular
scales of observed giant (tangential) arcs.

• We distinguish two types of lensing:

1. Strong lensing is sensitive to the projected mass within θE

and leads to radial arcs that are clearly visible in optical im-
ages. In this regime, a source can be imaged onto multiple
different images.

2. Weak lensing causes weaker distortions of a galaxy image
in the tangential direction than cannot be detected on a in-
dividual basis because the effect is very small. We need
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to assume that orientation of the of neighboring galaxies is
random and average over an aperture to detect a weak shear
signal that is induced by the gravitational tidal field of the
cluster lens.

1.2.4 Sunyaev-Zel’dovich Effect

• The universe is filled with 2.75 K photons of the cosmic mi-
crowave background (CMB), which is radiation left behind from
the early universe when hydrogen recombined at a redshift of
z ≈ 1100. If such a “cold” photon passes through a galaxy clus-
ter that is filled with “hot” electrons there is the chance that this
photon experiences Compton scattering off an electron:

This elastic scattering event conserves the number of CMB pho-
tons. However, during this reaction there is a mean energy trans-
fer from the “hot” electron to the “cold” photon (which is the rea-
son why this is called inverse Compton scattering). This causes a
unique distortion of the CMB spectrum, a decrement in thermo-
dynamic temperature at frequencies below ν0 ≈ 220 GHz, and an
excess above. As a result, galaxy clusters appear as holes in the
CMB sky at ν < ν0 and as extended sources above. This Sunyaev-
Zel’dovich (SZ) effect provides a complementary method for de-
tecting and characterizing galaxy clusters.

• How many CMB photons experience inverse Compton scattering
on passing through a cluster? To answer this, we compute the
optical depth,

τ =

∫ L

0
neσTdl ≈ neσTL, (1.18)

where L is the effective path length through the hot intracluster
medium and σT is the Thomson cross section,

σT ≈ 2πr2
0 = 2π

(
e2

mec2

)2

≈ 6


(
4.8 × 10−10

)2

10−27 1021

 cm2

≈ 6
(
3 × 10−13

)2
cm2 ≈ 6 × 10−25 cm2, (1.19)

where r0 is the classical electron radius. Hence, we obtain an
optical depth

τ = neσTL ≈ 10−4 cm−3 6 × 10−25 cm2 1025 cm ≈ 6 × 10−4 � 1.
(1.20)
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This means that on average only one photon in 2000 experiences
a scattering event.

• What is the amplitude of the SZ effect? To answer this, we inte-
grate the typical energy gain experienced by a photon in a Comp-
ton interaction (kBTe/mec2) times the differential scattering prob-
ability of a photon (dτ = neσTdl) over the photon path length, D.
This is the exact definition of the Compton-y parameter,

y =

∫ D

0

kBTe

mec2 neσTdl ≈ 10−2 × 6 × 10−4 = 6 × 10−6. (1.21)

Here, we adopted a line-of-sight averaged temperature of our
massive (1015 M�) cluster with kBTe ≈ 6 keV. As we can see,
the SZ signal is proportional to the integrated electron pressure
(Pe = kBTene), so the hot gas of the galaxy clusters dominates the
effect. This implies that only the path length L through the cluster
contributes significantly to the integral that formally extends over
the light travel distance, D, from us to the release of the CMB
photons. The resulting small value for y implies a small change
in intensity that is challenging to detect.

• The thermal SZ effect directly observes the integrated Compton-
y parameter which is a measure of the cluster’s global gas heat-
energy content, a volume-average of the thermal gas pressure,

Y =
σT

mec2

∫ rcl

0
PedV ∝ Eth(< rcl), (1.22)

and this is related to gravitational energy through the virial rela-
tion.

• The SZ surface brightness is independent of the redshift a spe-
cific cluster is at. This can be easily understood by the follow-
ing consideration: CMB photon are continuously redshifted from
the surface-of-last-scattering to us as the Universe expands. Ir-
respective of when exactly the inverse-Compton scattering event
happened, that energized the photon by a fixed amount of energy,
the CMB photons still experience continuous redshifting. This
independence on redshift makes the SZ effect a prime candidate
for cluster cosmology since it allows for an almost flat selection
of cluster at a given mass with redshift. Note that this is quite dif-
ferent for X-ray selected clusters that suffer from the strong flux
dimming as the square of the distance.
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1.2.5 Synthesis of Observational Windows

Different cluster observables have different strengths and weaknesses.
Hence the various windows to clusters are complementary: combining
observations of different wavelengths is essential to learn more about
clusters. Here is a short (and possibly incomplete) summary about the
most important (dis-)advantages of different cluster observables:

• X-ray window.

– It is well-suited for observing cluster centers since jX ∝ n2

which emphasizes dense cluster gas.

– It allows for high-resolution (arcsec) observations (because
of the use of Bragg reflection for focusing X-rays).

– It is difficult to observe X-ray clusters at large distances due
to flux dimming, FX ∝ LX/D2.

– If the X-rays are emitted by an inhomogeneous medium,
data analyses need to be aware of the bias of the inferred
density. In this case, n̄2 = 〈n〉2 is biased high by the clump-
ing factor C = 〈n2〉/〈n〉2 which is in general not known.

• Sunyaev-Zel’dovich effect.

– It is an excellent tool for studying cluster outskirts as y ∝
Pe = nekBTe and declines less steeply with radius in com-
parison to the X-ray emission.

– It is well adapted to detect and observe clusters at large dis-
tances because y is independent of redshift (since CMB pho-
tons experience continuous redshifting from the surface-of-
last-scattering to us as the Universe expands).

– The comparably small signal-to-noise ratio makes it difficult
to detect small clusters and groups.

– Current resolutions (typically arcmin) preclude the study of
detailed cluster physics.

• Optical window.

– Galaxies are collisionless tracers of the gravitational po-
tential and its dynamical state. However, the method
needs many galaxies to sample the velocity distribution well
enough (which is only possible for large clusters).

– Gravitational lensing is an invaluable tool for directly prob-
ing the total cluster mass which is dominated by dark mat-
ter. However, projection of structures along the line-of-sight
needs to be accounted for carefully.



CHAPTER 1. OVERVIEW AND BACKGROUND 13

1.2.6 Relation to Average Universe

• How does a galaxy cluster relate to the average Universe around
us? The critical density of the universe today is

ρcr,0 =
3H2

0

8πG
≈ 10−29 g cm−3, (1.23)

where H0 ≈ 70 km s−1 Mpc−1 is the Hubble constant that defines
the recession velocity of local galaxies, which are at distance d,
from us according to Hubble’s law, v = H0d. Using the critical
density, we can define the density parameters of total matter, Ωm,
and baryons, Ωb,

Ωm,0 ≡
ρ̄m,0

ρcr,0
≈ 0.27, and Ωb,0 ≡

ρ̄b,0

ρcr,0
≈ 0.045. (1.24)

• Hence the mean matter density of the Universe is

ρ̄m,0 ≈ 4 × 1010 M� Mpc−3 ≈ 109 M� Mlyr−3. (1.25)

Compare this to typical cluster masses Mcl ∼ 1015 M�. In order
to form clusters, you need large chunks of volume that contain
1015 M�. As we will learn during the lectures, only less than 1%
of cosmic matter forms an aggregation that makes a large clusters.
Hence clusters are extremely rare!

• Collapse of a cluster. Typically, we find ρ̄cl ∼ 103ρ̄m,0, hence
cluster collapse roughly by a factor of 10 in radius. Let’s check
whether this is consistent with what we have already learned. The
mean baryon density of the universe at the present time is

n̄b,0 =
ρcrΩb

µmp
≈

10−29 g cm−3 0.045
0.6 × 1.7 × 10−24 g

≈ 4 × 10−7 cm−3. (1.26)

Upon collapsing this chunk of baryons by a radial factor of 10,
we obtain a mean cluster density of

n̄cl ≈ 4 × 10−4 cm−3, (1.27)

which is perfectly consistent with the densities inferred by X-ray
observations of clusters.
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2.1 The Growth of Perturbations

2.1.1 Newtonian Equations

• There are pronounced structures in the universe on scales from
galaxies to galaxy clusters and cosmic large-scale filaments.
While filaments and the voids they surround can reach sizes of
∼ 50 Mpc, they are still small compared to the Hubble radius.
In this chapter, we only describe the concepts of the basic the-
ory for structure growth in the expanding universe for the matter-
dominated epoch, i.e., we only consider the conservation laws for
non-relativistic fluids. A detailed derivation and more complete
discussion can be found in Sect. 2.1 of the Cosmology lecture
notes by Prof. Bartelmann.

• Strictly, this theory should be worked out in the framework of
general relativity, which is a complicated exercise. With the in-
homogeneities being “small”, i.e. much smaller than the typical
scale of the universe, we can neglect effects of curvature and
the finite speed of information propagation and work within the
framework of Newtonian dynamics. We will see that structure
grows from small-amplitude seed fluctuations through gravita-
tional instability and determine the rate of growth.

• We describe inhomogeneities in a cosmic fluid which contains at
least radiation, dark matter, and baryonic matter and which moves
according to Newtonian gravity.

• We begin with the continuity equation, which formulates mass
conservation,

∂ρ

∂t
+ ∇r · (ρ3) = 0 , (2.1)

where ρ(t, r) and 3(t, r) are the density and velocity of the cosmic
fluid at position r and time t.

• The second equation is Euler’s equation which formulates the
conservation of momentum,

∂3

∂t
+ (3 ·∇r)3 = −

∇rP
ρ
− ∇rΦ . (2.2)

The terms on the right-hand side represent the pressure-gradient
and gravitational forces.

• The Newtonian gravitational potential Φ satisfies the Poisson
equation

∇2
r Φ = 4πGρ . (2.3)
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2.1.2 Density Perturbations

• The next steps consist in decomposing density and velocity fields
into their homogeneous background values ρ̄ and 3̄ and small per-
turbations δρ and δ3,

ρ(t, r) = ρ̄(t) + δρ(t, r) , 3(t, r) = 3̄(t) + δ3(t, r) . (2.4)

• The evolution of the homogeneous background quantities are
governed by the expansion of the universe. Physical coordinates,
r, are related to comoving coordinates, x, via the equation r = ax.
Here, a(t) is the cosmic scale factor whose dynamics is governed
by Friedmann’s equations:( ȧ

a

)2

=
8πG

3
ρ −

Kc2

a2 +
Λc2

3
, (2.5)

ä
a

= −
4πG

3

(
ρ +

3p
c2

)
+

Λc2

3
. (2.6)

Here, K is a constant parameterising the curvature of spatial hy-
persurfaces and Λ is the cosmological constant. The scale factor
is uniquely determined once its value at a fixed time t is chosen.
We set a = 1 today.

• The critical density at scale factor a and today are defined as

ρcr(a) ≡
3H2(a)

8πG
, ρcr0 ≡

3H2
0

8πG
, and (2.7)

H2(a) ≡
( ȧ
a

)2

= H2
0

[
Ωr0a−4 + Ωm0a−3 + ΩΛ0 + ΩKa−2

]
(2.8)

is the Hubble function that derives from Friedmann’s equation
(2.5) and describes the expansion rate of the universe. Quantities
at the present time are denoted with a subscript 0. The density
parameters of radiation, matter, the cosmological constant, and
curvature are defined by

Ωr0 =
ρr0

ρcr0
, Ωm0 =

ρm0

ρcr0
, ΩΛ0 =

Λc2

3H2
0

, and ΩK =
−Kc2

H2
0

. (2.9)

• After this short cosmological detour, we return to the derivation
of the density perturbations. To this end we transform the gov-
erning equations (2.1) through (2.3) from physical coordinates,
r, to comoving coordinates, x, which are related by r = ax. To
understand the concept of comoving coordinates, imagine a set
of particles that are slightly displaced from a uniform grid. In
the Eulerian point of view, the expanding universe causes the grid
points to move apart from each other homogeneously and gravi-
tational attraction increases the degree of irregularity. In the co-
moving frame, the large-scale homogeneous expansion is divided
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out. This leaves only the dynamics of the gravitational attraction
to increase the irregularity. We are hence seeking an equation for
the time evolution of the density perturbations in this comoving
frame, δρ(t, x).

• We define the density contrast,

δ ≡
δρ

ρ̄
, (2.10)

and adopt an equation of state linking the pressure fluctuation to
the density fluctuation,

δp = δp(δ) ≡ c2
sδρ (2.11)

with the sound speed cs.

• We obtain an expression for the velocity,

3 = ṙ = ȧx + aẋ = Hr + aẋ = 3̄ + δ3, (2.12)

where 3̄ = Hr is the Hubble velocity and δ3 = aẋ is the peculiar
velocity that deviates from the Hubble flow. The equations (2.1)
through (2.3) can be combined to yield a single equation for the
density contrast

δ̈ + 2Hδ̇ =

(
4πGρ̄δ +

c2
s∇

2
xδ

a2

)
. (2.13)

• We can decompose δ into plane waves,

δ(x, t) =

∫
d3k

(2π)3 δ̂(k, t)e
−ik·x , (2.14)

introducing the time-dependent Fourier amplitudes δ̂(k, t) and de-
coupling the time evolution from the spatial dependence. Inserted
into (2.13), this yields

¨̂δ + 2H ˙̂δ = δ̂

(
4πGρ̄ −

c2
s k2

a2

)
. (2.15)

• On a static background, H = 0, and (2.15) becomes the oscillator
equation

¨̂δ + ω2
0δ̂ = 0 , ω0 ≡

√
c2

s k2

a2 − 4πGρ̄ . (2.16)

The oscillation frequency is real for sufficiently large comoving
wave numbers k,

k ≥ kJ ≡
2
√
πGρ̄ a
cs

. (2.17)
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kJ defines the comoving Jeans length

λJ ≡
2π
kJ

=
cs

a

√
π

Gρ̄
. (2.18)

Perturbations smaller than the Jeans length oscillate. Others grow
or decay. The Jeans length can be heuristically derived by bal-
ancing the sound crossing time, ts = aλJ/cs = 2πa/(kJcs), with
the gravitational free-fall time, tff =

√
π/(Gρ̄), which yields the

desired result (2.17).

• We now study the behavior of perturbations on scales much larger
than the Jeans length, or in pressure-less fluids. If Ω = 1, we get
ρcr = ρ̄ = 3H2/(8πG) and the perturbation equation reads

¨̂δ + 2H ˙̂δ =
3
2

H2δ̂ . (2.19)

Note that this is only valid for the matter-dominated epoch
because we only considered the conservation laws for non-
relativistic fluids. In this case, the Hubble rate is given by (see
(1.54) of the Cosmology lecture notes by Prof. Bartelmann)

a ∝ t2/3 ⇒
ȧ
a

= H(t) =
2
3t
. (2.20)

• The ansatz δ̂(k, t) ∝ tn yields

n2 +
n
3
−

2
3

= 0 (2.21)

hence n = −1, 2/3, which translates to

δ̂ ∝

{
a ,
a−3/2 .

(2.22)

Decaying modes are irrelevant for cosmic structure growth, so
δ ∝ a during the matter-dominated era. The phases of the waves
determine whether a given cosmological patch develops into an
underdense region (i.e., a void) or a galaxy cluster. Construc-
tive interference of the growing modes causes the development
of overdensities, which then collapse into galaxies (in the case of
small-scale modes) or clusters (for large-scale modes). Destruc-
tive interference leads to the growth of voids.

• The sound speed defines the Jeans length, below which pertur-
bations cannot grow, but oscillate. For dark matter consisting of
weakly interacting massive particles, for instance, the concept of
a sound speed makes no sense because the dark matter behaves
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like an ensemble of collision-less particles. In that case, one can
show that the comoving Jeans length (2.20) is replaced by

λJ =

〈
v−2

〉−1/2

a

√
π

Gρ̄
, (2.23)

where v is the velocity dispersion of the particles. Perturbations
in collision-less matter smaller than the Jeans length are thus pre-
vented from growing because their gravity is insufficient for keep-
ing their particles bound.
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2.2 Statistics and Non-linear Evolution

2.2.1 Power Spectra

• We have seen before (2.14) that it is convenient to decompose
the density contrast δ into plane waves. We introduce the Fourier
transform δ̂ of the density contrast δ as

δ(x) =

∫
d3k

(2π)3 δ̂(k)e−ik·x , δ̂(k) =

∫
d3x δ(x)eik·x . (2.24)

• The density contrast is a random field, which must be isotropic
and homogeneous in order to comply with the fundamental cos-
mological assumptions. This means that the statistical properties
of δ, e.g. its mean or variance, do not change under rotations and
translations.

• By definition, the mean of the density contrast vanishes,

〈δ〉 =

〈
ρ − ρ0

ρ0

〉
=
〈ρ〉

ρ0
− 1 = 0 . (2.25)

The variance of δ in Fourier space defines the power spectrum
P(k),

〈δ̂(k)δ̂∗(k′)〉 ≡ (2π)3P(k)δD(k − k′) , (2.26)

where δD is Dirac’s delta distribution, which ensures that modes
of different wave vector k are uncorrelated in Fourier space in
order to ensure homogeneity. The power spectrum cannot depend
on the direction of k because of isotropy.

• The correlation function of δ in real space is defined as

ξ(y) ≡ 〈δ(x)δ(x + y)〉 , (2.27)

where the average extends over all positions x and orientations of
y. The correlation function measures the coherence of the density
contrast between all points on the sky separated by a distance |y|.
Again, ξ cannot depend on the direction of y because of isotropy.

• Inserting the Fourier integrals for δ(x) in (2.27), we find

ξ(y) =

〈∫
d3k

(2π)3

∫
d3k′

(2π)3 δ̂(k)δ̂(k′)e−ik·xe−ik′·(x+y)
〉

=

∫
d3k

(2π)3

∫
d3k′

(2π)3 〈δ̂(k)δ̂∗(k′)〉e−ik·xe+ik′·(x+y)

=

∫
d3k

(2π)3 P(k)eik·y , (2.28)
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which states that the correlation function is the Fourier transform
of the power spectrum (and vice versa). Hence, both statistical
measures carry an equivalent amount of information. Simplifying
furthermore, we obtain

ξ(y) = 2π
∫

k2dk
(2π)3 P(k)

∫ π

0
sin θdθe−iky cos θ

= 4π
∫

k2dk
(2π)3 P(k)

sin ky
ky

, (2.29)

where θ was the angle between vectors k and y. Obviously, the
variance of δ is the correlation function at y = 0,

σ2 = 4π
∫

k2dk
(2π)3 P(k) . (2.30)

• The variance in real space depends on the scale which we are
considering. Let us introduce

δ̄(x) :=
∫

d3yδ(x)WR(|x − y|) , (2.31)

i.e. the density contrast field averaged on the scale R with a win-
dow function WR. The idea of the window function is that it ap-
proaches a finite constant well within R, and drops to zero outside
R.

• The Fourier convolution theorem says f̂ ∗ g = f̂ ĝ, i.e. the Fourier
transform of a convolution is the product of the Fourier transforms
of the convolved functions. Applying this to (2.30) yields ˆ̄δ =

δ̂ŴR. thus, the power spectrum of the density contrast filtered on
the scale R is P̄(k) = P(k)Ŵ2

R(k). Using (2.30), the variance of the
filtered density-contrast field is

σ2
R = 4π

∫
k2dk
(2π)3 P(k)Ŵ2

R(k) . (2.32)

The variance on a scale of 8 h−1 Mpc, σ8, is often used for char-
acterizing the amplitude of the power spectrum.

2.2.2 Hierarchical Structure Formation

• A detailed study of how modes of different wave numbers grow in
the radiation- and matter-dominated era allows to infer the shape
of the power spectrum. In the linear regime of small-amplitude
perturbations this can be worked out analytically (see e.g., Sect.
2.2.2 of the Cosmology lecture notes by Prof. Bartelmann). For a
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cold dark matter (CDM) cosmology, the resulting power spectrum
reads

P(k) ∝
{

k (k < k0)
k−3 (k � k0). (2.33)

Here, k0 = 2πaeq/λ0 is the comoving wave number of the particle
horizon at matter-radiation equality.
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• We use this result to understand when galaxy clusters form in
comparison to elliptical or dwarf galaxies. To this end, we de-
fine the non-linear mass M∗, as the mass contained in a sphere of
radius R∗ on which the variance becomes unity.

σ2
∗ =

∫ k∗

0

d3k
(2π)3 P(k) !

= 1, (2.34)

where k∗ = 2π/R∗.

• We assume that the power spectrum can be approximated locally
by a power law of the form P(k) = Akn,

σ2
∗ = 4πA

∫ k∗

0

k2+ndk
(2π)3 P(k) =

4πA
(2π)3

kn+3
∗

n + 3
!
= 1, (2.35)

σ2 = σ2
∗

(
k
k∗

)n+3

=

(
k
k∗

)n+3

. (2.36)

• Masses and length scales are related by background density, M =

4πρ̄R3/3 ∝ k−3. Hence we get

σ2 =

〈(
δM
M

)2〉
=

(
M
M∗

)−1−n/3

. (2.37)

The variance reads for the two asymptotic cases

σ2 =


(

M
M∗

)−4/3
for n = 1,

1 for n = −3.
(2.38)

• The previous considerations allow to infer how cosmological
structures grow. In k space, (2.33) and (2.36) demonstrate that the
variance is largest on small scales, i.e., the amplitude of small-
scale fluctuations is largest. Hence these scales reach the non-
linear mass first which causes them to collapse. As a result, struc-
ture forms “bottom-up” in CDM cosmologies. This hierarchical
scheme of structure formation dictates that dwarf galaxies col-
lapse and form before ellipticals, which in turn form earlier than
galaxy clusters. Those sit atop the mass hierarchy as they have
collapsed most recently in cosmic time. The reason for this can
be easily understood by looking at the variance as a function of
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collapsing mass (2.38). Gravity dictates that an overdensity con-
tinues to grow with time. The growth rate depends on the amount
of matter: the more matter, the stronger the gravity, but the longer
it takes to collapse. We can summarize, that the necessary and
sufficient criterion for hierarchical structure formation is given by

∂

∂M
σ(M, t) < 0. (2.39)

• Another way of looking at this is that fluctuations on large scales
are more subtle than fluctuations on small scales because the
Universe is homogeneous on the largest scales according to the
cosmological principles and as inferred from large-scale observa-
tions. Is there a deep reason why fluctuations a smaller on large
scales? Let’s look at the fluctuations in the gravitational potential,

δΦ ∼
GM

R
δM
M
∼ GM2/3ρ̄1/3 δM

M
(2.40)

since at any time R ∝ ρ̄−1/3.

• Unless δM/M ∝ M−2/3, the potential fluctuations δΦ will di-
verge. Depending on the power-law index of δM/M ∝ M−α,
δΦ will diverge on large scales (for α < 2/3) or on small scales
(for α > 2/3). Hence, the most natural fluctuation spectrum is
δM/M ∝ M−2/3, which corresponds to the Harrison-Zel’dovich-
Peebles spectrum with the characteristic spectral index of n = 1.
This can be seen by considering δΦ ∼ GkδM and M ∝ R3 ∝ k−3

which yields

δM
M
∝ M−(n+3)/6 ⇒ δM ∝ M−(n−3)/6 ∝ k(n−3)/2, (2.41)

or
δΦ ∝ k(n−1)/2. (2.42)

This shows that n = 1 is the characteristic power-law index that
avoids any unphysical divergence.

2.2.3 Non-linear Evolution

• When the density contrast reaches unity, linear perturbation the-
ory breaks down. For a correct treatment of the non-linear de-
velopment, one has to resort to numerical simulations. They de-
compose the matter distribution into particles whose initial veloc-
ities are typically slightly perturbed according to some assumed
power spectrum. The particles are then transported to redshifts
high enough for linear evolution to hold on all scales considered.
For later evolution, the equations of motion for all particles are
solved. In the following, the most popular numerical techniques
shall be presented:
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1. Ideally, particles move under the influence of the gravity
from all other particles, but direct summation of all the grav-
itational forces of N−1 particles on N particles becomes pro-
hibitively time-consuming and the scheme attains numerical
complexity ofO(N2) for every timestep. Several approxima-
tion schemes are therefore being employed.

nonlinear structure evolution, sim-
ulated in different cosmologies
(Virgo collaboration)

2. The particle-mesh (PM) algorithm computes the gravita-
tional potential of the particle distribution on a grid (mesh)
by solving Poisson’s equation in Fourier space, making use
of fast-Fourier techniques, thereby reducing the numerical
complexity to O(N log N). The gravitational forces are then
given by the gradients of the potential at the particle posi-
tions. This technique has a spatial resolution limited by the
size of the mesh cells which makes it impractical for many
modern applications.

3. The particle-particle particle-mesh (P3M) algorithm im-
proves the PM technique by adding corrections for nearby
particles which are determined by direct summation. Here,
the numerical complexity is also O(N log N) provided the
number of particle-particle operations per timestep is kept
constant. However, this is not the case for high-resolution
“zoom” simulations of individually forming objects in cos-
mological environments.

4. Tree codes bundle distant particles into groups whose grav-
itational force on a particle is approximated as if they were
point masses, or masses whose spatial distribution has a few
low-order multipoles only, e.g. the monopole corresponding
to a point mass, plus a dipole corresponding to a linear de-
formation, and so on. Depending on the solid angle that is
subtended by the group on the sky seen by the particle, the
“tree” is opened into its branches and leaves, i.e., higher-
order multipoles of this group are considered. Alternatively,
the monopole of that group, which is centered on its center-
of-mass, is subdivided into the monopole moments of sub-
groups of the parent group, which subtend a smaller angle
on the sky. It turns out that the numerical complexity of this
technique is also O(N log N). The particle tree is updated as
the evolution proceeds.

• Non-linear evolution causes density-perturbation modes to cou-
ple: while modes of different wave lengths evolve independently
during linear evolution, mode coupling in the non-linear evolution
moves power from large to small scales as structures collapse.
The effect on the power spectrum is that the amplitude on small
scales is increased at the expense of intermediate scales. Large
scales continue to evolve linearly and independently.
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• Even if the original density perturbation field δ is Gaussian, it
must develop non-Gaussianities during non-linear evolution. This
is evident because δ ≥ −1 by definition, but can become arbitrar-
ily large. An originally Gaussian distribution of δ thus becomes
increasingly skewed as it develops a tail towards infinite δ.

• Typical behavior seen in numerical simulations shows the forma-
tion of “pancakes” and filaments as predicted by the theory of
Gaussian random fields. Gravitational fragmentation of filaments
into individual lumps causes galaxy-sized dark matter overden-
sities to form, which are called halos. In the ΛCDM universe,
those merge into galaxy groups which gradually stream towards
the higher-density regions and larger mass concentrations at the
intersections of filaments—galaxy clusters. Those form at the
sites of constructive interference of long waves in the primordial
fluctuations and are enhanced through gravitational collapse. On-
going gravitational pull on the surrounding regions causes galaxy-
and group-sized halos to continuously merge into clusters which
sit atop the cosmic mass hierarchy of halos and thereby present
the largest gravitationally collapsed objects to date. Giant voids
form as matter accumulates in the walls of the cosmic network.
Equivalently, the formation of voids can be considered to result
from destructive interference of waves in the primordial fluctua-
tions.
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2.3 Spherical Collapse

2.3.1 Collapse of a Homogeneous Overdense Sphere

• The distribution of the dark matter in the universe can be consid-
ered as composed of individual so-called haloes, approximately
spherical overdense clouds of dark matter which can reach highly
non-linear densities in their centres.

• An approximate understanding of the parameters of such haloes
and their relation to the dark-matter density contrast can be ob-
tained by studying the dynamics of a spherical, homogeneous
overdensity, leading to the so-called spherical collapse model.
While realistic density perturbations are not spherical, consider-
ing an exact analytical solution that results from such an analy-
sis nevertheless provides useful insights into non-linear collapse
of more realistic situations. In particular the analysis (1) relates
time (or redshift) at which the object collapses to its initial (lin-
ear) overdensity and (2) it maps the collapse time (redshift) to the
final density of dark matter haloes that formed by collapse.

• The measured temperature anisotropies in the cosmic microwave
background imply δ � 1 at recombination. Thus, non-linear
collapse happens at a � arec, i.e., in the matter- or vacuum-
dominated eras. We make the following assumptions in our anal-
ysis.

– We consider a spherical perturbation that has initially a uni-
form overdensity.

– The fluid is assumed to have zero pressure and is colli-
sionless (i.e., the analysis applies to dark matter and not
baryons). Later stages of baryonic collapse are different
from that of dark matter since baryons additionally feel the
pressure force, which causes the development of shocks in
converging flows. However, since baryons only contribute
∼ 15% of the total mass, they do not appreciably change the
collapse of dark matter.

– For simplicity, we set Ω = Ωm = 1, i.e., a flat matter-
dominated universe. This can be generalized to cases with
Ωm0 , 1 and ΩΛ , 1.

• We consider a sphere of mass M and proper radius R and assume
that the universe outside the sphere remains spherically symmet-
ric such that it exerts no gravitational force on the matter in the
sphere. Since M = const., we have

d2R
dt2 = −

GM
R2 , (2.43)
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which can be integrated to yield

1
2

(
dR
dt

)2

−
GM

R
= φ . (2.44)

• We consider the gravitationally bound case, for which the energy
per units mass is φ < 0 and which leads to collapse. Adopting
R = 0 at t = 0, we can integrate this equation and obtain

t =

∫ R

0

dr√
2 (GM/r + φ)

=
A√
2|φ|

∫ θ(R)

θ(0)

sin θdθ
√

2/(1 − cos θ) − 1
,

(2.45)
where we suitably changed the integration variable, using the
transformation r = A(1 − cos θ), where A = GM/(2|φ|). Em-
ploying trigonometric identities, we obtain

t =
A√
2|φ|

∫ θ(R)

θ(0)
(1 − cos θ)dθ =

A√
2|φ|

(θ − sin θ) . (2.46)

Thus, the spherical collapse problem has the following parametric
solution, which describes a cycloid,

R = A(1 − cos θ) , A =
GM
2|φ|

, (2.47)

t = B(θ − sin θ) , B =
GM

(2|φ|)3/2 . (2.48)

• The solution is characterised by an initial expansion phase from
R = 0 at θ = 0. It reaches a maximum radius Rta = A at θta = π
at which it turns around and collapses back to R = 0 at θc =

2π. In principle, it re-expands for θ > 2π but in practice, other
physical effects become important and complicate things. The
corresponding times are tta = πB for the maximum (turn-around)
radius and tc = 2πB = 2tta for collapse at R = 0.

2.3.2 Connection to Linear Perturbation Theory

• The mean density inside the sphere is (2.47)

ρ =
M

4π/3 R3 =
3M

4πA3

1
(1 − cos θ)3 , (2.49)

while the mean density of the background universe with Ωm0 = 1
is

ρ̄ =
3H2

8πG
=

1
6πGt2 =

1
6πGB2

1
(θ − sin θ)2 , (2.50)

with H = 2/(3t). The overdensity of the sphere (which is gener-
ally non-linear) can be obtained by combining these equations to
yield

1 + δ =
ρ

ρ̄
=

9
2

(θ − sin θ)2

(1 − cos θ)3 . (2.51)
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• To make the connection to linear perturbation theory, we consider
the behaviour of the collapse at small t, which corresponds to
small θ. Performing a Taylor series expansion of cos θ and sin θ,
we obtain

1 + δ = 1 +
3

20
θ2 + O(θ4) , (2.52)

t =
B
6
θ3 + O(θ5) . (2.53)

Solving for θ gives (using tta = πB)

θ =

(
6t
B

)1/3

+ . . . = (6π)1/3
(

t
tta

)1/3

+ . . . , for t � tta. (2.54)

• Thus, θ � 1 corresponds to t � tta. Substituting (2.54) into (2.52)
gives

δ =
3

20
(6π)2/3

(
t

tta

)2/3

� 1, for t � tta. (2.55)

This yields the scaling of the density contrast in the spherical col-
lapse model, δ ∝ t2/3 ∝ a (since t ∝ a3/2 in the Einstein-de Sitter
model), which is exactly the behaviour of the growing mode so-
lution of linear perturbation theory. Note that the decaying mode
solution is absent due to our choice of initial conditions at t = 0.

• A corollary emerges from (2.55) that if the sphere has a uniform
initial overdensity (δi) at some early time (ti), then all interior
spheres will have the same tta and hence the sphere remains uni-
form as it collapses!

• There is an important distinction between (1) the real overdensity
and (2) the overdensity extrapolated according to linear theory,

δlin = δi

(
t
ti

)2/3

=
3

20
(6π)2/3

(
t

tta

)2/3

for all t. (2.56)

The maximum expansion radius at turnaround (t = tta) is

δlin(tta) =
3

20
(6π)2/3 ≈ 1.062 (2.57)

while the real (non-linear) overdensity is according to (2.51)

1 + δ(tta) =
9π2

16
≈ 5.55. (2.58)

• At collapse (t = tc = 2tta), we have

δc ≡ δlin(tc) =
3

20
(12π)2/3 ≈ 1.686. (2.59)
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In terms of the initial overdensity δi, collapse happens at time

tc = ti

(
δc

δi

)3/2

∝ δ−3/2
i , (2.60)

1 + zc = (1 + zi)
(
δi

δc

)
∝ δi , (2.61)

since t ∝ a3/2 ∝ (1 + z)−3/2. Thus, perturbations that are initially
more overdense collapse earlier! Generally, δc = δc(Ωm,ΩΛ), but
the dependence on Ωm and ΩΛ is weak so our result applies quite
generally although it was derived for the Einstein-de Sitter model.

2.3.3 Final Density of a Collapsed Halo

• According to the spherical top hat collapse model, a uniform
sphere collapses to a point of infinite density and then re-expands.
In a realistic situation, the sphere contains inhomogeneities that
generate tangential random velocities in the dark matter during
collapse. This leads to an equilibrium configuration where the
dark matter velocity dispersion balances its gravity. This relax-
ation process is called virialisation.

• We assume that the final dark matter halo is in dynamical equilib-
rium and obeys the virial theorem

2Kf + Vf = 0 , (2.62)

where K denotes the total kinetic energy in random motions, V is
the total gravitational binding energy, and we neglected the sur-
face pressure term due to further infalling material. We have

Kf =
M
2
σ2

f , and (2.63)

Vf = −G
∫ Rf

0

4πr3ρ

3r
dmshell = −

3
5

GM2

Rf
, (2.64)

where σ is the three-dimensional velocity dispersion, dmshell =

4πr2ρdr and we assumed a uniform sphere of radius Rf . Hence

Ef = Kf + Vf =
1
2

Vf = −
3

10
GM2

Rf
. (2.65)

• At turn-around, the sphere is at rest, i.e., Kta = 0. The total energy
at turn-around is

Eta = Vta = −
3
5

GM2

Rta
. (2.66)

Since dark matter is collisionless, the conservation of total energy
during the collapse yields Ef = Eta and hence, Rf = Rta/2.
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• The final density is thus ρf = 8ρ(tta). Assuming that virialisation
happens at t ≈ tc and since ρ̄ ∝ t−2 and tc = 2tta, the overdensity
of the final halo is

1 + δv ≡ 1 + δc =
ρc

ρ̄ (tc/tta)−2 = 32 [1 + δ(tta)] = 18π2 = 178 .

(2.67)
Hence, the final halo density is

ρf = (1 + δv)ρ̄(tc) = 18π2ρ̄(tc) . (2.68)

δlin and δv ≡ ∆v are widely used in cosmology to characterise
dark matter haloes. Other popular choices are ∆v = 100, 200, 500,
where each definition has its merits and shortcomings.
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• These two parameters derived from the spherical collapse model,
δc and ∆v, are very widely used in cosmology for characteris-
ing dark-matter haloes and their formation. Extending these cal-
culations into more general cosmological models is surprisingly
difficult and requires numerical solutions of the underlying dif-
ferential equations. Approximations to the solutions for Ωm < 1
are

δc =
3
5

(
3π
2

)2/3 {
(1.0 + 0.0406 log10 Ωm) (ΩΛ0 = 0)
(1.0 + 0.0123 log10 Ωm) (ΩΛ0 = 1 −Ωm0)

(2.69)
and

∆v = 9π2


[
1 + 0.1210(Ωm − 1) + Ω0.6756

m

]
(ΩΛ0 = 0)[

1 + 0.7076(Ωm − 1) + Ω0.4403
m

]
(ΩΛ0 = 1 −Ωm0)

(2.70)
where Ωm is the matter density parameter at the redshift of halo
collapse.
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2.4 The Halo Mass Function

2.4.1 The Press-Schechter Mass Function

• An important piece of information is the distribution of haloes
over mass, the so-called mass function, which gives the number
density of haloes at redshift z within the mass range between M
and M + dM.

• A characteristic length scale R(M) can be assigned to a halo of
mass M, which is defined as the radius of a homogeneous sphere
filled with the mean cosmic matter density having mass M,

4π
3

R3ρcrΩm = M ⇒ R(M) =

(
3M

4πρcrΩm

)1/3

, (2.71)

where Ωm and ρcr have to be evaluated at the redshift required.

• Aiming at haloes of mass M, we consider the density contrast
field filtered on the scale R(M). We therefore use δ̄ as defined in
(2.31), i.e. the density contrast convolved with a window function
WR which has a characteristic scale R = R(M).

• It will be convenient to scale halo masses with the so-called non-
linear mass, which is the mass M∗ for whose characteristic length
scale R(M∗) ≡ R∗ the variance (2.32) of the density contrast be-
comes δ2

c ,

σ2
R∗ = 4π

∫ ∞

0

k2dk
(2π)3 P(k)Ŵ2

R∗(k) = δ2
c . (2.72)

• For a Gaussian random field, the probability of finding at a given
point x in space a filtered density contrast δ̄(x) is

p(δ̄, a) =
1√

2πσ2
R(a)

exp
[
−
δ̄2(x)

2σ2
R(a)

]
, (2.73)

where we have explicitly noted that the variance σ will depend
on time or equivalently on the scale factor a through the linear
growth factor, σR(a) = σRD+(a).

• Press & Schechter suggested that the probability of finding the
filtered density contrast at or above the linear density contrast for
spherical collapse, δ̄ > δc, is equal to the fraction of the cosmic
volume filled with haloes of mass M,

F(M, a) =

∫ ∞

δc

dδ̄p(δ̄, a) =
1
2

erfc
(

δc
√

2σR(a)

)
, (2.74)
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where erfc(x) is the complementary error function. Obviously,
this equation implies that the fraction of cosmic volume filled
with haloes of fixed mass M is a highly sensitive function of the
scale factor a.

• The distribution of haloes over masses M is simply ∂F(M)/∂M,
so we have to relate σR to M, which is accomplished by the char-
acteristic radius R(M),

∂

∂M
=

dσR(a)
dM

∂

∂σR(a)
=

dσR

dM
∂

∂σR
, (2.75)

where we have inserted the variance σR on the scale R at the
present epoch. Using

d
dx

erfc(x) = −
2
√
π

e−x2
, (2.76)

we find∣∣∣∣∣∂F(M)
∂M

∣∣∣∣∣ =
1
√

2π

δc

σRD+(a)

∣∣∣∣∣d lnσR

dM

∣∣∣∣∣ exp
(
−

δ2
c

2σ2
RD2

+(a)

)
, (2.77)

where the absolute values have been added to ensure positiveness
of the Press-Schechter mass function.

• The normalisation of the mass function is wrong, however. It is
easy to see that ∫ ∞

0

∣∣∣∣∣∂F(M)
∂M

∣∣∣∣∣ dM =
1
2

(2.78)

the reason for this problem is quite subtle. The solution can be
obtained with an elegant argument interpreting the statistics of
halo formation in terms of a random walk (see Sect. 2.4.2). For
for now, we will arbitrarily multiply the mass function by a factor
of two.
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• This fraction of the cosmic volume filled with haloes of masses
within [M,M + dM] is converted to a (comoving) number density
by dividing with the mean volume M/ρ0 occupied by M

f (M, a)dM ≡
∂n(M, a)
∂M

dM (2.79)

=

√
2
π

ρ0δc

σRD+(a)

∣∣∣∣∣d lnσR

dM

∣∣∣∣∣ exp
(
−

δ2
c

2σ2
RD2

+(a)

)
dM
M

.

• The Press-Schechter mass function (2.79) has turned out to de-
scribe the mass distribution of dark-matter haloes in cosmological
simulations remarkably well. Only recently have modifications
been applied in order to improve its agreement with large, high-
resolution simulations, or to take into account that halo collapse
is not expected to proceed spherically, but elliptically.
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2.4.2 Halo Formation as a Random Walk

• The normalisation problem, however, is embarrassing and needs
to be resolved. The solution was given with an elegant argument
interpreting the statistics of halo formation in terms of a random
walk.

• Suppose the density-contrast field δ is given. A large sphere is
centred on some point x and its radius gradually shrunk. For each
radius R of the sphere, the density contrast δ̄ averaged within R
is measured and monitored as a function of R. By choosing a
window function WR in the definition (2.31) of δ̄ whose Fourier
transform has a sharp cut-off in k space, δ̄ will undergo a random
walk because decreasing R corresponds to adding shells in k space
which are independent of the modes which are already included.

Progressive smoothing of the den-
sity field.• δ̄(x) is thus following a random trajectory. A halo is expected to

be formed at x if δ̄(x) reaches δc for some radius R. If δ̄(x) < δc

for some radius, it may well exceed δc for a smaller radius. Or, if
δ̄(x) ≥ δc for some radius, it may well drop below δc for a smaller
radius.

• For determining halo numbers correctly, it is thus necessary to
count all points in space which are part of haloes of any mass. As
R is shrunk around a point x, that point must be counted as being
part of a halo if there is a radius R for which δ̄(x) ≥ δc.

• In the terminology of the random walk, we need to introduce an
absorbing barrier at δc such that points x with trajectories δ̄(x)
vs. R which hit the barrier are removed from counting them as not
being parts of haloes. To accomplish this, we follow the strategy
of counting trajectories that do not make it into haloes such that
the complement of that union represent trajectories of haloes.

Random walk with an absorbing
barrier.• A trajectory meeting the boundary has equal probability for mov-

ing above or below. For any forbidden trajectory continuing
above the boundary, there is an allowed mirror trajectory con-
tinuing below it, and conversely. For any trajectory reaching
a point δ̄ < δc exclusively along allowed trajectories, there is
a path reaching its mirror point on the line δ̄ = δc exclusively
along forbidden trajectories, and conversely. Thus, the probabil-
ity for reaching a point δ̄ < δc along allowed trajectories exclu-
sively below the barrier is the probability for reaching it along
any trajectory, minus the probability for reaching its mirror point
δc + (δc − δ̄) = 2δc − δ̄ along forbidden trajectories,

ps(δ̄)dδ̄ =
1

√
2πσR

[
exp

(
−
δ̄2

2σ2
R

)
− exp

(
−

(2δc − δ̄)2

2σ2
R

)]
, (2.80)

where σR is the variance of δ̄ on the scale R, as before.
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• (2.80) is the probability distribution for the averaged density con-
trast to fall within [δ̄, δ̄ + dδ̄] and not to exceed δc when averaged
on any scale. The probability for δ̄ to exceed δc on some scale is
thus

1 − Ps = 1 −
∫ δc

−∞

dδ̄ps(δ̄) = erfc
(

δc
√

2σR

)
, (2.81)

without the factor 1/2 in (2.74). The rest of the derivation of the
Press-Schechter mass function proceeds as before.

2.4.3 Extended Press-Schechter Theory

• Considering the random walk of the density contrast field when
averaged over increasing or decreasing scales allows the statistics
of haloes to be greatly extended. In order to simplify notation, we
abbreviate S := σ2

R.
Trajectory of a halo in the S -ω
plane. Increasing S means decreas-
ing mass, and ω decreases with
time.

• First, we note that we can either consider the barrier height δc to
be constant while σR is increasing with time, or σR to be constant,
while δc is decreasing with time, because only the ratio δc/σR en-
ters the relevant expressions. Thus, the barrier can be considered
moving towards zero as time progresses,

ω :=
δc

D+(a)
, (2.82)

reflecting the fact that halo collapse becomes easier as structure
formation proceeds. Since δc(a) decreases monotonically with
increasing time, it can uniquely be used instead of time. The
evolution of a halo can now be expressed as a random walk in S
as time proceeds, or ω decreases.

Trajectories of low-mass haloes at
early time, forming a massive halo
at a later time

• Second, we note that

−
∂Ps

∂S
dS = −

∂

∂S

∫ δc

−∞

dδ̄ps(δ̄)

=: pS (S , ω)dS =
ω
√

2πS 3
e−ω

2/2S dS , (2.83)

is the probability for δ̄ to hit the barrier δc for the first time when
the variance is increased from S to S + dS . It represents the
fraction of mass in haloes of a mass M corresponding to the scale
R.

• Consider now a trajectory passing through the barrier ω2 for the
first time at S 2, continuing to eventually pass through ω1 > ω2

at some S 1 > S 2. It represents a halo of mass M1 corresponding
to S 1 which, at a later time corresponding to ω2, reaches mass
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M2 > M1 corresponding to S 2. The conditional probability for
the halo to pass within [S 1, S 1 + dS 1] at ω1, starting from S 2 at
ω2 is, according to (2.83),

pS 1(S 1, ω1|S 2, ω2)dS 1 =
ω1 − ω2

√
2π(S 1 − S 2)3/2

exp
[
−

(ω1 − ω2)2

2(S 1 − S 2)

]
dS 1

(2.84)
because the probability (2.83) only needs to be transformed shift-
ing the origin of trajectories from (S , ω) = (0, 0) to (S , ω) =

(S 2, ω2).

• From (2.84) and Bayes’ theorem on conditional probabilities, we
can straightforwardly derive the probability for a halo which for
the first time reaches ω1 at S 1 to reach ω2 for the first time at S 2:

pS 2(S 2, ω2|S 1, ω1)dS 2 pS (S 1, ω1)dS 1

= pS 1(S 1, ω1|S 2, ω2)dS 1 pS (S 2, ω2)dS 2

⇒ pS 2(S 2, ω2|S 1, ω1)dS 2

=
pS 1(S 1, ω1|S 2, ω2)dS 1 pS (S 2, ω2)dS 2

pS (S 1, ω1)dS 1

=
1
√

2π

[
S 1

S 2(S 1 − S 2)

]3/2
ω2(ω1 − ω2)

ω1

× exp
[
−

(ω2S 1 − ω1S 2)2

2S 1S 2(S 1 − S 2)

]
dS 2 . (2.85)

This provides the conditional probability for a halo of mass M1 to
have merged to form a halo of mass between M2 and M2 + dM2.

• The expected transition rate from S 1 to S 2 within the times t1 and
t2 corresponding to ω1 and ω2 is determined by (2.85) taking the
limit ω2 → ω1 =: ω,

d2 pS 2

dS 2dω
(S 1 → S 2|ω)dS 2dω (2.86)

=
1
√

2π

[
S 1

S 2(S 1 − S 2)

]3/2

exp
[
−
ω2(S 1 − S 2)

2S 1S 2

]
dS 2dω .

This gives the merger rate, i.e. the probability that, in the time
interval corresponding to dω, a halo of mass M1 will merge with
another halo of mass M2 − M1.

• We finally need to substitute the masses M1 and M2 for S 1 and S 2,
and the time for ω. We wish to know the probability for a halo
of mass M to accrete another halo of mass ∆M within the time
interval dt at time t. The transformation is

d2 pM

d ln ∆Mdt
(M1 → M2|t) =

dS 2

d ln ∆M

∣∣∣∣∣dωdt

∣∣∣∣∣ d2 pS 2

dS 2dω
. (2.87)
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• By the definition (2.82), the derivative of ω with respect to t is∣∣∣∣∣dωdt

∣∣∣∣∣ =
δc

D2
+(a)

D′+(a)ȧ = H
δc

D+(a)
d ln D+(a)

d ln a
, (2.88)

where H is the Hubble parameter at scale factor a.

• Since ∆M = M2 − M1, and S was introduced for σ2
R, we have

dS 2

d ln ∆M
= ∆M

dσ2
R(M2)

dM2
. (2.89)

• With expressions (2.88) and (2.89), the merger probability (2.87)
becomes

d2 pM

d ln ∆Mdt
=

√
2
π

Hδc

σR2D+

d ln D+

d ln a
∆M

d lnσR

dM
(M + ∆M)

×

(
1 −

σ2
R2

σ2
R

)−3/2

× exp
[
−

δ2
c

2σ2
R2D2

+

(
1 −

σ2
R2

σ2
R

)]
, (2.90)

where σR2 := σR(M2) = σR(M + ∆M).

• In much the same way, the random-walk interpretation of halo
growth allows deducing halo-survival times and other interesting
quantities related to halo growth.

A “merger tree”, i.e. a graphical
representation of the accretion his-
tory of a halo
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2.5 Halo Density Profiles

2.5.1 General Remarks

• Generally, a self-gravitating system of particles does not have an
equilibrium state. The virial theorem demands that its total energy
(E = K + V) is minus half its potential energy (V),

2K + V = E + K = 0 ⇒ K = −E = −
V
2
. (2.91)

Since V < 0 for self-gravitating systems, any inevitable energy
loss, e.g., through the ejection of a body by means of three-body
encounters, makes the potential energy become more negative.
As a result, the halo becomes more tightly bound, which in turn
increases its energy loss because the dynamical timescale is re-
duced by this contraction according to

tdyn ∼

 R3
g

GM

1/2

∼ (Gρ)−1/2 , (2.92)

where Rg = GM/v2 is the gravitational radius. Thus, any halo
density profile must reflect a potentially long-lived, but transient
state.

• Knowing global halo properties like their mass, their distribution
in mass and redshift, and their growth over time, their internal
density profiles are an important characteristic. We will discuss
two widely used models for the density profiles.

2.5.2 Isothermal Sphere

• A simple analytic model for the density profile is the isothermal
sphere, which is a spherically-symmetric, self-gravitating system
of non-interacting particles whose kinetic energy is characterised
by a constant “temperature” T = m/kσ2 where σ denotes the
three-dimensional velocity dispersion.

• The equations describing the isothermal sphere are thus the Euler
equation of hydrostatic equilibrium,

dp
dr

= −
GM(r)

r2 ρ , (2.93)

and the equation of state for the ideal gas

p =
ρ

m
kT , (2.94)

where m is the mean mass of the particles constituting the sphere.
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• Inserting (2.94) into (2.93) yields

kT
m

d ln ρ
dr

= −
G
r2

∫ r

0
4πρ(r′)r′2dr′ , (2.95)

where we have expressed the mass as an integral over the density.
Differentiation with respect to r yields the second-order differen-
tial equation for ρ,

d
dr

(
r2 d ln ρ

dr

)
= −

4πGm
kT

r2ρ . (2.96)

• One solution of (2.96) is singular and can be obtained by means
of a power-law ansatz in r to yield

ρ1(r) =
σ2

2πGr2 σ2 ≡
kT
m

, (2.97)

where σ is the (radially constant) velocity dispersion of the par-
ticles. The mass and circular velocity of the singular isothermal
sphere (SIS) are given by

M(< r) =
2σ2

G
r and v2

c =
GM(< r)

r
= 2σ2 . (2.98)

• The solution to (2.96) depends on the boundary conditions. It
turns out that there is a second solution, which has a finite central
density ρ0. To find this solution, we have to identify a charac-
teristic length scale such that we can obtain a general solution in
terms of dimensionless variables. The dimensional variables in
(2.96) are G, ρ, and the combination σ2 = kT/m. Those can be
combined to yield a length scale, σ/

√
Gρ, which represents the

typical distance a particle travels in the central dynamical time.
We define the King radius at which the density profile cores out,

r0 ≡

(
9σ2

4πGρ0

)1/2

, (2.99)

and the dimensionless variables

ρ̃ =
ρ

ρ0
, and r̃ =

r
r0
. (2.100)

• (2.96) cast into dimensionless form reads

d
dr̃

(
r̃2 d ln ρ̃

dr̃

)
= −9r̃2ρ̃ . (2.101)

The (numerical) solution is obtained by integrating this differen-
tial equation outwards from r̃ = 0 with the central boundary con-
ditions ρ̃(0) = 1 and dρ̃/dr̃ = 0 (the second condition is necessary
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since M(r̃) vanishes at r̃ = 0). The resulting second solution can
be approximated by

ρ̃2(r̃) =


(
1 + r̃2

)3/2
r̃ . 3,

2
9 r̃−2 r̃ & 3,

(2.102)

i.e., the SIS is the asymptotic solution at large r̃. Note that by
defining dimensionless variables, we have reduced the family of
solutions with different densities and temperatures to a single so-
lution for appropriately scaled variables.

• Both solutions have the advantage that they reproduce the flat ro-
tation curves observed in spiral galaxies. The rotational velocity
vrot of a particle orbiting at radius r is determined by

v2
rot =

GM
r

, (2.103)

which is constant at r � r0 for both density profiles of the isother-
mal sphere. However, the temperature within a stable “gas”
sphere cannot be constant because particles would evaporate from
it. Besides, the mass of the isothermal sphere diverges linearly as
r → ∞. To get a halo of finite mass, we must truncate it at some
large radius by confining it with an external “pressure” that is
practise is provided by accretion of mass. The isothermal profile
is thus at best an approximation for the inner parts of haloes.

2.5.3 Navarro-Frenk-White (NFW) Density Profile  0.001
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• Numerical simulations of halo formation in the cold dark matter
model consistently show density profiles like

ρ(r) =
ρs

x(1 + x)2 , x ≡
r
rs
, (2.104)

which have a characteristic scale radius rs beyond which they fall
off ∝ r−3, and within which the density profile flattens consider-
ably.

• Using the identity x/(1 + x)2 ≡ (1 + x)−1 − (1 + x)−2, the mass of
such haloes within radius r can easily be derived,

M(r) = 4πρsr3
s

∫ x

0

x′dx′

(1 + x′)2 = 4πρsr3
s

[
ln(1 + x) −

x
1 + x

]
.

(2.105)
It rises ∝ x2 for small x and diverges logarithmically for x → ∞.
The divergence is not a fundamental problem because the halo
profile must become invalid at the latest where ρ drops to the cos-
mic background density. In practise, the assumption of spherical
symmetry starts to break down earlier, and becomes invalid at
scales beyond the virial radius.
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• The virial radius rvir of a halo is often defined as the radius r200

enclosing a mean overdensity of 200 times the critical cosmic
density,

ρcr(a) ≡
3H2(a)

8πG
, where (2.106)

H2(a) ≡ H2
0

[
Ωm0a−3 + ΩΛ0 + ΩKa−2

]
(2.107)

is the Hubble function at late times, which are relevant for galax-
ies and clusters and which describes the expansion rate of the
universe. This implies that the contribution of the cosmological
constant Λ (and curvature K) to the critical density are included
in the estimate of the reference density. Since Λ = const., this has
the advantage that the mass of a halo that has decoupled from
the cosmic expansion can only grow by accretion but remains
constant otherwise (at least at lates times when the cosmological
constant dominates the energy density of the universe, a > aeq,Λ).
The factor 200 is a rough approximation to the density contrast
of 18π2 ≈ 178 expected at virialisation in the spherical collapse
model. This implies

M200

(
4π
3

r3
200

)−1

= 200ρcr(a) = 200
3H2(a)

8πG
, (2.108)

where M200 is often identified with the total halo mass M. We
obtain

r200 =

(GM200

100H2

)1/3

. (2.109)

• Other frequent definitions use the radius enclosing a mean over-
density of 200 times the mean matter density (i.e., without the Λ

contribution),

M200m

(
4π
3

r3
200m

)−1

= 200ρcr(a)Ωm(a) . (2.110)

This definition has the advantage that haloes of the same mass but
at different redshifts show the same amount of kinetic pressure
contribution or velocity anisotropy as a function of radius, i.e.,
this definition is close to a dynamical definition of the virial ra-
dius. However, it requires the knowledge of the ab initio unknown
cosmological parameter Ωm0 and has the property that the halo
mass increases at late times because of the redshift dilution of the
mean matter density as ρm = ρm0a−3 even in the absence of mass
accretion! Sometimes, people prefer a redshift dependent over-
density ∆(a) from the solution of a spherical top-hat perturbation
at the time of collapse (2.70) rather than a constant overdensity
threshold. While this property is easily calculable in simulations,
the collapse time of a cluster is inaccessible in observations which
jeopardises detailed comparisons of observations and theory.
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• The ratio c ≡ r200/rs is called concentration of the halo . It turns
out to be a function of halo mass and redshift and to depend
on cosmological parameters. Generally, c is the higher the ear-
lier haloes form. This reflects the hierarchical growth of haloes
and implies that smaller haloes form earlier when the mean back-
ground density was higher. As a result, these haloes have a higher
density at small scales in comparison to larger halos when radii
are scaled to R200. Given the halo mass M, the (virial) radius is
given by (2.109), the concentration parameter gives rs = r200/c,
and the scale density ρs is then determined from (2.105) by the
requirement that M(r200) = M200. Thus, the profile (2.104) is es-
sentially determined by a single parameter, e.g. its mass.

• It is currently unclear how the density profile arises. Also, its
slope near the core is being discussed.
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3.1 Non-radiative Physics

3.1.1 Adiabatic Processes and Entropy

• Before we enter a detailed discussion of the evolution of the bary-
onic component of a cluster, we review a few basic concepts.
First, we start with the first law of thermodynamics (energy con-
servation):

dq = Tds = dε + PdṼ , (3.1)

where Ṽ ≡ ρ−1 is the specific volume, q is the heat per unit mass,
s is the specific entropy, ε ≡ ε/ρ is the specific internal energy
and ε is the internal energy density.

• The specific heat at constant volume

cV ≡

(
∂q
∂T

)
V

(3.2)

is the amount of heat that must be added to raise the tempera-
ture of 1g of gas by 1K. At constant volume, the internal energy
can only be changed by adding or releasing heat, dε = dq. If e
depends only on temperature (and not density), ε(Ṽ ,T ) = ε(T ),
then

cV ≡

(
∂q
∂T

)
V

=

(
∂ε

∂T

)
V

=
∂ε

∂T
(3.3)

implying
dq = cVdT + PdṼ . (3.4)

• The pressure of a gas of particles with mass m is given by

PṼ =
kBT
m

=⇒ PdṼ =
kB

m
dT. (3.5)

Using dq = cVdT + PdṼ , the specific heat at constant pressure is

cP ≡

(
∂q
∂T

)
P

= cV + P
dṼ
dT

= cV +
kB

m
. (3.6)

Changing the temperature at constant pressure requires more heat
than at constant volume because some of the energy does into
PdṼ work.

• For reasons that become soon clear, we define the adiabatic index
γ = cP/cV . The ionized plasma of the intra-cluster medium (ICM)
is to very good approximation a monoatomic gas and has there-
fore 3 translational degrees of freedom. In this case, the specific
energy is

ε =
3
2

kBT
m

=⇒ cV =
3
2

kB

m
=⇒ cP =

5
2

kB

m
=⇒ γ =

5
3

(3.7)
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In general, the equation of state for an ideal gas is given by

ε =
1

γ − 1
kBT
m

=
1

γ − 1
P
ρ
. (3.8)

• The total differential of the equation of state of an ideal gas is

dε =
1

γ − 1

(
dP
ρ
−

P
ρ2 dρ

)
. (3.9)

For adiabatic (dq = ds = 0) changes, we can combine this with
the first law of thermodynamics

dε = −PdṼ =
P
ρ2 dρ (3.10)

and find (after multiplying with ρ/P)

1
γ − 1

(
dP
P
−

dρ
ρ

)
=

dρ
ρ
, (3.11)

implying

dP
P

= γ
dρ
ρ

=⇒ P = P0

(
ρ

ρ0

)γ
≡ Kργ. (3.12)

• Thus, a polytropic equation of state (P ∝ ργ) defines the quantities

K =
P
ργ

=
kBT

mργ−1 , and (3.13)

Ke =
kBTe

nγ−1
e

∝ K (3.14)

which are constants upon adiabatic changes. In the context of
galaxy clusters, they are often referred to as “entropy”. This is
especially the case for the observationally motivated Ke which
can be conveniently computed with the X-ray observables kBTe

and ne and has typical values of

Ke ∼ 100
(

kBTe

1 keV

) ( ne

10−3 cm−3

)−2/3
keV cm2. (3.15)

• To relate this cluster “entropy” to the proper thermodynamic en-
tropy, we start with

dε = −PdṼ + Tds (3.16)

and consider adding or removing heat at constant ρ (dṼ = 0),

Tds = dε = cVdT (3.17)

implying

ds = cV
dT
T

=⇒ s = cV ln T + const. (3.18)
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• Since P ∝ T at constant ρ, this implies that s = cV ln P + const.
We have just shown that adiabatic changes keep Pρ−γ constant, so
these must be lines of constant entropy (in the P-ρ plane). Hence,
for a single species gas, we have

s = cV ln(Pρ−γ) + const. =
kB

(γ − 1)m
ln K + const. (3.19)

or

s = cV ln
(

K
K0

)
⇐⇒ K = K0 exp

(
s

cV

)
. (3.20)

3.1.2 Basic Conservation Equations

Preliminaries

• A physical system can be described at different levels: with quan-
tum physics, at the classical particle level, or in the continuous
fluid level. A fluid is a macroscopic description of a physical sys-
tem that is characterized by its mass density ρ, temperature T ,
and velocity u = 3 + 4. Here 3 ≡ 〈u〉 is the mean velocity in the
local fluid element and 4 is the random velocity component that
defines the temperature. The equipartition theorem of classical
mechanics states that each degree of freedom i that can be excited
has energy kBT/2:〈

1
2

mw2
i

〉
=

1
2

kBT =⇒
〈
|4|2

〉
=

3kBT
m

. (3.21)

Fluid elements move and change their density and temperature,
but particles random walk from one fluid element to another only
slowly, through a diffusion process.

• A system can be well described as a fluid, if the particle mean free
path is much shorter than the characteristic system size, λ � L.
In an ionized plasma, the electron’s effective interaction radius
re is to order of magnitude give by an energy balance between
the electrostatic potential of an ion of charge Ze and the thermal
energy of an electron:

Ze2

re
∼ mew

2
e ∼ kBTe, (3.22)

where e and me are the electron charge and mass, respectively.
The electron mean free path is given by

λ =
1

nσ
∼

1
nπr2

e
∼

1
πn

(
kBTe

Ze2

)2

(3.23)

∼ 1.5 × 1022
( n
10−3 cm−3

)−1
(

kBTe

1 keV

)2

cm, (3.24)

where we have assumed Z = 1.



CHAPTER 3. THE BARYONIC COMPONENT 46

• Careful calculations (which we will perform in Sect. 3.2.5) yield
a result that is shorter by ∼ (ln Λ)−1 because of the effects of dis-
tant interactions. Here, Λ = bmax/bmin is the ratio of the largest-
to-smallest impact parameter of such an interaction. The typi-
cal impact parameter in a large-angle deflection constitutes the
minimum impact parameter, bmin ∼ re, and bmax ∼ λD since the
plasma becomes neutral on scales larger than the Debye length,
λD =

√
kBT/(4πneZe2). Hence, we obtain to order of magnitude

ln Λ ∼ ln
λD

re
∼ ln

√
(kBT )3

ne4πZ3e6

∼ 35 −
1
2

ln
( ne

10−2cm−3

)
+

3
2

ln
(

kBT
keV

)
. (3.25)

Hence, λ � Lcluster and we can treat the bulk of the ICM as a
fluid. However, on small scales or toward the cluster outskirts,
this is not true and we have to consider plasma processes.

The Distribution Function and the Boltzmann Equation

• We define the distribution function f (x,u, t) such that
f (x,u, t)d3xd3u is the probability of finding a particle in the
phase space volume d3xd3u centered on position x, velocity u at
time t. Integrating over all phase space yields the total number of
particles

N =

∫ ∫
f (x,u, t)d3xd3u. (3.26)

Since particles are neither created nor destroyed, continuity im-
plies

d
dt

f (x,u, t) =
∂ f
∂t

+ ẋ ·∇ f + u̇ ·∇u f =
d f
dt

∣∣∣∣∣
c
, (3.27)

where the term d f /dt|c represents discontinuous motions of parti-
cles through phase space as a result of collisions. While collisions
happen at a fixed point in space, they can instantaneously change
particle velocities and thus cause particles to jump in phase space.
Substitution ẋ = 3 and u̇ = g leads to the Boltzmann equation

d
dt

f (x,u, t) =
∂ f
∂t

+ u ·∇ f + g ·∇u f =
d f
dt

∣∣∣∣∣
c

(3.28)

which describes the evolution of the phase space distribution
function f (x,u, t).

• In the fluid limit (λ � L), the collision term causes f (u) to ap-
proach a Maxwellian velocity distribution while locally conserv-
ing mass, momentum, and energy. This property allows us to
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coarse grain the information in phase space and distill the es-
sential pieces of information, namely how density, mean veloc-
ity, and velocity dispersion change as a function of x and t. In
practice, this is done by taking the appropriate moments of the
Boltzmann equation and integrating over velocity space, d3u. We
identify the mass density

ρ = ρ(x, t) =

∫
m f (x,u, t) d3u. (3.29)

The mass-weighted average of some quantity q at position x is
given by

〈q〉 =
1
ρ

∫
qm f (x,u, t) d3u. (3.30)

Mass Conservation – Continuity Equation

• We multiply (3.28) by m and integrate over d3u to get

∂

∂t

∫
m f d3u +

3∑
i=1

∂

∂xi

∫
m f uid3u

+ m
∫ 3∑

i=1

∂

∂ui
(gi f )d3u =

∫
m
∂ f
∂t

∣∣∣∣∣
c

d3u. (3.31)

Here we assume that the force g does not depend on velocity u.

• Using the definitions (3.29) and (3.30) and applying Gauss’ di-
vergence theorem, this simplifies to

∂

∂t
ρ(x, t) +

3∑
i=1

∂

∂xi
(ρ〈ui〉) + m

∫
∂Ω

f (g ·n)d2Au = 0, (3.32)

where n is the normal vector of the differential surface element
d2Au. The right-hand side vanishes because of local mass conser-
vation: collisions do not create or destroy particles at a fixed po-
sition, they can only discontinuously shift them in velocity space.
Since the velocity can be split into a mean and a random compo-
nent, u = 3 + 4, we have 〈u〉 ≡ 3 in the second term. Assuming
that f → 0 for |u| → ∞, the third term also vanishes on taking the
limit of the integration boundary to infinity. We hence obtain

∂ρ

∂t
+ ∇ · (ρ3) = 0. (3.33)

• Taking the volume integral extending over the entire space and
applying Gauss’ divergence theorem, we can demonstrate that the
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total mass of the system is conserved:

∂

∂t

∫
Ω

ρd3x +

∫
Ω

∇ · (ρ3)d3x = 0,

∂m
∂t

+ lim
∂Ω→∞

∫
∂Ω

ρ(3 ·n)d2A =
dm
dt

= 0. (3.34)

In the last line, we exchanged the total for the partial time deriva-
tives since m depends neither on position nor on velocity.

Momentum Conservation

• We multiply (3.28) by mu and integrate over d3u to get

∂

∂t

∫
mu j f d3u +

3∑
i=1

∂

∂xi

∫
m f u juid3u

+ m
∫ 3∑

i=1

giu j
∂ f
∂ui

d3u =

∫
mu j

∂ f
∂t

∣∣∣∣∣
c

d3u.

(3.35)

• The first term is ∂(ρv j)/∂t and second term is

3∑
i=1

∂

∂xi
(ρ〈u jui〉) =

3∑
i=1

∂

∂xi
(ρv jvi + ρ〈w jwi〉). (3.36)

To simplify the third term, we use the identity

∂

∂ui
(u j f ) ≡ u j

∂ f
∂ui

+ δi j f (3.37)

and obtain

3∑
i=1

mgi

∫ [
∂

∂ui
(u j f ) − δi j f

]
d3u = −

3∑
i=1

giδi j

∫
m f d3u = −ρg j,

(3.38)

where δi j ≡ 1 for i = j, 0 for i , j and the first term in the bracket
vanishes because of Gauss’ divergence theorem. The right-hand
side of (3.35) vanishes because collisions conserve momentum.

• We get the result

∂

∂t
(ρv j) +

3∑
i=1

∂

∂xi
(ρv jvi + ρ〈w jwi〉) = ρg j. (3.39)

The diagonal terms of 〈wiw j〉 are generally much larger than the
off-diagonal terms since random velocities in different directions
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are almost uncorrelated. It is useful to split the ρ〈wiw j〉 term into
an (isotropic) contribution from pressure, P, and a contribution
from the anisotropic viscous stress tensor, Π̄,

P ≡
1
3
ρ〈|4|2〉, (3.40)

Πi j ≡ Pδi j − ρ〈wiw j〉, (3.41)

which is a symmetric and traceless tensor.

• The final result is the Navier-Stokes equation

∂

∂t
(ρv j) +

3∑
i=1

∂

∂xi

(
ρviv j + Pδi j − Πi j

)
= ρg j, or (3.42)

∂

∂t
(ρ3) + ∇ ·

(
ρ33T + P1̄ − Π̄

)
= ρg. (3.43)

Taking the volume integral and applying Gauss’ divergence the-
orem (as in 3.34), we can demonstrate that the total momentum,
p =

∫
ρ3d3x is conserved in the absence of an external force field

that acts as a source of momentum.

• To simplify this equation, we rewrite the first two terms in (3.43),

∂

∂t
(ρ3) + ∇ ·

(
ρ33T

)
= ρ̇3 + ρ3̇ + ρ3(∇ · 3) + ρ(3 · ∇)3 + 3(3 ·∇ρ) (3.44)
= 3

[
ρ̇ + ∇ · (ρ3)

]
+ ρ [3̇ + (3 ·∇)3] = ρ [3̇ + (3 ·∇)3] .

In the last step, we have used the continuity equation (3.33).

• If we use this result in combination with the momentum equation
(3.43), we get

∂3

∂t
+ (3 ·∇)3 = g −

1
ρ
∇P +

1
ρ
∇ · Π̄. (3.45)

Viscosity acts to oppose shearing motion and interpenetration.

• To make progress, we adopt an ansatz for the viscous stress ten-
sor and assume a “Newtonian fluid”, i.e., we assume that Πi j is
linearly proportional to the velocity gradient, ∂vi/∂x j. The most
general symmetric tensor that is linear in ∂vi/∂x j is

Πi j = µDi j + βδi j(∇ · 3), where (3.46)

Di j =
∂vi

∂x j
+
∂v j

∂xi
−

2
3
δi j(∇ · 3) (3.47)

is the deformation tensor that vanishes for uniform expansion or
contraction. µ and β are the coefficients of shear and bulk vis-
cosity, respectively and have units of g cm−1 s−1. The term µDi j

represents resistance to shearing motion and βδi j(∇ · 3) represents
resistance to changes in volume.
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Energy Conservation

• To obtain the internal energy equation, we multiply (3.28) by mu2

and integrate over d3u. Making use of Gauss’ divergence theorem
and of the fact that collisions conserve energy (as well as mass
and momentum) we get (after a similar procedure)

ρ
dε
dt

= ρ

(
∂ε

∂t
+ 3 ·∇ε

)
=
∂

∂t
(ρε) + ∇ · (ρε3) = −P∇ · 3 + Ψ − ∇ ·Q. (3.48)

In the second step, we have used the continuity equation (3.33).
Here, ε is the specific internal energy (3.21), Ψ is the viscous
dissipation rate, and Q is the conductive heat flux:

ε ≡
1
2

〈
|4|2

〉
, (3.49)

Ψ ≡

3∑
i, j=1

Πi j
∂vi

∂x j
, (3.50)

Q ≡
1
2
ρ
〈
4|4|2

〉
. (3.51)

Ψ represents conversion of bulk motion of the fluid into internal
energy via viscous dissipation. It is the viscous analog of heating
by PdV work.

• If the distribution of the random velocity component, 4, is sym-
metric about zero, then Q vanishes. If the distribution is skewed,
then hot particles drift relative to cold particles and produce a
heat flux in the direction of the drift. In most cases, a temperature
gradient produces a conductive flux (see also Sect. 3.2.5),

Q = −χ∇T, with χ ' 6 × 10−7 T 5/2 erg s−1cm−1K−1. (3.52)

We will also use κ = χT/P instead of χ for convenience (κ has
units of cm2 s−1, i.e., of a diffusion coefficient). However, if Q is
uniform, heat flowing out is replaced by heat flowing in. Hence,
the local thermal energy changes only if ∇ ·Q , 0.

• One can derive an equivalent equation for the entropy by consid-
ering the first law of thermodynamics,

dε = −PdṼ + Tds =
P
ρ2 dρ + Tds. (3.53)

Combining this with the internal energy equation (3.48), we get

P
ρ2

dρ
dt

+ T
ds
dt

= −
P
ρ
∇ · 3 −

1
ρ
∇ ·Q +

1
ρ

Ψ. (3.54)
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Using the continuity equation, dρ/dt = −ρ∇ · 3, the first terms on
both sides cancel each other and we obtain,

ρT
ds
dt

= −∇ ·Q + Ψ. (3.55)

This shows explicitly, that heat conduction and viscous friction
change the entropy. Equivalently, if these processes are absent,
specific entropy is conserved.

3.1.3 Buoyancy Instabilities

• We are now interested in studying adiabatic hydrodynamic per-
turbations about an atmosphere in hydrostatic equilibrium. The
starting point are conservation equations of mass, momentum,
and internal energy (or equivalently entropy) in the absence of
viscosity and magnetic fields:

∂ρ

∂t
+ ∇ · (ρ3) = 0, (3.56)

∂3

∂t
+ (3 ·∇)3 = −

∇P
ρ

+ g, (3.57)

ρT
ds
dt

= −∇ ·Q, (3.58)

where ρ(t, x) and 3(t, x) are the density and velocity of the cosmic
fluid at position x and time t, g is a conservative force field per
unit mass (such as the gravitational acceleration), P is the thermal
pressure, T is the temperature, s is the entropy per unit mass and
d/dt = ∂/∂t + 3 ·∇ is a Lagrangian time derivative.

• In linear theory, there are two families of modes corresponding to
whether pressure or gravity acts as the restoring force. This be-
comes clear from the right-hand side of the momentum equation
(3.57). The pressure modes represent the familiar sound waves
which propagate at the sound speed, cs =

√
γP/ρ, where P is the

thermal pressure, ρ is the mass density, and γ is the ratio of spe-
cific heat capacities. The pressure modes radiate out of any given
region on the sound crossing time.

• Gravity modes have the important property that they can be
trapped. They can induce vortical motions that feed into a tur-
bulent cascade with important consequences for the thermal clus-
ter state. To see this in detail, we will now derive the disper-
sion relation of a local g-mode. We will carry out a Wentzel-
Kramers-Brillouin (WKB) perturbation analysis on a hydrostatic
background. To this end, we assume that the background plasma
is thermally stratified in the presence of a uniform gravitational
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field in the vertical direction, g = −gez (ez is the unit vector in
the z direction). Hence, the force balance implies dP0/dz = −ρ0g
and 30 = 0 (the subscript 0 denotes background quantities). The
background heat flux Q0 = −χdT0/dz requires us to demand
∇ ·Q0 = 0 in order for the initial equilibrium to be in steady
state which implies a temperature that varies at most linearly with
height. Although this steady state assumption is formally re-
quired, we note that as long as the time scale for the evolution
of the system is longer than the local dynamical time, the general
features of the instability described here are unlikely to depend
critically on this steady state assumption.

• We perturb the stratified plasma and split the dynamical quantities
into background values and small perturbations: ρ = ρ0 + δρ,
3 = δ3, P = P0 + δP, and s = s0 + δs. To first order, we obtain for
the time derivative of the entropy

∂s
∂t

=
1

γ − 1
kB

m
∂(ln Pρ−γ)

∂t

=
1

γ − 1
kB

m

(
1
P0

∂δP
∂t
−
γ

ρ0

∂δρ

∂t

)
. (3.59)

Using this, we obtain to first order for our conservation equations

∂δρ

∂t
+ ∇ · (ρ0δ3) = 0, (3.60)

∂δ3

∂t
−
δρ

ρ2
0

∇P0 +
∇δP
ρ0

= 0, (3.61)

1
γ − 1

(
∂δP
∂t
−
γkBT0

m
∂δρ

∂t

)
+ ρ0T0(δ3 ·∇)s0 = −∇ · δQ (3.62)

where we have used g = ∇P0/ρ0 in (3.61).

• We can decompose all dynamical variables (δρ, δ3, δs, δP, δQ)
into plane waves,

δρ(x, t) =

∫
d3k

(2π)3 δρ̂(k, ω) e−iωt+ik·x, (3.63)

introducing the Fourier amplitudes δρ̂(k, ω) which obey alge-
braic equations rather than partial differential equations. For-
mally, plane waves form an orthonormal system on a homoge-
neous background. As long as the perturbations of our strati-
fied hydrostatic background are small, a decomposition into plane
waves is complete. However, as we will see, the growth rate of
the perturbations depends in general on position (i.e., height in
the gravitational potential), which renders this approach inaccu-
rate after some time because the wave vector will start to depend
on position and different wave vectors are not any more linearly
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independent. The wave vector is defined as k = kxex + kyey + kzez

and the WKB assumption requires kH � 1, where H is the local
scale height of the system and k = |k|. We define k2

⊥ = k2
x + k2

y to
be the wave vector perpendicular to the local gravitational field.

• We get

−iωδρ̂ + (δ3̂ ·∇)ρ0 + iρ0k · δ3̂ = 0, (3.64)

−iωδ3̂ −
δρ̂

ρ2
0

∇P0 + ik
δP̂
ρ0

= 0, (3.65)

iω
γ

γ − 1
P0
δρ̂

ρ0
+ ρ0T0(δ3̂ ·∇)s0 = −ik · δQ̂ (3.66)

To derive the third equation, we used the Boussinesq approxima-
tion which filters out time scales faster than the sound crossing
time. Comparing the Fourier transform of the two terms in the
parenthesis of (3.62) and using the dispersion relation of sound
waves, the Boussinesq approximation requires

δP̂ =
ω2

k2 δρ̂
!
� c2

sδρ̂ =
γkBT

m
δρ̂ ⇒ ω

!
� kcs. (3.67)

This implies that we effectively drop the δP term in the energy
equation (but not in the momentum equation).

• We define a displacement vector ξ = iδ3̂/ω (with ξ = |ξ|) and
use this to perform an order of magnitude analysis of the terms in
(3.64):

δρ̂
ρ0

+ 1
ρ0

(ξ ·∇)ρ0 −
k · δ3̂
ω = 0

δρ̂
ρ0
∼

ξ
H � kξ since kH � 1

(3.68)

which follows from the WKB approximation. Thus, the last term
dominates over the first two terms and leaves us with the near
incompressibility condition:

k · δ3̂ = 0 ⇒ k⊥δv̂⊥ + kzδv̂z = 0 (3.69)

• As we will now see, this conditions enables us to project the mo-
mentum equation (3.65) into a purely vertical and perpendicular
equation, respectively:

−iωk · δ3̂ = 0 = −
δρ̂

ρ0
gkz − ik2 δP̂

ρ0
, (3.70)

δP̂
ρ0

= ω
δv̂⊥
k⊥

. (3.71)
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• Combining (3.66), (3.70), (3.71) and neglecting heat flux pertur-
bations for simplicity (k · δQ̂ = 0), we obtain the dispersion rela-
tion for gravity waves,

ω2 = N2 k2
⊥

k2 , N2 =
g

γ

∂ ln K
∂z

. (3.72)

Here, K = Pρ−γ and N denotes the Brunt-Väisälä frequency.

• This dispersion relation has two important consequences:

1. For a stably stratified atmosphere where the entropy is in-
creasing outward (∂s/∂z > 0 or ∂K/∂z > 0), ω is posi-
tive and the displaced fluid parcel oscillates with the Brunt-
Väisälä frequency around the equilibrium position. If the
entropy is decreasing outward, we have an unstable situ-
ation: displacing high-entropy gas in such an atmosphere
upwards causes it to rise further until the entropy profile is
inverted and stably stratified, defining a new equilibrium.

2. Since k⊥ ≤ |k|, g-modes have a maximum possible fre-
quency ofωmax = N at which point k⊥ = |k| and kz = 0. If the
Brunt-Väisälä frequency is a decreasing function of height
z, g-modes of a given frequency ω will be confined/trapped
below the height at which N(z) = ω.

The first result can also be obtained by thermodynamic consider-
ations only and is known as the Schwarzschild criterion for con-
vective instability. We show its derivation for completeness in
Appendix A.2.
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3.1.4 Vorticity

• Among other sources, g-modes can also generate vorticity that de-
cays to smaller eddies and drives a turbulent cascade, as we will
see. To lowest order in the (small) Mach number (M = v/cs) of
the velocity perturbations, the flow is incompressible, ∇ · 3 = 0.
This implies that the velocity field in this approximation is a pure
vortex field, 3 = ∇ × A (where A is a vector potential). In other
words, the excitation of g-modes leads to the generation of vor-
ticity, ω = ∇ × 3. We will now derive an evolution equation for
vorticity in the case of an ideal inviscid fluid, which has viscous
forces that are much smaller than inertial forces. We only con-
sider conservative external forces per unit mass, g = −∇Φ.

• If we apply the curl operator to the momentum equation (3.57)
and adopt the definition of vorticity, ω = ∇ × 3, we obtain

∂ω

∂t
+ ∇ × [(3 ·∇)3] =

1
ρ2∇ρ × ∇P (3.73)

since ∇ × ∇φ ≡ 0 where φ is a scalar field. Using the identity

(3 ·∇)3 ≡
1
2
∇(32) − 3 × ω, (3.74)

we can rewrite the second term in (3.73) as follows:

∇ × [(3 ·∇)3] = −∇ × (3 × ω)
= −(ω ·∇)3 + ω(∇ · 3) + (3 ·∇)ω (3.75)

since ∇ ·ω ≡ 0.

• Hence the evolution equation for vorticity reads

dω
dt

= (ω ·∇)3 − ω(∇ · 3) +
1
ρ2∇ρ × ∇P (3.76)

where d/dt ≡ ∂/∂t+3 ·∇ is the Lagrangian time derivative. In the
limit of small velocities (M� 1) this evolution equation reads to
linear order

∂ω

∂t
=

1
ρ2∇ρ × ∇P. (3.77)

• Hence, vorticity production is associated with departures between
surfaces of constant density and those of constant pressure. Given
that the pressure gradient is essentially in the vertical direction
(as defined by the local gravitational field), the term ∇ρ×∇P and
hence the generated vorticity will lie principally in the horizontal
plane. This facilitates the identification of g-modes.
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3.1.5 Turbulence

“Big whirls have little whirls that feed on their velocity,
and little whirls have lesser whirls and so on to viscosity.”

– Lewis Fry Richardson

• We start with the Navier-Stokes equation (3.44) for an incom-
pressible fluid (∇ · 3 = 0) and obtain

∂3

∂t
+ (3 ·∇)3 = g −

1
ρ
∇P + ν∆3, (3.78)

where we used (3.46) and (3.47) and defined the kinematic vis-
cosity ν = µ/ρ = λmfpvth which is the product of particle mean free
path and thermal velocity and has the units cm2 s−1. From left to
right, the terms have the following meaning: 1) rate of change
of 3, 2) advective transport, 3) external force (e.g., gravity), 4)
pressure force, 5) viscous dissipation term.

• We compare the time scales for advection, tadv, and for viscous
dissipation, tdiss:

tadv =
L
v

and tdiss =
L2

ν
, (3.79)

where L and v are characteristic length and velocity scales of the
(macroscopic) system. We define the Reynolds number to be the
ratio of dissipative-to-advective time scale,

Re =
tdiss

tadv
=

Lv
ν

=
L
λmfp

v

vth
. (3.80)

This shows that Re is the product of the ratios of macroscopic-to-
microscopic length and velocity scales.

• Note that the assumption of an incompressible flow

3(x, t) =

∫
3̂(k, ω)ei(k·x−ωt)d3kdω, (3.81)

∇ · 3 = 0 =⇒ k · 3̂ = 0 (3.82)

does not allow for longitudinal disturbances (sound waves), but
only for rotational flows, so-called “eddies” and implies subsonic
velocities (since supersonic velocities would cause the formation
of shocks, which necessarily have ∇ · 3 , 0).

• If Re � 1, advection is much faster than dissipation which can-
not stabilize the dynamical growth. The vortical fluid motions
interact non-linearly and turbulence sets in. In three dimensions,
energy is being fed into the turbulent cascade on the macroscopic
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“injection scale” L with a typical velocity v. Energy is being
transported from large to small scales as large eddies break up
into smaller eddies, thereby conserving vorticity in the absence
of the baroclinic term. The energy transport to small scales con-
tinues until the energy is dissipated through the production of
viscous heat on the microscopic “viscous” scale, λvisc, which is
of order the particle mean free path. The scales in between, for
λvisc < λ < L, are called the “inertial range”. In two dimensions,
however, small eddies merge to form larger eddies and energy
flows from small to large scales along an “inverse cascade”.

• Let λ be the size of an eddy and vλ the typical rotational velocity
across the eddy. The energy flow through that scale is the product
of kinetic energy and the eddy turnover rate on that scale,

ε̇ ≈

(
v2
λ

2

) (
vλ
λ

)
≈
v3
λ

λ
. (3.83)

In the inertial range, the energy flow must be independent on
scale, ε̇ = const. because energy must not accumulate anywhere
in steady state: the only channel for the energy to be transferred is
through non-linear interactions with other eddies and hence, we
obtain the velocity scaling from (3.83)

vλ ≈ v
(
λ

L

)1/3

. (3.84)

• The largest eddies assume the highest velocities (and thus the
highest kinetic energies), but the smallest eddies have the high-
est vorticity

|ω| ≈
vλ
λ
≈

v

(λ2L)1/3 . (3.85)

Since the overall vorticity is approximately conserved this implies
that turbulence becomes more and more intermittent on smaller
scales, i.e., less volume is filled with turbulent eddies.

• To compute the power spectrum of eddy velocity, vλ ≈ (ε̇λ)1/3, we
write down the correlation function which scales as

ξv ∝ v
2
λ ∝ (ε̇λ)2/3. (3.86)

Note that the kinetic energy on a scale λ scales exactly as the
correlation function, ε ∝ v2

λ ∝ λ
2/3. The Fourier transform of ξv is

the velocity power spectrum which inherits the scaling

Pv ∝ λ
3ξv ∝ k−3

(
ε̇k−1

)2/3
∝ ε̇2/3k−11/3. (3.87)

The power per linear and logarithmic interval in k-space scale as

Pvk2dk ∝ ε̇2/3k−5/3dk, and (3.88)
Pvk3d ln k ∝ ε̇2/3k−2/3d ln k, (3.89)
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which is the Kolmogorov turbulence spectrum of driven turbu-
lence.

• In contrast to driven subsonic turbulence, in clusters we encounter
decaying turbulence: a merger injects kinetic energy on scales
L ∼ rc, which will successively decay after a few eddy turnover
time scales L/v. The possible implications of turbulence in clus-
ters is mainly

1. mixing of metals that have been injected by galactic winds,

2. explaining the magnetization in clusters: driving a turbulent
dynamo of either primordial magnetic fields or field that was
injected by AGNs:

3. shredding AGN bubbles and mixing relativistic components
within the ICM

4. heating cool cores and possible arresting the over-cooling in
them, provided the coupling efficiency of PdV work to the
turbulent cascade is high.

3.1.6 Shocks

General Considerations

• Imagine the propagation of a sound wave with finite amplitude.
The sound speed is higher at higher temperature as c2

s ∝ kBT , so
that the crest of the wave gradually overtakes the colder trough
(T ∝ ργ−1). When faster moving gas overtakes slower moving
gas, we would obtain a multivalued solution that is inconsistent
with the hydrodynamic equations. Instead, we get a discontin-
uous change of density and velocity, a so-called “shock”. This
steepening happens even for γ = 1 because of the non-linearity
of the equations. Shocks can also be produced by any supersonic
compressible disturbance (or through non-linear interactions of
subsonic compressible modes). This can result from a supernova
explosion within a galaxy, by gas accreting super-sonically onto
a cluster, or if two galaxy clusters merge to form a larger entity.
In general, a shock wave is

1. propagating faster than the “signal speed” for compressible
waves, cs,

2. producing an irreversible change of the fluid state, i.e., an
increase in entropy, and

3. can either be caused by a pressure-driven compressive dis-
turbance, results from non-linear wave interactions, or is
caused by supersonic collisions of two streams of fluids
(e.g., as a result of their mutual gravitational interactions).
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• In most cases, a shock involves a “discontinuous” change of the
fluid properties over a scale proportional to the effective mean
free path λeff . In “collisional” shocks, λ is set by Coulomb-force
mediated particle-particle collisions. In a “collisionless” plasma
(which is of relevance for galaxy clusters) electromagnetic vis-
cosities mediate interactions between charged particles and thus
reduce λeff by many orders of magnitude, λeff � λCoulomb, so that
we are dealing here with “collisionless” shocks.

• In order to understand general properties at fluid discontinuities,
we are now considering the conservation laws of mass, momen-
tum, and internal energy in the absence of external gravitational
forces and conductive heat flux (which act on time scale that are
much longer in comparison to the transition times at shocks or
contact discontinuities),

∂ρ

∂t
+ ∇ · (ρ3) = 0, (3.90)

∂3

∂t
+ (3 ·∇)3 = −

∇P
ρ

+
1
ρ
∇ · Π̄ (3.91)

∂

∂t
(ρε) + ∇ · (ρε3) = −P∇ · 3 + Ψ. (3.92)

• Since we are interested how the total energy density changes in
a given volume, ρ32/2 + ρε, we are supplementing the internal
energy equation (3.92) with a conservation law of ρ32/2. To this
end, we consider

∂

∂t

(
ρ32

2

)
=
32

2
∂ρ

∂t
+ ρ3 ·

∂3

∂t
(3.93)

and substitute (3.90) and (3.91) to get

∂

∂t

(
ρ32

2

)
= −
32

2
∇(ρ3) − ρ3(3 ·∇)3 − 3 ·∇P + 3 · (∇ · Π̄). (3.94)

Using the identity (3 ·∇)3 ≡ ∇32/2, we obtain an equation for the
conservation of kinetic energy density

∂

∂t

(
ρ32

2

)
+ ∇

(
1
2
ρ323

)
= −3 ·∇P + 3 · (∇ · Π̄). (3.95)

Jump Conditions

• Consider a propagating fluid discontinuity in the rest frame of the
discontinuity. Fluid moves from upstream to downstream. We
denote the upstream conditions by ρ1, v1, T1 and downstream con-
ditions by ρ2, v2, T2.
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• We would like to derive the relations (also known as “jump condi-
tions”) between ρ1, v1, T1 and ρ2, v2, T2 for a steady-state, plane-
parallel geometry of a fluid discontinuity such as a shock. First,
we assume that the velocity is perpendicular to the surface of the
discontinuity. While this may seem to be a substantial loss of gen-
erality, it captures the main effect of discontinuities as we will see
by generalizing this simplification in the last part of this section.
As we will also see, there are two types of discontinuities:

1. shocks that are characterized by a mass flux through their
interface, and

2. contact discontinuities which have no mass flux through
their interface.

• Within the shock front or “transition layer” on a scale of λeff, vis-
cous effects are important and cause the shock in the first place,
i.e., dissipate kinetic energy and thus generate heat and entropy.
However, outside the layer, viscous effects are small on scales
L � λeff . We will derive conservation equations of the form

d
dx

Q(ρ, v, P) = 0 =⇒ Q(ρ, v, P) = const. (3.96)

and although Q involves viscous terms, we can ignore these out-
side the shock zone and can derive jump conditions from equa-
tions without viscosity terms.

• We assume steady state (∂/∂t = 0) and plane-parallel geometry
(∂/∂y = ∂/∂z = 0, ∂/∂x = d/dx). The conservation laws (3.90),
(3.91), (3.92), and (3.95) simplify to yield

d
dx

(ρv) = 0, (3.97)

v
dv
dx

= −
1
ρ

dP
dx

+
1
ρ

d
dx

[(
4
3
µ + β

)
dv
dx

]
, (3.98)

d
dx

(ρεv) = −P
du
dx

+

(
4
3
µ + β

) (
dv
dx

)2

, (3.99)

d
dx

(
1
2
ρv2v

)
= −v

dP
dx

+ v
d
dx

[(
4
3
µ + β

)
dv
dx

]
. (3.100)

• The equation for mass conservation (3.97) gives

ρv = const. =⇒ ρ1v1 = ρ2v2 = j =⇒ [ρv] = 0, (3.101)

where j is the current density and the brackets, [. . .], indicate dif-
ferences between the up- and downstream quantities. Note, that
the up- and downstream velocities, v1 and v2, are measured in the
frame of the discontinuity!
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• Using

d
dx

(
ρv2

)
= ρv

dv
dx

+ v
d
dx

(ρv)
(3.101)

= ρv
dv
dx

(3.102)

allows (3.98) to be rewritten as

ρv
dv
dx

+
dP
dx
−

d
dx

[(
4
3
µ + β

)
dv
dx

]
=

d
dx

[
ρv2 + P −

(
4
3
µ + β

)
dv
dx

]
= 0 (3.103)

=⇒

[
ρv2 + P −

(
4
3
µ + β

)
dv
dx

]
= 0 (3.104)

This demonstrates that within the transition zone (where µ, β, and
dv/dx are non-zero) ρv2 + P , const. However, in the pre- and
post-shock zones, µ, β, and dv/dx are negligible, implying[

ρv2 + P
]

= 0. (3.105)

• In principle, we could use (3.104) to follow the behavior in the
transition zone, i.e., to understand how entropy is generated. But
on scales L < λ the fluid description breaks down and we have
to reside to kinetic theory (or use plasma particle-in-cell codes to
understand the nonlinear behavior of the heating process). From
now on, we neglect viscosity effects in the bulk.

• Adding (3.99) and (3.100) yields (for the region outside the tran-
sition zone)

0 =
d
dx

[
v

(
1
2
ρv2 + ρε

)
+ Pv

]
=

d
dx

[
ρv

(
1
2
v2 + ε +

P
ρ

)]
=

(
1
2
v2 + ε +

P
ρ

)
d
dx

(ρv) + ρv
d
dx

(
1
2
v2 + ε +

P
ρ

)
. (3.106)

Since d(ρv)/dx = 0 and ρv , 0, we obtain

d
dx

(
1
2
v2 + ε +

P
ρ

)
=⇒

[
1
2
v2 + ε +

P
ρ

]
= 0. (3.107)

• Summarizing, we have the Rankine-Hugoniot jump conditions
for a plane-parallel shock in the shock rest frame:

[ρv] = 0, (3.108)[
ρv2 + P

]
= 0, (3.109)[

1
2
v2 + ε +

P
ρ

]
= 0. (3.110)

Independent of the complicated physics within the transition
layer, these conditions simply follow from the conservation laws.
The first follows from mass conservation, the second from mass
and momentum conservation, and the third from mass and total
energy conservation.
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• Using εi = Pi/[ρi(γi − 1)], we can rewrite the energy jump condi-
tion to get

1
2
v2

1 +
γ1

γ1 − 1
P1

ρ1
=

1
2
v2

2 +
γ2

γ2 − 1
P2

ρ2
(3.111)

for a single-species gas that is described by a polytropic equation
of state. In principle, γ1 , γ2, since a shock can e.g., dissociate
molecules, or raise T so that previously inaccessible degrees of
freedom become accessible.

Tangential Discontinuities

• [ρv] = 0 allows for two types of solutions. The first type is clearly
ρ1v1 = ρ2v2 = 0 and since ρ1 and ρ2 are non-zero, we have

v1 = v2 = 0, (3.112)
P1 = P2 =⇒ [P] = 0 (3.113)

which follows from (3.109). The constancy of the normal com-
ponent of the velocity across such an interface implies that there
is no mass flux through a tangential discontinuity. If additionally
the tangential velocity is also continuous, a special discontinuity
is present which is called a contact discontinuity.

• At a tangential discontinuity, there can be an arbitrary jump of
density, that however needs to be compensated by the same jump
of T , but in the opposite direction!

Shock Mach Number

• The other type of solution requires ρ1v1 , 0 so that we have
a mass flux through this type of discontinuity that we call a
“shock”.

• We define a dimensionless number that characterizes the shock
strength, the Mac number as the ratio of shock speed to upstream
sound speed c2

1 = γP/ρ,

M1 ≡
v1

c1
=

√
ρ1v

2
1

γP1
=

√
mv2

1

γkBT1
, (3.114)

which can be interpreted as a ratio of ram pressure (ρ1v
2
1)-to-

thermal pressure in the pre-shock gas or equivalently a ratio of
kinetic-to-thermal energy density.
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• We can rewrite the Rankine-Hugoniot jump conditions in terms
ofM1 (γ1 = γ2)

ρ2

ρ1
=
v1

v2
=

(γ + 1)M2
1

(γ − 1)M2
1 + 2

γ=1
−→M2

1 (3.115)

P2

P1
=
ρ2kBT2

ρ1kBT1
=

2γM2
1 − (γ − 1)
γ + 1

γ=1
−→M2

1 (3.116)

T2

T1
=

[
(γ − 1)M2

1 + 2
] [

2γM2
1 − (γ − 1)

]
(γ + 1)2M2

1

γ=1
−→ 1 (3.117)

• Those relations simplify for strong shocks (M� 1), yielding

ρ2

ρ1
=
v1

v2
≈
γ + 1
γ − 1

= 4, (3.118)

P2 ≈
2γ
γ + 1

M2
1P1 =

2
γ + 1

ρ1v
2
1 =

3
4
ρ1v

2
1, (3.119)

kBT2 ≈
2γ(γ − 1)
(γ + 1)2 kBT1M

2
1 =

2(γ − 1)
(γ + 1)2 mv2

1 =
3

16
mv2

1, (3.120)

where we used a non-relativistic ideal gas (γ = 5/3) in the last
equalities.

• In the shock rest frame, the post-shock kinetic and thermal spe-
cific energies are (γ = 5/3,M� 1)

1
2
v2

2 ≈
1

32
v2

1, (3.121)

3
2

kBT2

m
≈

9
32
v2

1 =
9

16

(
1
2
v2

1

)
. (3.122)

So roughly half of the pre-shock kinetic energy is converted to
thermal energy (in the shock rest frame). The total specific energy
εtot of the post-shock gas,

εtot,2 =
1
2
v2

2 +
3
2

kBT2

m
≈

10
16

(
1
2
v2

1

)
=

5
8
εkin,1 = ε1 (3.123)

is lower (in the shock rest frame) because of the PdV work done
by pressure and viscosity on the post-shock gas in compressing
its volume. Note that this PdV term is absent in the rest frame of
the post-shock gas.

• The post-shock Mach number is

M2 ≡
v2

c2
=
v1

c1

v2

v1

c1

c2
=M1

v2

v1

(
T1

T2

)1/2

. (3.124)
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This simplifies in the strong-shock limit, yielding

M2 ≈ M1
γ − 1
γ + 1

[
(γ + 1)2

2γ(γ − 1)M2
1

]1/2

=

(
γ − 1

2γ

)1/2

≈ 0.45.

(3.125)

A shock converts supersonic gas into denser, slower moving,
higher pressure, subsonic gas.

Shock Adiabatic Curve

• The shock increases the specific entropy of the gas by an amount

s2 − s1 = cV ln
(

P2

ρ
γ
2

)
− cV ln

(
P1

ρ
γ
1

)
= cV ln

(
P2

P1

)
− cVγ ln

(
ρ2

ρ1

)
= cV ln

(
K2

K1

)
. (3.126)

Hence, the shock shifts the gas to a higher adiabatic curve that is
uniquely labeled by K = Pρ−γ: gas can move adiabatically along
an adiabatic curve while changes in entropy move it from one
adiabatic curve to another.

• With the definition of the current density j = ρ1v1 = ρ2v2 = const.,
we obtain for (3.109)

[ρv2 + P] =

[
j2

m
V + P

]
= 0 =⇒

j2

m
V1 + P1 =

j2

m
V2 + P2.

(3.127)

• Hence, the slope of the shock adiabatic curve in the P-V diagram
is

j2

m
=

P2 − P1

V1 − V2
. (3.128)

Oblique Shocks

• So far, our specific discussion about shocks has been constrained
to plane-parallel shock geometries, i.e., we only considered a
fluid velocity that was aligned with the shock normal. In general,
the fluid can impact the shock at some oblique angle. We define
a velocity component parallel to the shock normal, v‖ ≡ 3 ·n, as
well as a perpendicular component, v⊥.

• The momentum conservation equation (3.43) defines a momen-
tum current through a unit surface area with normal vector n,

ρ3(3 ·n) + Pn. (3.129)
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The momentum current has to be continuous across the shock in
order for the forces that are acting on both sides of the shock on
the gas, are identical. In our case, n coincides with the shock nor-
mal and points along ex. Continuity of the x, y, and z components
of the momentum current yields

[ρv2
x + P] = 0, (3.130)

[ρvxvy] = 0, (3.131)
[ρvxvz] = 0. (3.132)

• At a shock j = ρvx , 0 and ρ , 0 so that we get

[vy] = 0 and [vz] = 0, (3.133)

i.e., the tangential velocities are continuous across the shock.
Thus, only the parallel velocity component is modified at a shock
according to v‖,2 = v‖,1ρ1/ρ2 while the perpendicular component
remains invariant, v⊥,1 = v⊥,2 = v⊥. This implies a refraction of
the (oblique) flow toward the shock surface.

3.1.7 Entropy Generation by Accretion

Philosophical Detour

• The Uncertainty Principle is ∆px∆x = h, and statistical mechan-
ics counts the number of states with h−3d3d3 p. Hence the phase
space density of cluster gas is

f ∼
h3d6N
d3xd3 p

∼ n
(

h
mpv

)3

∼ 6 × 10−35
( n
10−3 cm−3

) (
v

103 km s−1

)−3

∝ K−3/2. (3.134)

If this was unity, we would deal with a degenerate gas. In-
stead, this is extremely small, making it the least degenerate (non-
relativistic) gas in the Universe or equivalently, the highest en-
tropy gas (of equilibrium systems)!

Smooth Accretion

• One way to approach the problem of gravitationally driven gener-
ation is through spherically symmetric models of smooth accre-
tion in which gas passes through an accretion shock as it enters
the cluster. If the incoming gas is cold, then the cluster accretion
shock is the sole source of cluster entropy. If instead, the in-
coming gas has been heated before passing through the accretion
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shock, the Mach number is smaller and the cluster entropy level
reflects both, the amount of pre-heating and entropy production
at the accretion shock.

• We first consider the case of cold accretion (P and K of the incom-
ing gas are negligible) which implies the strong-shock regime.
Conveniently, we transform our Rankine-Hugoniot jump condi-
tions to the rest frame of the post-shock gas, i.e., the cluster rest
frame.

shock frame: v2 =
v1

4
(3.135)

post-shock rest frame: vacc = v1 − v2 = v1

(
1 −

1
4

)
=

3
4
v1

kT2 =
3

16
mv2

1 =
1
3

mv2
acc (3.136)

• Note that the location of the accretion shock does not move out-
ward with vacc/4 because the gravitational attraction of the clus-
ter potential causes causes it to fall onto the cluster. Depending
on that infall rate, the accretion shock can either be stationary or
move slowly outward.

• Suppose that mass accretes in a series of concentric shells, each
with a baryon fraction fb, that initially comove with the Hubble
flow as in the spherical collapse model of Sect. 2.3. In this simple
model, a shell that initially encloses total mass M reaches zero
velocity at the turnaround radius rta and falls back through an ac-
cretion shock at radius racc in the neighborhood of the virial radius
rta/2. The system of governing equations are

Ṁg = 4πr2
accρ1vacc = fgṀ, (3.137)

v2
acc =

2GM
rta

, (assuming ΩΛ = 0), (3.138)

kBT2 =
1
3

mv2
acc, m = µmp, (3.139)

ρ2 = 4ρ1. (3.140)

Here, ρ1 is the pre-shock density, ρ2 and T2 are the post-shock
density and temperature, racc = rta/2 is the accretion radius. In
the post-shock frame, the post-shock thermal energy equals the
pre-shock ram pressure (+ initial thermal energy that we neglect
here) and (3.139) implies

3
2

kBT2

m
=

3
2

1
3
v2

acc =
vacc

2
. (3.141)

• Using (3.139) and (3.140), we can compute the post-shock en-
tropy that is produced by smooth accretion

K2,sm ≡
kBT2

mρ2/3
2

=
v2

acc

3(4ρ1)2/3 . (3.142)
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Combining (3.137) and (3.138) yields

Ṁg = 4πr2
accρ1

(
GM
racc

)1/2

=⇒ ρ1 =
Ṁ fg

4πr3/2
acc
√

GM
. (3.143)

• Inserting this into (3.142) yields

K2,sm =
v2

acc

3(4ρ1)2/3 =
1
3

[
π(GM)2

fgṀ

]2/3

=
1
3

(
πG2

fg

)2/3 (
d ln M
d ln t

)−2/3

(Mt)2/3. (3.144)

Because the entropy generated at the shock front increases mono-
tonically with time, such an ideal, smoothly accreting cluster
never convects but rather accretes shells of baryons as if they were
onion skins. It is useful to cast (3.144) into dimensionless form
using a characteristic cluster entropy K200,

K200 ≡
kBT200

m(200 fbρcr)2/3 =
1
2

[
2π
15

G2M200

fbH(z)

]2/3

. (3.145)

Note that we have adopted here the critical density of the Uni-
verse, ρcr, and the characteristic temperature of a singular isother-
mal sphere, kBT200,

ρcr ≡
3H2(z)
8πG

, (3.146)

kBT200 =
GM200m

2r200
=

m
2

[10GM200H(z)]2/3 . (3.147)

• We effectively define a radial coordinate corresponding to the
amount of gas accreted at t divided by that at the present time,
t0:

η ≡
Mg(t)

fbM200(t0)
(3.148)

and cast (3.145) into dimensionless form

K2,sm

K200
=

2
3

(
15
2

H0

M200

)2/3 (
d ln M
d ln t

)−2/3

(Mt)2/3

=
2
3

(
15
2

H0t0

)2/3 (
d ln η
d ln t

)−2/3 (
ηt(η)

t0

)2/3

. (3.149)

Thus, the entropy profile due to smooth accretion of cold gas de-
pends entirely on the mass accretion history M(t), and the entropy
profiles of objects with similar M(t) should be self-similar with
respect to K200.
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• Extended Press-Schechter theory or numerical simulations show
that for clusters in the mass range 1014-1015 M� grow roughly as
M(t) ∝ t to M(t) ∝ t2 i the concordance model. Inserting these
growth times t ∝ M0.5...1 into (3.149) yields

K2,sm ∝ M1...4/3
g . (3.150)

• Throughout a cluster, Mg encompassed by a given radius is ap-
proximately M ∝ r (which is exact for the singular isothermal
sphere, 4.38). We obtain the following radial entropy profile

K2,sm ∝ r1...4/3 (3.151)

which compares well with numerical simulations K2,sm ∝ r1.1.

Hierarchical Merging

• In real clusters the accreting gas is lumpy and not smooth which
transforms the nature of entropy generation. Incoming gas that is
bound to accreting sublumps of matter enters the cluster with a
wide range of densities. There is no well-defined accretion shock
but rather a complex network of shocks as different lumps of in-
falling gas mix with the intracluster medium of the main cluster.

• Numerical codes employing different numerical techniques (Eu-
lerian grid codes or Lagrangian “particle” codes) all agree on the
baseline profile in non-radiative gas simulations for r > 0.1r200,

Ksim = 1.32K200

(
r

r200

)1.1

. (3.152)

For r < 0.1r200, there is more dispersion among the simulated
clusters and the answer depends somewhat on the numerical tech-
nique, with grid codes showing an elevated entropy core due to
efficient “entropy mixing”.

• Despite the complexity of shock structure in hierarchical accre-
tion, the simulated entropy profiles resemble that from smooth
accretion models, but with an important distinction: the normal-
ization of the smooth models is higher. The likely reason is that
smooth accretion maximizes the entropy production as smoothing
does not change the accretion velocity but reduces the mean den-
sity of accreting gas lumps. Since the post-shock entropy scales
as K2 ∝ v

2
accρ

−2/3
1 , a smaller (smoothed) density implies larger en-

tropy everywhere.

• This may be of physical relevance: consider the case of pre-
heating gas before it falls into clusters. Heating causes the gas
to adiabatically expand and smoothes the density field of the pre-
shock gas. This could then explain elevated entropy profiles of
low-temperature clusters relative to the baseline profile.
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3.1.8 Cluster Scaling Relations

• In order to use clusters as cosmological probes, we need to re-
late the different observables to a functional that is sensitive to
cosmology. Traditionally this is obtained by using the mass func-
tion.

• The main assumption underlying this approach is the choice of
an average density of the matter so that this implicitly defines a
cluster “radius” by

M∆ =
4
3
πr3

∆∆ρcr(z), ∆ = 100 . . . 500, (3.153)

which also relates the temperature to this definition, T ∼ T∆.

• Cautionary remarks: when considering X-ray emission, we en-
counter ρX, TX which is not necessarily identical to ρ̄ = ∆ρcr

and T∆ as it is degenerate with observational biases. Not ac-
counting for these would break self-similarity as e.g., the pres-
ence of a clumped multiphase medium may bias TX towards
the dense, colder phase with a higher X-ray emissivity. On the
other hand, we encounter similar problems when defining a three-
dimensional “radius” from a projected, non-isotropic density dis-
tribution (or X-ray emissivity jX ∝ ρ2). Careful mock observa-
tions of simulated clusters are necessary in either case.

Cosmologist’s Ideal Cluster

• We assume hydrostatic equilibrium and obtain the scaling

kBT
m
∼ v2 ∼

GM∆

r∆

∝ M2/3
∆
ρ1/3

cr (3.154)

which immediately yield the temperature-mass scaling

T∆ ∝ M2/3
∆
ρ1/3

cr (z) ∝ [M∆E(z)]2/3. (3.155)

• We assume that the gas fraction, fgas(< r∆) = Mgas/Mtot, and stel-
lar mass fraction, f∗(< r∆) = M∗/Mtot, do not scale with cluster
mass. Here, Mtot = Mtot(< r∆) = Mdm + Mgas + M∗ is the gravita-
tional mass. We get the gas and stellar mass scaling,

Mgas =

∫ r∆

0
ρgasdV ≈ M∆ fgas ∝ M∆, (3.156)

M∗ ≈ M∆ f∗ ∝ M∆ =⇒ Ngals ∝ M∆. (3.157)

Especially Ngals ∝ M∆ assumes a fair sampling of the luminos-
ity function which is not anymore the case on group scales with
O(10) galaxies.
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• To obtain the Sunyaev-Zel’dovich scaling relation, we integrate
the Compton-y parameter over the solid angle Ω subtended by
the cluster,

Y =

∫
Ω

ydA =
σT

mec2

∫
Ω

nekBTedA, (3.158)

Y ∝ MgasT∆ ∝ M5/3
∆

E(z)2/3. (3.159)

• Finally, the X-ray scaling relation is obtained by assuming that
free-free emission (a two-body process) is the dominating ra-
diative process. In this case, the emissivity per unit volume is
jX ∝ nenionT 1/2 and we obtain the following scaling of X-ray lu-
minosity with cluster mass,

LX ∝

∫
Ω

nenion

√
kBTedA ∝ MgasρcrT

1/2
∆
, (3.160)

LX ∝ M4/3
∆

E(z)1/3 ∝ T 2
∆E(z)−1. (3.161)

Real Clusters

• Observational scaling relations do not follow the self-similar pre-
diction above. One finds

LX ∝ T 3
X, (3.162)

d
dM

(
Mgas

M

)
> 0, (3.163)

d
dM

(M∗
M

)
< 0 (3.164)

where M is some observational proxy for M∆. Y(M) and TX(M)
are roughly in agreement with the self-similar prediction. It ap-
pears that gas physics modifies these simple scale-invariant mod-
els and imposes new scales to the otherwise scale-free gravity!

• Consider a simple cored model for the gas distribution of the
ICM:

ρ(r) =


const. for r < rc,

ρ∆

(
r
r∆

)−2

for r > rc.
(3.165)

We define the cluster concentration parameter c = r∆/rc, implying
ρ(rc) ≡ ρc = c2ρ∆.

• If bremsstrahlung (free-free emission) is the dominating emission
process, we obtain an X-ray luminosity in this model,

LX ∝

∫ R

0
ρ2T 1/2r2dr, (3.166)

dLX

d ln r
∝ r3ρ2T 1/2 ∼

 r3 for r < rc,

r−1T 1/2 for r > rc.
(3.167)
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Thus, the contribution to the X-ray luminosity per logarithmic
bin in radius increases steeply toward rc (because of the larger
available volume) and then drops beyond rc (after realizing that
T ∼ r−1/2 in the peripheral cluster parts). The radii around rc

dominate LX and thus, we expect

LX ∝ ρ
2
cT 1/2r3

c ≈ ρ
2
∆cr3

∆T 1/2. (3.168)

Using (3.155) and (3.156), we obtain

LX ∝ cM4/3
∆

E(z)1/3 ∝ cT 2
∆E(z)−1 (3.169)

• If c is independent of mass, we recover (3.161). However, gas
physics modifies c so that it assumes a mass dependence. There
have been three classes of models suggested to explain the devia-
tion from scale invariance:

1. “Pre-heating” the gas by supernova winds or some other
feedback mechanism before falling into clusters imprints an
“entropy floor” in the gas distribution – a minimum entropy
level Kmin below which it cannot fall. The clusters’ cen-
tral entropy is K0 ∝ Tρ−2/3

0 ∝ Tc−4/3. If all clusters have
K0 = Kmin = const., then

c ∝ T 3/4K−3/4
min =⇒ LX ∝ T 2.75. (3.170)

Thus, an entropy floor leads to larger core (relative to r∆),
rc = r∆/c ∝ (Kmin/T )3/4r∆, which is larger for smaller clus-
ters (lower T ) and thus to a steeper LX-T relation close to
the observations.

2. An alternative possibility is that the gas gets heated after
falling into the cluster, potentially through feedback by ac-
tive galactic nuclei (AGN). This is however energetically
much more expensive: to reach the same entropy as in the
pre-heating case, one needs more energy if it is injected at
the center by a factor

kBTcenter

kBTpre−heat
∼

Kcenter

Kpre−heat

[
ncenter

npre−heat

]2/3

∼ 102. (3.171)

Here, we adopted typical values for ncenter ∼ 2 × 10−3 cm−3

and npre−heat ∼ 10n̄ ∼ 2 × 10−6 cm−3. However, AGNs can
provide this energy (see Sect. 3.2.2) if the energy can be
effectively coupled into the ICM.

3. Cooling out the low-entropy gas at the cluster center and
fueling central star formation selectively removes the low-
entropy gas. The gas at larger radii (and on higher adiabatic
curves) flows in adiabatically and replaces the condensed
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gas which leads to the formation of an entropy floor. This
process is observed to happen, but the star formation rate is
only 10% of what would be needed to explain the steeper
LX-T slope.
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3.2 Radiative Physics

• Observed cluster scaling relations do not obey self-similar pre-
dictions. Hence we have to take more realistic physics such as
radiative cooling and star formation into consideration. The non-
linearity of the problem requires numerical simulations that rep-
resent a formidable computational challenge. This requires nu-
merical codes that simulate three-dimensional hydrodynamics in
simulations that span an enormous range in scales and track a
plethora of physical processes. Typically, we simulate a periodic
box of side length L that contains a representative volume of the
universe and is large enough to host enough objects of interest to
provide a sufficiently large statistical sample.

– L & 300 Mpc ∼ 1027 cm. This large volume is necessary
in order to get a few sites of constructive interference of
long wavelength modes which evolve into a few massive
(M ∼ 1015 M�) galaxy clusters.

– l ∼ 30 kpc ∼ 1023 cm. The simulation needs to resolve the
diameter l of the stellar content of galaxies by at least 10
resolution elements. Such a Eulerian mesh would then have
[L/(0.1l)]3 ∼ 1015 individual cells—too many elements
even for current state-of-the-art simulations. A solution to
this problem consists by either introducing adaptive grid-
refinement capabilities in Eulerian codes (which increase
the numerical resolution where needed, i.e., inside collaps-
ing objects) or Lagrangian simulation frameworks that dis-
cretize the simulated mass rather than simulation space.

– l∗ ∼ 3 pc ∼ 1019 cm. The star forming regions have typical
sizes of 3 pc. The resulting dynamical range of the simu-
lation volume, (L/l∗)3 ∼ 1024, is prohibitively large to be
reliably included in first-principle, ab initio simulations. In-
stead, this requires a subgrid prescription of star formation
physics to include the necessary dynamical back-reaction
effects on the resolved larger scales.

• First, we will turn to the physics of cooling and condensation of
baryons into stars (that will happen inevitably once the gas gets
sufficiently dense). Numerical simulations show that this trans-
forms a fraction of f∗/ fgas ∼ 25% . . . 50% into stars without ac-
counting for energy feedback. Since this is 5 to 10 times as much
as observed in a cluster, we will then look at various “feedback
processes” that were suggested to solve the “overcooling prob-
lem” of galaxy formation or equivalently the “cooling flow prob-
lem” in galaxy cluster evolution.
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3.2.1 Radiative Cooling

• At high temperatures (kBT & 2 keV) the light- and intermediate-
mass elements of the ICM are fully ionized so that the
only cooling process for them is free-free emission (thermal
bremsstrahlung). Below kBT ∼ 2 keV recombination-line cooling
of heavy elements (Fe, . . . ) starts to dominate the cooling process
(and the associated X-ray emission, assuming typical heavy el-
ement abundances relative to hydrogen, which are ∼ 0.3 times
those found in the Sun).

• The physics of bremsstrahlung emission is simple: electrons scat-
ter off ions and are deflected in the Coulomb field of the ions.
They radiate because of their acceleration and thus lose energy,
i.e., they “cool”.

• The spectral X-ray emissivity jν is defined as as the amount of en-
ergy emitted in photons of frequency ν per unit frequency interval
dν, per unit time and per unit plasma volume, jν = d3E/(dνdtdV).
It must scale with the product of electron and ion number density
(because it is a two-body interaction), with the time available for
the scattering process, t ∼ l/∆v ∼ l/

√
kBT/m, where ∆v is the rel-

ative velocity of electron and ion, and with the Boltzmann factor
for the distribution of energy at a given temperature. Hence we
get

jν =
d3E

dνdtdV
= C̃

n2

√
kBT

e−hν/kBT , C̃ = const. (3.172)

• The volume emissivity is the integral of jν over frequency,

j ≡
d2E
dtdV

=

∫ ∞

0

d3E
dνdtdV

dν = C̃
n2

√
kBT

kBT
h

∫ ∞

0
e−xdx (3.173)

= Cn2
√

kBT = 2.5 × 10−23
( nH

1 cm−3

)2 ( T
108 K

)1/2 erg
cm3 s

,

(3.174)

for 0.3 times solar metallicity Z�.

• Comparing the thermal energy content to the total (frequency-
integrated) X-ray emissivity defines the cooling time

tcool =
εth

ε̇brems
=

3nkBT
2 j

(3.175)

≈ 2
(

kBT
keV

)1/2 ( ne

10−2 cm−3

)−1
Gyr, (3.176)

where n = ρ/(µmp), nH = XH , ρ/mp, the mean molecular weight
of a fully ionized primordial gas is µ = 0.588, with the primordial
hydrogen mass fraction XH = 0.76 (see App. A.1).
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• Hence in the centers of galaxy clusters, tcool is smaller than the
Hubble time: if gas in pressure equilibrium cools, it becomes
denser and cools even faster. This is a run-away process that
should lead to a large amount of cold gas and star formation—
in conflict with observations. This is the famous “cooling flow
problem”.

• We can gain further insight if we rewrite tcool in terms of the clus-
ter entropy Ke ≡ kBTn−2/3

e . We define t0 = 2 Gyr, kBT0 = keV,
and n0 = 10−2 cm−3, to obtain

tcool = t0

(
kBT
kBT0

)1/2 n0

ne
= t0

(
Ke

K0

)3/2 kBT0

kBT
, (3.177)

where K0 = 21.5 keV cm2 is a typical value for the central en-
tropy in cool core clusters. Because t0 � tHubble ≈ 14 Gyr the
cooling ICM needs additional (non-gravitational) energy injec-
tion that stabilizes it against the cooling catastrophe.

• This demonstrates that clusters with similar temperatures (or po-
tential depths) have longer cooling times if the central entropy is
larger. We can derive a critical entropy

Kc(T ) ≈ 80
(

tcool

14 Gyr

)2/3 (
kBT
keV

)2/3

keV cm2, (3.178)

that is large enough to avoid the cooling catastrophe in galaxy
groups with kBT ∼ keV.

3.2.2 Cooling versus Heating

• We have seen that the cooling time in the core region of cool
core clusters is smaller than the Hubble time which would imply
a cooling catastrophe if not countered by energy feedback. To see
how much feedback is needed, we first compute the cooling rate
and redefine the X-ray emissivity as an energy cooling rate Λ(T )
according to

j = Cn2
H

√
kBT = Λ0(t)n2

H, where (3.179)

Λ0 = 2.5 × 10−23
( T
108 K

)1/2 erg cm3

s
, (Z = 0.3Z�). (3.180)

• We adopt a typical gas density profile as found in X-ray obser-
vations, the so-called beta profile which is simply a King profile
with the outer slope parametrized by β ≈ 2/3 . . . 1:

n(r) = n0

1 +

(
r
rc

)2−3β/2

. (3.181)
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• We consider the X-ray luminosity as a proxy for the cooling lu-
minosity. It is given by

LX =

∫ ∞

0
jdV = Λ0

√
kBT
kBT0

4π
∫ ∞

0
n2(r)r2dr (3.182)

=
4π
3

r3
cn2

0Λ0

√
kBT
kBT0

× 3
∫ ∞

0

x2dx
(1 + x2)3β (3.183)

=
4π
3

r3
cn2

0Λ0

√
kBT
kBT0

×


3π
16 for β = 1

3π
4 for β = 2/3

(3.184)

∼ 1044
(

rc

100 kpc

)3 ( n0

10−2 cm−3

)2
(

kBT
3 keV

)1/2

erg s−1, (3.185)

where we adopted β = 1 in the last step. Note that to order of
magnitude, it suffices to assume a homogeneous sphere with ra-
dius rc and a density that is equal to that of the core region to cal-
culate LX. This corresponds to our finding dLX/d ln r ∝ r3n2

√
T

(3.166) that radii around rc dominate LX.

• Hence, a successful feedback process has to heat the ICM at an
average rate of 1044 erg s−1 to balance the cooling losses.

3.2.3 Feedback by Supernovae

The first obvious candidate for energy feedback are supernovae (SNe),
i.e., exploding stars at the end of their lifetimes. There are two types
of SNe: 1. core-collapse SNe (of type Ib,c or II) and 2. thermonuclear
SNe (SNe of type Ia).

• Core-collapse SNe.

– At the end of the lifetime of a massive star (M & 10 M�) it
has used up its “fuel” (H, He, . . . ), i.e., the energy gener-
ated by nuclear burning and it cannot anymore balance the
gravitational attraction. As a result, the core collapses and
forms a black hole or a neutron star (pulsar). The envelope
also collapses to nuclear densities which triggers an outward
traveling shock that unbinds the envelope and ejects it. This
enriches the surrounding medium with intermediate-mass
elements, so-called “α elements” which can be built from
α-particle nuclei (4He) such as 16O, 20Ne, 24Mg, 28Si, 32S,
36Ar, 40Ca, 48Ti.

– To estimate the effect of SNe heating on the ICM, we make
three simplifications. We assume that 1. metals are fully
mixed within the ICM, 2. neglect radiative losses, and 3. as-
sume solar abundances. Since the metallicity Z of clusters is
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typically 0.3Z� and radiative losses cause a large fraction of
this SNe energy to be radiated away, these numbers repre-
sent the absolute upper limit that SNe can contribute to the
heating which is plausibly no reachable in the ICM.

– The mass fraction of α elements for a gas of solar abundance
is

Mα

Mgas
≈ 0.02. (3.186)

Hence the supernova energy per α element that is created by
the SN is given by

ESNmp

Mα

∼
1051 erg mp

10 M�

∼
1051−24−34

2
erg

nucleon
∼ 50

keV
nucleon

.

(3.187)
Mixing this energy into to ICM (and neglecting radiative
losses), we get

ESNmp

Mgas
∼ 1

keV
nucleon

. (3.188)

• Thermonuclear SNe. The progenitor system of a type Ia su-
pernova consists of a binary with at least one massive (≈ 1 M�)
carbon-oxygen white dwarf:

– The single-degenerate scenario assumes that the companion
of the white dwarf is an evolved star. When the companion
star becomes a red giant, it grows over its Roche volume
and transfers mass to the white dwarf. White dwarfs are sta-
bilized by the Fermi pressure of a degenerate electrons gas.
This can only stabilize masses up to 1.4 M� against grav-
ity. When the companion star feeds the white dwarf beyond
this limit, a thermonuclear runaway burning is eventually
triggered, which explodes the white dwarf. This scenario
appears to be ruled out for explaining the majority of type Ia
supernovae.

– Alternatively, the double-degenerate scenario assumes the
existence of a binary consisting of two carbon-oxygen white
dwarfs. At the end of their evolution, they merge and cause
a thermonuclear runaway burning of carbon and oxygen in
the more massive progenitor. The resulting type Ia super-
novae explosion generates ≈ 1 M�

56Ni, which decays ra-
dioactively into 56Ni and eventually to 56Fe. This decay is
responsible for the extraordinary brightness of type Ia su-
pernovae (∼ 1011 times more luminous in comparison to a
star on the main sequence).
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– Using the same assumptions as above, we obtain

MFe

Mgas
≈ 0.001 (solar abundance), (3.189)

ESNmp

MFe
∼

1051 erg mp

1 M�

∼ 500
keV

nucleon
, (3.190)

ESNmp

Mgas
∼ 0.5

keV
nucleon

. (3.191)

• Problems. As we will now show, there are two problems with this
hypothetical picture in which SNe provide the feedback energy:
1. the energetics is not sufficient and 2. the radiative losses are
too strong to solve the “cooling flow problem”.

1. For comparison we estimate the gravitational energy of a
Milky Way-type galaxy and a massive galaxy cluster

Egal ≈
mp

2
v2

gal ≈ 0.25
(

vgal

220 km s−1

)2

keV, (3.192)

Egal ≈
mp

2
σ2

cluster ≈ 8
(

σcluster

1200 km s−1

)2

keV. (3.193)

While SNe feedback can energetically modulate the star for-
mation within galaxies, it is (by about an order of magnitude
even for the unrealistically optimistic case) too weak in clus-
ters to have any thermodynamic impact.

2. In order to avoid radiative losses, SNe heating has to raise
the entropy of the gas it heats to at least ∼ 100 keV cm2

(3.178). An evenly distributed thermal energy input of order
1 keV would thus have to go into gas significantly less dense
than 10−3 cm−3 to avoid such losses. But gas near the cen-
ters of present-day cluster (not to mention the densities of
the interstellar medium within galaxies where SNe occur) is
denser than that with average densities n̄ISM ∼ 1 cm−3, par-
ticularly at earlier times when most of the star formation
happened. Simulations that spread SNe feedback evenly
thus produce too many stars in clusters!

3.2.4 Feedback by Active Galactic Nuclei

• There is a compact region at the center of every galaxy that dom-
inates the luminosity of its electromagnetic spectrum, the “ac-
tive galactic nucleus” (AGN). Observationally, it is known that
the AGN emission is caused by mass accretion onto a supermas-
sive black hole (SMBH) which can launch relativistic outflows
(so called “jets”). Particle acceleration in jets causes non-thermal
radio synchrotron and γ-ray emission.
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• The masses of SMBH at the centers of galaxies fall typically in
the range of 106 . MSMBH/M� . 1010. Those SMBH masses are
tightly correlated with the stellar mass in galactic bulges. Bulges
are defined as the central spheroidal stellar component of a disk
galaxy (“late types”) or the entire elliptical stellar distribution of
ellipticals (“early types”), including the population of bright cen-
tral galaxies (BCGs) in clusters.

• The mass of the stellar bulge and the SMBH obey the correlation

MSMBH ∼ 0.005Mbulge, (3.194)

so that we obtain typical masses for SMBHs at the centers of
clusters according to

M∗,BCG ∼ 1012 M� ⇒ MSMBH ∼ 5 × 109M�, (3.195)

upon identifying M∗,BCG with the bulge mass. This compares well
with the latest mass measurement of the SMBH in M87 of 6 ×
109 M� (M87 is the BCG in Virgo, our closest galaxy cluster with
DVirgo ∼ 17 Mpc).

• The accretion power onto the SMBH can be estimated by the re-
lease of gravitational energy with a radiative efficiency of η ∼ 0.1,

EAGN ∼ ηMSMBHc2 ∼ 1063
(

MSMBH

5 × 109 M�

)
erg (3.196)

EAGNmp

Mgas
∼

1063 erg mp

1014 M�

∼
1063−14−24−33

2
erg

nucleon
∼ 5

keV
nucleon

.

(3.197)

From the energetic viewpoint, this is a much more promising
heating source in comparison to supernova feedback.

• The centers of many (if not all) cool core clusters with low-
entropy gas whose cooling time is less than the age of the universe
also contain AGNs. Relativistic jets from these AGNs inflate
radio-emitting lobes of typical radii rlobe ∼ (10 . . . 50) kpc and dis-
tances to the central AGN of R ∼ (20 . . . 100) kpc. The location of
these radio-emitting lobes coincide with cavities in X-ray maps.
This suggests that the momentum of the relativistic outflow has
been slowed down by the inertia of the ICM (nICM ∼ 10−2 cm−3,
kBT ∼ 3 keV) which got pushed away by the jet fluid in the pro-
cess of inflating the lobes.

• Emerging picture. As the central gas is cooling, it can eventually
form stars and feed the accretion disk of the AGN. The accreting
gas has to lose its angular momentum which can be used to trig-
ger a relativistic jet that is composed of cosmic rays (relativistic
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particle populations) and magnetic fields. Eventually, the jet mo-
mentum slows down due to the ram pressure of the ambient ICM
and inflates lobes of relativistic plasma. As the jets terminate, the
lobes detach from the ceasing outflows. Because of the relativistic
filling, the lobes or bubbles are lighter than the heavier ambient
ICM. Since these bubbles got injected at the bottom of the grav-
itational cluster potential, we have a convectively unstable situ-
ation and the bubbles start to rise buoyantly and subsonically in
the stratified cluster atmosphere.

• The relativistic jets displace the ICM at the location of the cav-
ities, i.e., they do PdV work against the ICM, as well as supply
internal energy, U, to the cavities. Hence the total energy required
to create the cavity is equal to its enthalpy,

H = U + PV =
1

γb − 1
PV + PV =

γb

γb − 1
PV = 4PV, (3.198)

where we used γb = 4/3 (assuming a relativistic filling of the ra-
dio emitting bubbles). Of this 4PV , only 1PV is directly available
for mechanical work on the surroundings while 3PV are stored as
internal energy.

• Hence, the work done by the two bubbles in one outburst (as sup-
posed to the many accompanying SMBH growth, as implied in
(3.196)) on the ambient ICM is

W = PV = 2 ×
4
3
πr3

bnakBT ∼ 1059 erg, (3.199)

where we used rb = 20 kpc, na = 10−2 cm−3, kBT = 3 keV.

• There are (at least) three different ways to estimate the bubble’s
rise time, using 1. the sound crossing time, 2. the buoyant rise
time, and 3. the time required for the ambient medium to refill the
displaced volume as the bubble rises upward.

1. The sound crossing time of the distance from the cavity cen-
ter to the SMBH (using γa = 5/3 for the ambient ICM) is
given by

ts = R
√

µmp

γakBT
≈ 4 × 107

(
R

40 kpc

) (
kBT

3 keV

)−1/2

. (3.200)

2. To estimate the buoyancy time, we compute the buoyancy
force acting upon the bubble

Fbuoy = −gV(ρa − ρb), (3.201)

where g is the gravitational acceleration (assuming hydro-
static equilibrium of the ambient gas), V is the bubble vol-
ume, ρa and ρb denote the mass density of the ambient gas
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and the bubble, respectively. The ram pressure exerts a drag
force on the bubble, oppositely directed to the rise velocity,

Fdrag = −
C
2
σρav

2 3

v
, (3.202)

whereσ is the cross section of the bubble, C is the drag coef-
ficient that depends on bubble geometry and Reynolds num-
ber (i.e., whether the flow is turbulent or laminar): C ≈ 0.6
for a Mach number M ≈ 0.7. In equilibrium, the terminal
velocity is obtained by balancing |Fbuoy| and |Fdrag|, yielding

v =

√
2gV
σC

ρa − ρb

ρa
≈

√
2gV
σC

, (3.203)

where we assumed ρb � ρa in the last step. For a singular
isothermal sphere (SIS), we can write down g ≈ v2

c/R =

2σ2/R = 2kBT/(µmpR). With σ = πr2 and V = 4πr3/3, we
obtain

tbuoy ≈ R

√
2gV
σC
≈ ts

√
3Cγa

16
R
r
≈ 0.6ts

( R
2r

)1/2

. (3.204)

3. The time required to refill the volume as the bubble rises
upward is

trise ≈ 2R
√

r
GM(R)

≈ ts

√
2γar

R
≈ 1.3ts

(
2r
R

)1/2

. (3.205)

In the second step, we used the potential of the SIS, ΦSIS =

GM/R = 2kBT/(µmp).

• This demonstrates that all three estimates provide similar results
(albeit with a different scaling in the ratio r/R.) We finally obtain
the AGN heating rate by combining (3.199) and (3.204),

LAGN ≈
PV
tbuoy

≈
1059 erg
1015 s

≈ 1044 erg s−1 ≈ LX, (3.206)

i.e., it is comparable to the X-ray “cooling” luminosity (3.182).

• There are a number of open questions in this scenario which are
currently being actively researched.

1. How is the accretion output thermalized? Suggestions in-
clude dissipation of non-linear waves, turbulence of stream-
ing cosmic rays (that can excite Alfvén waves in the magne-
tized ICM which get damped).
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2. Is the heating-cooling balance stable to local thermal per-
turbations? While turbulent heating is not stable, cosmic-
ray Alfvén wave heating is stabilized around 1 keV, which
coincides with the lower temperature floors observed at the
centers of cool core clusters.

3. How is the accretion rate tuned? The Schwarzschild radius
of a SMBH is

rSMBH =
2GMSMBH

c2 ≈ 1.3× 1015 cm ≈ 1 light day. (3.207)

On the contrary, cooling occurs on scales of about 30 kpc ≈
1023 cm ≈ 108 rSMBH.

• At least Nature finds a way to solve all of these problems because
observationally, SMBH activity accompanies transition to com-
plexity when tcool . 1 Gyr.

3.2.5 Heat Conduction and Thermal Stability

Derivation

• A system can be in hydrostatic equilibrium, but out of thermal
equilibrium. The entropy equation reads

ρT
ds
dt

= ∇ · (κ∇T ) . (3.208)

Using dq = Tds and cP ≡ (dq/dT )P, we get

cPdT = Tds ⇒ ds = cPd ln T. (3.209)

• Hence, we can rewrite (3.208),

ρcP
dT
dt

= κ∇2T or
dT
dt

= χ∇2T, (3.210)

where χ ≡ κ/ρcP. This shows that the temperature can only
change as a result of thermal conduction if ∇T , 0 since the
temperature gradient is the source of free energy.

• We now want to estimate the heat conductivity κ. To this end, we
consider a system in thermal equilibrium with a temperature T
and with particles moving randomly in all directions. ∆A denotes
the area of a screen perpendicular to the x axis. The number of
particles that fly per unit time through the screen from one side to
the other is given by

∆N
∆t

=
nv∆A

6
, (3.211)

where the factor of 6 arises because on average, 1/3 of all particles
fly along the x axis and of those, only 1/2 in either direction.
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• The particle mean free path is λ = 1/(nσ) with σ as the colli-
sional cross section. Particles at x − λ transport gas properties
to x and vice versa. This is particularly important for gradients
in gas properties that will be smoothed out as a result of such a
transport.

• Hence, in the presence of a density gradient, ∂n/∂x , 0, the net
number of particles flying from the denser to the more dilute re-
gion is

∆N
∆t

=
n(x + λ)v∆A

6
−

n(x − λ)v∆A
6

≈
v∆A

6
∂n
∂x

2λ, (3.212)

where we have expanded the density field to first order and have
assumed that the typical length of a gradient ∆x is much larger
than the mean free path, λ � ∆x.

• The diffusion coefficient that relates the particle current j =

∆N/(∆t∆A) to the number density gradient is given by

∆N
∆t∆A

!
= D

∂n
∂x

with D ≡
vλ

3
=

v

3nσ
. (3.213)

If the temperature changes along x (i.e., ∂T/∂x , 0), the particles
transport energy,

∆E
∆t

=
nv∆A

6
[E(x + λ) − E(x − λ)] (3.214)

=
nvλ
3

(
∂E
∂T

∂T
∂x

)
=

nvcVλ

3
∂T
∂x
, (3.215)

where cV is the heat capacity at constant volume (3.7). Hence, we
find

∆E
∆t∆A

!
= κ

∂T
∂x

with κ =
nvcVλ

3
=
vcV

3σ
=
vkB

2σ
, (3.216)

where we used the heat capacity at constant volume cV = 3kB/2
(3.7) in the last step (assuming an ideal, monoatomic gas) and the
heat conductivity κ has units of erg cm−1 s−1 K−1.

• Heat is conducted by electrons since they move faster than ions
by ve/vi =

√
mi/me ≈ 43

√
Z (assuming Te = Ti which applies to

the ICM except for immediate post-shock regions). The electron
mean free path is determined by the ion number density and the
scattering cross section, implying λ = 1/(niσ).
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Coulomb Logarithm

• Let’s first consider an electron scattering in the Coulomb field of
an ion:

1. If the deflection angle is small, θD � 1, we can approximate
its value by computing the perpendicular impulse exerted
by the ion’s Coulomb field, integrating along the electron’s
unperturbed straight line trajectory (the “Born approxima-
tion”)

meveθD =

∫ ∞

−∞

∇⊥φidt =

∫ ∞

−∞

∂

∂b

 Ze2√
b2 + v2

et2

 dt

=

∫ ∞

−∞

Ze2bdt(
b2 + v2

et2)3/2 =
Ze2

ve

∫ ∞

−∞

b2dx
b3(1 + x2)3/2

=
Ze2

veb
x

√
1 + x2

∣∣∣∣∣∣∞
−∞

=
2Ze2

bve
, (3.217)

where b is the impact parameter of the electron’s trajectory.
Hence we obtain

θD =
b0

b
for b � b0 ≡

2Ze2

mev2
e
. (3.218)

2. If the dominant source of this electron deflection were a sin-
gle large-angle scattering event in the Coulomb field of an
ion, then the relevant cross section would be σ = πb2

0 (since
all impact parameters . b0 produce large-angle scatterings)
and the mean deflection frequency νD and time tD would be

νD =
1
tD

= niσve = niπb2
0ve (for large-angle scattering).

(3.219)

• The cumulative, random-walk effects of many small-angle scat-
terings off ions produce a net deflection of order a radian in a
shorter time. As the directions of the individual scatterings are
random, the mean defection angle after many scatterings vanish,
〈θ〉 = 0. However, 〈θ2〉 will not vanish and we have

〈θ2〉 =
∑

all encounters

θ2
D =

∑
all encounters

(
b0

b

)2

. (3.220)

• The number of encounters that occur with impact parameters be-
tween b and b + db during time t is dN = nivet2πbdb. Hence the
mean square deflection angle accumulates up to

〈θ2〉 =

∫ bmax

bmin

(
b0

b

)2

dN = ni2πb2
0vet ln

(
bmax

bmin

)
. (3.221)
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• While the integral diverges logarithmically, physics regularizes it
quite naturally. The minimum impact parameter,

bmin =
Ze2

kBT
, (3.222)

equals the radius where the Coulomb energy of the electron in
the field of the ion vanishes, U = mv2/2 − Ze2/bmin

!
= 0. The

maximum impact parameter is given by the maximum distance
over which electric fields of individual particles can reach without
being screened by the oppositely charged particles in a plasma.
This is known as the Debye length,

bmax = λD =

√
kBT

4πneZe2 . (3.223)

• Hence, we can define the Coulomb logarithm

ln Λ = ln
(
bmax

bmin

)
= ln

√
(kBT )3

4πneZ3e6 (3.224)

= 35 −
1
2

ln
( ne

10−2cm−3

)
+

3
2

ln
(

kBT
keV

)
. (3.225)

• The value of t that implies 〈θ2〉 ≈ 1 is the deflection time tD,

νei
D =

1
tei
D

= ni2πb2
0ve ln Λ =

8πniZ2e4

m2
ev

3
e

ln Λ (3.226)

and ln Λ ≈ 35 . . . 40 in the ICM. This deflection frequency is
larger by a factor of 2 ln Λ than the frequency of (3.219), which
is valid for a single large-angle scattering event.

• Back to our heat conductivity of electrons,

κ =
nevecVλ

3
=

nevecV

3σni
. (3.227)

From (3.226), we can read off σ by remembering νD = niσve:

σ = 2πb2
0 ln Λ =

8πZ2e4 ln Λ

m2
ev

4
e

. (3.228)

This yields the heat conductivity of electrons that are scattered by
ions in a thermal gas,

κ =
neve

3
cV

m2
ev

4
e

8πniZ2e4 ln Λ
=

1
3

(
m2

e

8πZ2e4

) (
ne

ni

)
cVv

5
e

ln Λ
. (3.229)
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• The heat capacity at constant volume is cV = 3kB/2 and the ther-
mal electron velocity is ve =

√
3kBTe/me. Inserting these expres-

sions into (3.229) yields a value for the heat conductivity

κ =
kB

2

(
m2

e

8πZ2e4

) (
ne

ni

) (
3kBTe

me

)5/2 1
ln Λ

= 1.7 × 10−7
( T
1 K

)5/2 (
ln Λ

35

)−1 erg
s K cm

= 1.7 × 1013
( T
108 K

)5/2 (
ln Λ

35

)−1 erg
s K cm

, (3.230)

where we have used appropriate values for the Coulomb loga-
rithm in cool core regions in clusters.

Thermal Stability: Fields Length

• Cool star forming clouds should only appear in systems whose
size is greater than a critical length scale, known as the Fields
length below which thermal conduction smoothes out tempera-
ture inhomogeneities. Formally we would have to a Lagrangian
perturbation analysis to derive this length scale. Instead, we will
derive the Field length heuristically by considering thermal bal-
ance for a cool cloud of radius r embedded in a medium of tem-
perature T .

• Electron thermal conduction sends energy into the cloud at a rate

Hcond ∼ r2κ(T )
T
r
∼ κ0 fer

(
T
T8

)7/2

. (3.231)

Here, T8 = 108 K, fe is a magnetic suppression factor that depends
on the topology of magnetic field lines connecting our cloud of
consideration, and we used the Spitzer conductivity (which as-
sumes a value for the Coulomb logarithm of ln Λ = 10),

κ = 6 × 1013
( T
108 K

)5/2

fe
erg

s K cm
. (3.232)

• Radiative cooling can radiate away energy at a rate

Crad ∼ r3n2
HΛ0(T ) ∼ r3n2

HΛ0

(
T
T8

)1/2

, with (3.233)

Λ0(T ) ≈ 2.5 × 10−29
(

T
T8

)1/2 erg cm3

s
, (3.234)

where we have used (3.180).
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• Cooling and conduction are thus in approximate balance,Hcond ∼

Crad, for systems with a radius of order the Fields length

λF ≡

[
Tκ(T )

n2
HΛ0(T )

]1/2

=

(
κ0 fex2

e

kBΛ0k2
BT 2

8

)1/2

K3/2
e (3.235)

≈ 4 kpc
(

Ke

10 keV cm2

)3/2

f 1/2
e , (3.236)

where we have used Ke = kBT/n2/3
e and the square of the hydro-

gen number density is given by n2
H = X2

Hρ
2/m2

p = n2
e/x2

e . Through
a coincidence of scaling, the Field length is a function of entropy
alone when free-free emission is the dominant cooling mecha-
nism.

• We can translate this criterion in the entropy-radius plane by
adopting λF(K) = r. This yields a thermal stability threshold that
obeys a scaling with radius of K ∝ r2/3 f −1/3

e = λ2/3
F f −1/3

e . Gas that
is below that threshold and resides within radius r constitutes a
subsystem with r > λF (at constant K), i.e., the amount of entropy
in the larger cloud is too small to support fast enough conduction
that is necessary to prevent a cooling run-away, allowing multi-
phase gas to persist and star formation to proceed. Gas above the
threshold resides in the region of thermal stability in which con-
duction is fast enough and leads to evaporation of a cool cloud
and eventually homogeneity.

• In Sect. 3.1.7, we found that the entropy profile of the ICM at
larger scales shows the behavior K ∝ r1.1. This leaves us with
two possibilities of cluster states in reality (which appear to be
dynamical attractor solutions of thermal stability considerations):

1. Clusters can have an entropy profile that is elevated enough
so that it stays always above the thermal stability threshold.
As a consequence, the steeper entropy profile on larger scale
necessarily needs to break at sufficiently large radii to join
an elevated level of central entropy. This defines the class of
non-cool core clusters.

2. Clusters can have an entropy profile that continues to de-
crease toward smaller radii until it drops below the thermal
stability threshold. There the gas is subject to thermal insta-
bility, and multiphase gas can form, potentially seeding star
formation. This constitutes the class of cool core clusters.
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Thermal Stability with Magnetic Fields
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3.3 Non-thermal Processes

3.3.1 Magnetic Fields

Generating Magnetic Fields: Biermann Battery

Evolution: Magneto-hydrodynamics

Magneto-hydrodynamic Waves and Turbulence

3.3.2 Cosmic Rays

Diffusive Shock Acceleration (First-order Fermi Acceleration)

Second-order Fermi Acceleration

Cosmic Ray Transport

• Consider a spatial random coordinate x(t) of a CR particle diffus-
ing in a fluid of bulk velocity v. For simplicity, we restrict our-
selves to the one-dimensional case. During a time interval which
is much shorter compared to the diffusion time, the particle’s po-
sition varies by ∆x = v∆t + δx. The first contribution is due to
the bulk motion of the scattering medium and the second term is
due to the random walk diffusion with vanishing mean and the
variance 〈δx2〉 = 2D(x, p)∆t, where D(x, p) denotes the diffusion
coefficient.

• The distribution of galactic CRs is governed by a competition be-
tween injection, escape, energy gain (acceleration), and energy
loss (catastrophic and continuous) processes. The transport equa-
tion which describes the balance of these processes is a Fokker-
Planck type equation that includes the description of fluid mo-
tions, radiative losses, and phase space diffusion. It can be ob-
tained by considering the collisionless Boltzmann equation and
working out the magneto-hydrodynamic forces acting on a CR
particle including the Lorentz force as well as pitch angle scatter-
ing on hydro-magnetic waves (details can be found in my High
Energy Astrophysics lectures; in the following I only sketch the
picture).

• The transport equation governs the evolution of the isotropic part
f (x, p) of the CR distribution function in phase space, assuming
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weak anisotropy of the CR momentum distribution function:

∂

∂t
f +

∂

∂x
v(x, p) f = −

1
p2

∂

∂p
p2A(x, p) f +

1
p2

∂

∂p
p2Γ(x, p)

∂

∂p
f

+
∂

∂x
D(x, p)

∂

∂x
f + s(x, p). (3.237)

The distribution is normalized such that the number density of
CRs nCR = 4π

∫
f p2dp. The ‘friction’ term A describes not only

various kinds of energy losses but also the energy gain by first or-
der processes in β ≡ v/c (adopting relativistic particles), the sec-
ond contribution on the right-hand side describes the energy gain
through the second order Fermi process, the third term on the
right-hand side describes spatial diffusion, and the last term ac-
counts for sources such as freshly injected CR particles at shocks
whose origin can be understood by means of plasma physical
calculations. The physical meaning of these processes will be
sketched in the following:

– Synchrotron and inverse Compton losses. A relativistic
charged particle of a Lorentz factor γ = (1 − β2)−1/2 expe-
riences Compton scattering with either real or virtual pho-
tons (which represent the magnetic field in the case of syn-
chrotron radiation). This causes the particle to emit photons
in the forward direction into a narrow cone of half-angle
γ−1 with respect to its momentum leading to an energy loss
which can effectively be described by a friction force in op-
posite direction to its momentum:

Arad ≡
〈∆p〉
∆t

∣∣∣∣∣
rad

= −
4
3
σT

(me

m

)2
(εB + εph)γ2, (3.238)

where σT denotes the Thompson cross section, εB =

B2/(8π) and εph are the energy densities of the magnetic
field (responsible for synchrotron losses) and the low en-
ergy photon field (causing the Compton effect in the Thomp-
son regime). The radiative losses of baryons are suppressed
by (me/m)2 such that they can be neglected unless they are
ultra-high energetic CRs with energies & 1018 eV.

– First order Fermi process. The contribution of the first
order Fermi process can be described by a non inertial en-
trainment due to the deceleration of the scattering medium:
a compressed flow (∇ · 3 < 0) produces first order accelera-
tion of charged particles. In this situation, the inertial force
is F j = −pi(∂v j/∂xi) that gives rise to an accelerating power

Pacc = −〈v j pi〉
∂v j

∂xi
= −

pv
3
∇ · 3 → Aacc = −

p
3
∂v

∂x
.

(3.239)
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– Second order Fermi process. Charged particles gyrate
around, and travel slowly along magnetic field lines. Oc-
casionally, they get scattered on magnetic irregularities and
plasma waves (mostly Alfvén waves). This scattering pro-
cess can be described by a random walk of the particle’s
pitch angle with the magnetic field direction, θ, yielding the
characteristic variance 〈δµ2〉 ∝ νs∆t where νs denotes the av-
erage scattering frequency and µ = cos θ. Because the par-
ticle scatters off moving targets, the particle systematically
gains energy through random variations of the CR momen-
tum δp = ±βA pδµ where βA = vA/c is the dimensionless
Alfvén velocity in the case of scattering Alfvén waves. The
second order Fermi process is thus described by a diffusion
process in momentum space with the momentum diffusion
coefficient

Γ ≡
〈δp2〉

2∆t
∼ β2

Aνs p2. (3.240)

– Diffusive losses from the disk. CRs experience momen-
tum dependent diffusion in a turbulent magnetic field with
a Kolmogorov-type spectrum on small scales. This process
leads to a loss time scale which is proportional to p−1/3. In
an equilibrium situation, this results in a steepening of the
observed spectrum within the disc by p−1/3 relative to the
injected spectrum.

– Radioactive decay. The observed isotope ratios resulting
from radioactive decay provide a clock for cosmic ray trans-
port and yields the time scale of diffusive losses from the
disk. For any given isotope, radioactive decay can be a loss
or a gain process in the equation of balance.

– Coulomb and ionization losses are strongest for protons
or heavier nuclei, but also relevant for electrons. The ion-
ization process limits the lower energy of the proton spec-
trum to approximately 50 MeV after traversing a path length
through most of the interstellar medium. Energetic CRs
experience energy losses even within an ionized medium
through Coulomb interactions. Coulomb losses efficiently
remove the low-energetic part of the injected CR spectrum
on a short timescale and redistribute these particles and their
energy into the thermal pool.

– Catastrophic losses. Another loss process is the inelas-
tic reaction of CR nuclei with atoms and molecules of the
interstellar medium. The CR protons interact hadronically
with the ambient thermal gas and produce mainly neutral
and charged pions, provided their momentum exceeds the
kinematic threshold of 0.78 GeV for the reaction. The neu-
tral pions successively decay into γ-rays while the charged
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pions decay into secondary electrons and neutrinos.

– Spallation. Spallation describes the destruction of atomic
nuclei in a collision with a CR particle that is in most cases
a proton or an alpha particle. In this destruction process,
many pieces of debris are formed where commonly a sin-
gle nucleon gets stripped and a distribution of lighter nuclei
is obtained. Since the abundances of the elements Lithium,
Beryllium, and Boron are much larger in CRs than in the
interstellar medium, spallation processes are assumed to ac-
count for the origin of these elements. For any specific iso-
tope, spallation can again occur as a loss or a gain process
in the equation of balance.
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4.1 Optical: Galaxy Properties and Virial
Theorem
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Dynamical Friction

Ram Pressure Stripping

4.1.3 Virial Theorem

Derivation

Weighting a Cluster with Galaxies



CHAPTER 4. CLUSTER PHYSICS ACROSS WAVELENGTHS 95

4.2 Gravitational Lensing

The theory presented in this section is based on two main assumptions:
(i) the Newtonian limit of a slowly varying gravitational field is taken
from Einstein’s field equations, namely |Φ| � c2 and |vlens| � c, in or-
der to characterize the properties of lenses, and (ii) the lensing objects
are considered to be thin, i.e. the deflecting mass is isolated and concen-
trated within a region L much smaller than the distances between source
and deflector and deflector and observer, L � cH−1

0 . This approxi-
mation holds remarkably well in the astrophysical cases of galaxies or
clusters of galaxies.

4.2.1 Deflection Angle

Linearizing the gravitational field equations and taking non–relativistic
sources results in the “post–Minkowskian” metric to first order, neglect-
ing the gravitational vector potential,

ds2 =

(
1 +

2Φ

c2

)
c2dt2 −

(
1 −

2Φ

c2

)
dr 2 , (4.1)

where Φ represents the Newtonian potential and dr characterizes the
spatial part of the Minkowski metric. Using the fact that light propa-
gates on null geodesics, namely ds2 = 0, yields an effective velocity of
light c′ in the presence of a weak gravitational field,

c′ =
|dr|
dt
' c

(
1 +

2Φ

c2

)
≡

c
n
, (4.2)

n =

(
1 −

2Φ

c2

)
≥ 1 , (4.3)

which defines an effective index of refraction n of the gravitational field
in analogy to geometrical optics in dense media. Note that the gravita-
tional potential Φ is by definition negative as it represents an attractive
gravitational force. Applying Fermat’s principle leads to an equation
for the spatial light paths by using the Euler–Lagrange equations for
carrying out the variation

δ

∫ B

A
n dl = δ

∫ B

A
n(r)

√
|ṙ|2 dλ !

= 0 (4.4)

or ṙ = −
2
c2∇⊥Φ(r), (4.5)

where the different curves are parametrized by the affine curve param-
eter λ, the dot denotes a derivative with respect to λ and ∇⊥Φ(r) is the
gradient of the potential perpendicular to the perturbed light ray. The
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total deflection is therefore the integral along the light path of the dif-
ferential displacements,

α̂(r) = −

∫
∇⊥n(r) dl =

2
c2

∫
∇⊥Φ(r) dl . (4.6)

Because in nearly all cases of astrophysical interest the deflection angle
is small, α̂ � 1, one usually applies the “Born approximation” and
evaluates the integral along the unperturbed ray, i.e. along a straight
line. Since the non–relativistic matter is characterized by its density
perturbations only, the gravitational potential which gives rise to light
deflections (4.6) neither depends on the actual nature of matter nor its
composition or physical state. Therefore gravitational light deflection
probes the total matter density of gravitationally interacting particles
irrespective of baryonic and dark matter.

4.2.2 Lens Equation

The lensing equation relates the intrinsic angular source position of an
astrophysical object to its observable image position on the sky which
was possibly changed in the presence of gravitational light deflection
along the line of sight. In order to derive this equation in the thin screen
approximation, it is useful first to consider lensing by a point mass. The
Newtonian potential as well as its perpendicular gradient can be written
as

Φ(ξ, z) = −
GM√
ξ2 + z2

(4.7)

and ∇⊥Φ(ξ, z) =
GMξ

(ξ2 + z2)3/2 , (4.8)

where the tree dimensional vector r is decomposed into the z–coordinate
along the unperturbed ray and the two dimensional impact parameter
ξ orthogonal to the unperturbed ray pointing towards the point mass.
Equation (4.6) leads to the deflection angle

α̂(ξ) =
2
c2

∫ ∞

−∞

GMξ
(ξ2 + z2)3/2 dz =

4GM
c2ξ

ξ

|ξ|
=

2RS

ξ

ξ

|ξ|
, (4.9)

with RS being the Schwarzschild radius of the point mass. The Born
approximation in this context makes sure that the integral is evaluated
along the straight coordinate line z.

If we now consider extended objects acting as lenses, but still located
within a small region compared to the total distance between lens and
observer, the mass distribution of the lensing object can be projected
along the line of sight. The smooth three–dimensional distribution can
then be replaced by a mass layer perpendicular to the line of sight, which
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is called lens plane. The surface mass density on the lens plane is given
by

Σ(ξ) =

∫
ρ(ξ, z) dz , (4.10)

and the deflection angle at position ξ is the overall deflection effect due
to a superposition of “point–mass” elements in the plane because of
linearity of the system:

α̂(ξ) =
4G
c2

∫
Σ(ξ′)(ξ − ξ′)
|ξ − ξ′|2

d2ξ′ . (4.11)

This equation holds in the lens plane with the impact parameter mea-
sured in physical units. Assuming the small angle approximation, the
lens equation relates the position of the source to the observable image
position on the sky. The geometry of a typical gravitational lens system
is shown in figure (4.1).

Figure 4.1: Illustration of a typical gravitational lens system. The angles
are exaggerated for visualization purposes.

The true position of the source with respect to some arbitrarily chosen
optical axis is denoted by β and the angular image position on the sky as
viewed by an observer is given by θ. All distances along the line of sight
are angular diameter distances, where Dls denotes the distance between
lens and source, Dl the distance between lens and observer and Ds the
distance between source and observer. Using the relation ξ ' Dlθ and
introducing the reduced deflection angle,

α(θ) =
Dls

Ds
α̂(θ), (4.12)

equation (4.11) can be written as

α(θ) =
4G
c2

DlDls

Ds

∫
Σ(θ′)(θ − θ′)
|θ − θ′|2

d2θ′ . (4.13)
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The critical surface mass density Σcr and the convergence κ are defined
by

Σcr ≡

(
4πG
c2

DlDls

Ds

)−1

and κ ≡
Σ

Σcr
. (4.14)

It is important to note that the distance combination appearing in equa-
tion (4.13), DlDls

Ds
, acts as a lensing efficiency function. It approaches

zero at both the source and the observer and has a maximum in be-
tween. Using definitions (4.14), the deflection angle as a function of the
image position θ reduces to

α(θ) =
1
π

∫
κ(θ′)

θ − θ′

|θ − θ′|2
d2θ′ . (4.15)

This equation shows that only the ration of Σ and Σcr is measurable,
or in other words, using gravitational lensing on its own, one is not
able to determine both the mass of a lensing object and the involved
distances independently. From figure (4.1) we can read off θDs−α̂Dls =

βDs, assuming the small angle approximation and using the theorem on
intersecting lines. Using the expression for the reduced deflection angle,
this establishes the lens equation in its simplest form

β = θ −α(θ) . (4.16)

In general, this equation is nonlinear and can thus yield multiple images
on the sky for a single source position β. Moreover, the shape and
the size of the images will differ from the original source because light
bundles are deflected differentially.

4.2.3 Circular Symmetric Lenses – Einstein Radius

Consider a circularly symmetric lens with an arbitrary mass profile. Due
to the high degree of symmetry, we can place the coordinate origin at
the center of symmetry and reduce light deflection to a one-dimensional
problem. The deflection angle always points toward the center of sym-
metry with a modulus

α̂(ξ) =
4GM(ξ)

c2ξ
, (4.17)

where ξ = Dlθ is the distance from the lens center and M(ξ) is the
enclosed mass within ξ,

M(ξ) = 2π
∫ ξ

0
Σ(ξ′)ξ′dξ′. (4.18)

Combining equations (4.12) and (4.17) enables us to rewrite the lensing
equation (4.19), yielding

β(θ) = θ −
Dls

DlDs

4GM(θ)
c2θ

(4.19)
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Owing to the rotational symmetry of the lens, a source, which lies ex-
actly on the optical axis (β = 0) is imaged as a ring if the lens is super-
critical (Σ > Σcr). Setting β = 0 in equation (4.19) gives the radius of
the ring, the so-called Einstein radius,

θE =

√
4GM(θ)

c2

Dls

DlDs
. (4.20)

It is not only a property of the lens, but also depends on the distance
efficiency function. It provides the natural angular scale to describe
the lensing geometry for the following reasons: (i) in the case of mul-
tiple imaging, the angular separation of images is of order 2θE, (ii)
sources that lie closer than approximately θE to the optical axis experi-
ence strong lensing yielding to strong magnification and sheared images
whereas sources at much larger distances are only very little magnified,
and (iii) in many lens models the Einstein radius roughly represents
the boundary of source positions that are either multiply-imaged if they
lie inside θE or singly-imaged. Comparing equations (4.14) and (4.20)
reveals that the surface mass density inside θE is exactly the critical sur-
face density Σcr. For a point mass, we can obtain the Einstein radius

θE =

√
4GM

c2

Dls

DlDs
≈ 30′′

(
M

1014M�

)1/2 (
D

Gpc

)−1/2

, (4.21)

where we defined the lensing efficiency distance D = DlDs/Dls and in-
serted typical values for clusters to highlight the relevant angular scales
for giant (tangential) arcs in clusters. In the case of clusters, detailed
mass modeling is necessary since only a fraction of the cluster mass
resides within the Einstein radius.

For a point mass lens, we can use the Einstein radius of equation (4.20)
to rewrite the lens equation in the form

β = θ −
θ2

E

θ
. (4.22)

This equation has two solutions

θ± =
1
2

(
β ±

√
β2 + 4θ2

E

)
. (4.23)

Any source inside θE is imaged twice by a point mass lens. The two im-
ages are on either side of the source with one image inside the Einstein
ring and the other one outside. As the source moves away from the cen-
ter of the lens (i.e., with increasing β), one of the images approaches the
lens and becomes very faint, while the other image approaches the true
position of the source and tends toward a magnification of order unity.
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4.2.4 The Lensing Potential and Local Lens Properties

It is convenient to define the lensing potential Ψ(θ) which is the scaled
and projected Newtonian potential of the lens,

Ψ(θ) =
Dls

DlDs

2
c2

∫
Φ(Dlθ, z)dz . (4.24)

The lensing potential has the nice property that its gradient with respect
to θ is the deflection angle

∇θΨ(θ) =
Dls

Ds

2
c2

∫
∇⊥Φ(ξ, z)dz = α(θ), (4.25)

where the perpendicular gradient is now acting on the physical impact
parameter having used the small angle approximation ξ ' Dlθ. Assum-
ing further that the changes of the Newtonian potential along the line
of sight average out, which is true for instance, as long as the lensing
object is only slowly varying and does not undergo a rapid collapse.
More precisely, the time–scale on which light travels across the lensing
object, has to be much smaller than the collapse time–scale of the light
deflecting object. Then the two–dimensional Laplacian can be replaced
by its three–dimensional analogue,

∆(2)Φ(r) =

2∑
i=1

∂2Φ(r)
∂ξ2

i

'

3∑
i=1

∂2Φ(r)
∂r2

i

= ∆(3)Φ(r) . (4.26)

Therefore, the Laplacian of the lensing potential acting on its angular
coordinate θ equals twice the surface mass density scaled with its criti-
cal value, i.e. the convergence κ,

∆
(2)
θ Ψ(θ) =

2
c2

DlDls

Ds

∫
∆(3)Φ(ξ, z)dz = 2

4πG
c2

DlDls

Ds

∫
ρ(ξ, z)dz = 2κ(θ) ,

(4.27)
where Poisson’s equation has been used in the second step. Since Ψ

satisfies the two–dimensional Poisson’s equation, its Green’s function
has to be considered, namely

∆(2)G(θ,θ′) = 2πδD(θ,θ′) =⇒ G(θ,θ′) = ln |θ−θ′| . (4.28)

Therefore the lensing potential Ψ(θ) is given by the convolution integral
of the source function κ(θ) and the Green’s function in two dimensions,

Ψ(θ) =
1
π

∫
κ(θ′) ln |θ − θ′|d2θ′ . (4.29)

Liouville’s theorem and the conservation of the physical number density
of photons during the process of gravitational light bending imply that
lensing conserves surface brightness or specific intensity. Assuming
that the angular scale on which the lens properties change is much larger
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than the extent of the source, the lens equation can locally be linearized
yielding

β = θ −α(θ) ' β0 +
∂β

∂θ
(θ − θ0) . (4.30)

The local lens properties of the lens mapping are described by its Jaco-
bian matrixA

A ≡
∂β

∂θ
=

(
δi j −

∂αi(θ)
∂θ j

)
=

(
δi j −

∂2Ψ(θ)
∂θi∂θ j

)
≡

(
δi j − Ψ,i j (θ)

)
=M−1 ,

(4.31)
where an abbreviation for partial derivatives has been introduced andA
is the inverse of the magnification tensorM. This is justified, because
a solid–angle element δβ2 of the source is mapped onto the solid–angle
element δθ2 on the image, and thus the magnification due to the mapping
is given by

δθ2

δβ2 = detM =
1

detA
. (4.32)

The trace of the JacobianA describes the isotropic magnification of the
source,

tr(A) = (1 − Ψ,11 ) + (1 − Ψ,22 ) = 2(1 − κ) . (4.33)

This also intuitively explains the meaning of the convergence κ, which
is a measure for how much the lens focuses light rays isotropically. Sub-
tracting the trace from A leads to an expression for anisotropic distor-
tion (astigmatism) of the image,

Ai j −
1
2
δi j tr(A) = δi j − Ψ,i j −δi j(1 − κ) = −Ψ,i j +κδi j ≡ Γ , (4.34)

where the shear tensor Γ has been defined in the last step. This distor-
tion is due to the tidal gravitational field. Particularly, it decomposes
in

Γ =

(
γ1 γ2

γ2 −γ1

)
(4.35)

and γ1 =
1
2

(Ψ,11 −Ψ,22 ) ≡ γ(θ) cos (2φ(θ)) (4.36)

γ2 = Ψ,12 = Ψ,21 ≡ γ(θ) sin (2φ(θ)) . (4.37)

Here γ =

√
γ2

1 + γ2
2 describes the magnitude of the shear and φ its ori-

entation, whereas the factor 2 shows that γ is not a vector, but a 2 × 2–
tensor.

4.2.5 Strong and Weak Cluster Lensing

The name of the game in cluster lensing research consists in reconstruct-
ing the mass distribution. Depending on the type of lensing – strong or
weak lensing – there are different algorithms used.
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Strong Cluster Lensing

Using our simplified mass density model of a singular isothermal sphere
(SIS, see Section 2.4.1), we can readily work out the relevant strong
lensing properties for this model. Recall that the mass density and rota-
tional velocity in this model was given by

ρ(r) =
σ2
3

2πG
1
r2 and 3

2
rot =

GM(r)
r

= 2σ2
3 = const. (4.38)

Upon projection the density along the line-of-sight, we obtain the sur-
face mass density

Σ(ξ) =

∫ s

0
ρ(ξ, z)dz = 2

∫ ∞

ξ

ρ(r)rdr√
r2 − ξ2

=
σ2
3

2G
1
ξ
, (4.39)

where ξ is the distance from the center of the two-dimensional profile.
Using equation (4.17), we obtain the deflection angle

α̂ = 4π
σ2
3

c2 (4.40)

which is independent of ξ and points to the center of the lens. The
Einstein radius of the SIS is given by equation (4.20),

θE = 4π
σ2
3

c2

Dls

Ds
= α̂

Dls

Ds
= α. (4.41)

The symmetry of the problem reduces the dimensionality of the problem
to become one-dimensional. Multiple images are only obtained if the
source lies inside the Einstein ring, i.e., if β < θE. If this condition is
satisfied, we obtain the following two solutions,

θ± = β ± θE. (4.42)

The images at θ±, the source, and the lens all lie on a straight line. (The
third image with zero flux lies at θ = 0 and only acquires a non-zero
flux if the singularity of the lens is replaced by a core of finite density).

Rich concentrated clusters can produce giant arcs when a background
galaxy is aligned with one of the cluster caustics. Typically, a
parametrized lens model (such as the SIS above or a more complicated
functional form) is optimized so as to obtain a good fit to the observed
image. If there are many constraints from a number of strongly lensed
galaxies such as their position and detailed properties of their distortion
(magnitude distribution across their arcs), ray tracing through an adap-
tive grid is possible. This can even constrain the detailed mass distribu-
tion within the cluster including their substructure mass distribution.
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Weak Cluster Lensing – The Kaiser & Squires Algorithm

Every cluster weakly distorts images of a large number of background
galaxies giving rise to so-called arclets – this phenomenon is referred to
as weak lensing. With the development of the Kaiser & Squires (1993)
algorithm, weak lensing is being used increasingly to derive parameter-
free two-dimensional mass maps of galaxy clusters.

Kaiser & Squires Algorithm:
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4.3 X-rays: Astrophysics at High Resolution

4.3.1 Hydrostatic Equilibrium Masses and Biases

4.3.2 Kinematics of Shocks and Cold Fronts

4.3.3 Probing Kinetic Equilibrium with Collisionless
Shocks

4.3.4 Width of Cold Fronts – Magnetic Draping
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4.4 Sunyaev-Zel’dovich (SZ) Effect: Cluster
Calorimeter

4.4.1 Thermal and Kinetic SZ Effect

4.4.2 SZ Scaling Relation and Biases

4.4.3 SZ Power Spectrum
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4.5 Radio Emission: Shocks and Plasma
Physics

4.5.1 Radio Halos
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A.1 Useful stuff
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A.2 Schwarzschild Criterion for Convective
Instability
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