Schwarze Löcher und Gravitationalswellen: Herausforderungen und Erfolge numerischer Simulationen

Harald Pfeiffer

California Institute of Technology

Physikalisches Kolloquium, Universität Bayreuth, 8. Mai 2007

Übersicht

- $L_{\rm max} = 10^{23} L_{\odot} \sim L_{\rm Universum}$
- Entfernung 10¹⁰ Lichtjahre:

 $\Phi_{\text{max}} = 10^4 \Phi_{\text{Mond}}$

- Schwarze Löcher
- Gravitationswellen
- Numerische Simulationen

Kompakte Doppelsterne

- Massenfluß auf unsichtbaren Partner ⇒ Röntgenstrahlen
- Oder nur ein Stern sichtbar
- $M_{\rm unsichtbar} = 5 30 M_{\odot}$
- Umlaufbahn des sichtbaren Sterns zu eng für "normalen" Stern, *M*_{unsichtbar} zu hoch für Neutronenstern. Schwarzes Loch?

Milchstraßen Zentrum

Genzel et al., Nature 2003

- $3 \times 10^6 M_{\odot}$ in Volumen vergleichbar unserem Sonnensystem Schwarzes Loch?
- Supermassive Schwarze Löcher in Zentren von Galaxien die Regel
- Masse 10⁵ · · · 10⁹ M_☉

Pierre Laplace (1749-1827)

 Ein Stern, dessen Fluchtgeschwindigkeit größer als die Lichtgeschwindigkeit ist.

"Licht fällt auf Stern zurück" \Rightarrow Dunkel

Albert Einstein (1879-1955)

• Ein Stern, dessen Fluchtgeschwindigkeit größer als die Lichtgeschwindigkeit ist.

"Licht fällt auf Stern zurück" \Rightarrow Dunkel

• Allgemeine Relativtätstheorie:

Albert Einstein (1879-1955)

 Ein Stern, dessen Fluchtgeschwindigkeit größer als die Lichtgeschwindigkeit ist.

"Licht fällt auf Stern zurück" \Rightarrow Dunkel

• Allgemeine Relativtätstheorie:

Ein solcher Stern stürzt innerhalb von Millisekunden zu einer punktförmigen Singularität zusammen.

Albert Einstein (1879-1955)

 Ein Stern, dessen Fluchtgeschwindigkeit größer als die Lichtgeschwindigkeit ist.

"Licht fällt auf Stern zurück" \Rightarrow Dunkel

- Allgemeine Relativtätstheorie: Ein solcher Stern stürzt innerhalb von Millisekunden zu einer punktförmigen Singularität zusammen.
- Es bleibt: Eine Vakuum-Lösung der Allgemeinen Relativitätstheorie mit Singularität und Ereignishorizont.

• Newton'sche Gravitationgesetze: Euklidischer Raum (flach)

$$\Delta \Phi = 4\pi G \rho, \qquad \vec{a} = -\vec{\nabla} \Phi$$

• Newton'sche Gravitationgesetze: Euklidischer Raum (flach)

$$\Delta \Phi = 4\pi G \rho, \qquad \qquad \vec{a} = -\vec{\nabla} \Phi$$

• ART:

• Raum ist gekrümmt (z.B. $A \neq 4\pi r^2$).

• Newton'sche Gravitationgesetze: Euklidischer Raum (flach)

$$\Delta \Phi = 4\pi G \rho, \qquad \qquad \vec{a} = -\vec{\nabla} \Phi$$

- ART:
 - Raum ist gekrümmt (z.B. $A \neq 4\pi r^2$).
 - ► Krümmung g_{ab}(x, t) gehorcht den Feldgleichungen

 $G_{ab}[g_{ab}] = 8\pi G T_{ab}.$

• Newton'sche Gravitationgesetze: Euklidischer Raum (flach)

$$\Delta \Phi = 4\pi G \rho, \qquad \qquad \vec{a} = -\vec{\nabla} \Phi$$

- ART:
 - Raum ist gekrümmt (z.B. $A \neq 4\pi r^2$).
 - ► Krümmung g_{ab}(x, t) gehorcht den Feldgleichungen

 $G_{ab}[g_{ab}] = 8\pi G T_{ab}.$

 Körper bewegen sich "möglichst gerade" durch gekrümmten Raum:

• Newton'sche Gravitationgesetze: Euklidischer Raum (flach)

$$\Delta \Phi = 4\pi G \rho, \qquad \qquad \vec{a} = -\vec{\nabla} \Phi$$

- ART:
 - Raum ist gekrümmt (z.B. $A \neq 4\pi r^2$).
 - ► Krümmung g_{ab}(x, t) gehorcht den Feldgleichungen

 $G_{ab}[g_{ab}] = 8\pi G T_{ab}.$

Copyright © Addison Wesley

 Körper bewegen sich "möglichst gerade" durch gekrümmten Raum:

Sind Schwarze Löcher bewiesen?

• Beobachtungen: Viel Masse in kleinem Volumen

► <u>Angenommen</u> ART ist richtig ⇒ Schwarzes Loch

Sind Schwarze Löcher bewiesen?

Beobachtungen: Viel Masse in kleinem Volumen

- <u>Angenommen</u> ART ist richtig \Rightarrow Schwarzes Loch
- Ist ART bewiesen?
 - Sonnensystem-Tests bestätigen ART
 - Periheldrehung des Merkur
 - Lichtablenkung an Sonne
 - Schwerkraftbedingte Rotverschiebung
 - Global Positioning System (GPS)
 - Aber Raumzeit im Sonnensystem fast flach $GM/(c^2r) \sim 10^{-6}$
 - Keine Tests in stark gekrümmter Raumzeit $GM/(c^2r) \sim 1$

Gravitationswellen

- Feldgleichungen erlauben Wellenlösungen (vgl. Maxwell Gleichungen).
- Erzeugt durch zeitveränderliche Quadrupol-Momente, z.B. Binäre Schwarze Löcher
- Energieabstrahlung verkleinert Abstand.

Das Leben eines Binären Schwarzen Loches

Größenverhältnisse

Größenverhältnisse

• $4M_{\odot} + 4M_{\odot}$ = $10^6 M_{\rm Erde} + 10^6 M_{\rm Erde}$

- *d* = 170km
- *f* = 70Hz
- *v* = 30 000km/s
- *t* = 0.2s
- ~ 15 Umläufe bis Verschmelzung

Indirekter Nachweis von GW

Doppel-Neutronenstern PSR 1913+16 (Hulse & Taylor, Nobelpreis 1993)

Messung von Gravitationswellen

• Eine GW ändert die Abstände zwischen benachbarten Testmassen .

• Signal ist relative Längenänderung $h(t) \equiv \Delta L(t)/L$.

Messung von Gravitationswellen

Eine GW ändert die Abstände zwischen benachbarten Testmassen.

• Signal ist relative Längenänderung $h(t) \equiv \Delta L(t)/L$.

Gegenwärtiges Ziel der Gravitationsphysik:

Direkte Messung von Gravitationswellen

- Stimmt die ART? Hatte Einstein Recht?
- Völlig neues Beobachtungsfenster ins Universum
 - Binäre Schwarze Löcher nur durch GW sichtbar
 - Neutronensterne
 - Supernovae
 - Völlig neue Objekte (vgl. Radiowellen, Röntstrahlen, ...)

Schwierigkeit...

Gegenwärtiges Ziel der Gravitationsphysik:

Direkte Messung von Gravitationswellen

- Stimmt die ART? Hatte Einstein Recht?
- Völlig neues Beobachtungsfenster ins Universum
 - Binäre Schwarze Löcher nur durch GW sichtbar
 - Neutronensterne
 - Supernovae
 - Völlig neue Objekte (vgl. Radiowellen, Röntstrahlen, ...)

• Schwierigkeit... $h \sim 10^{-21}$, $\Delta L \sim 0.01 R_{ m Proton}$

Suche nach Gravitationswellen

Laser Interferometer Gravitational Wave Observatory (LIGO, USA)

Suche nach Gravitationswellen

Laser Interferometer Gravitation

- Michelson Interferometer
- Fabry-Perot Konfiguration

LIGO Strahl-Teiler

GW Detektoren

LIGO, USA (2x)

GEO 600, Hannover

LISA NASA+ESA (201?)

VIRGO, Pisa

Cross-correlation

- Detektor misst $s(t) = h_{GW}(t) + n(t)$
- "Cross-correlation" gegen erwartetes Signal h(t; M1, M2, t0,...).

Die erwarteten Wellenformen h(t; M₁, M₂, t₀,...) müssen bekannt sein!
<u>Phasengenauigkeit von h(t; ...) besonders wichtig!</u>

Harald Pfeiffer (Caltech)

Methoden zur Berechnung der Wellenform

- Einspiralen
 - v ≪ c: Entwicklung in v/c (post-Newtonsche N\u00e4herung)
 - -v/c groß: Numerische Simulationen
- Verschmelzung
 - Numerische Simulationen
- Abklingen
 - Störungsrechnung Schwarzer Löcher
 - Numerische Simulationen

Methoden zur Berechnung der Wellenform

- Einspiralen
 - v ≪ c: Entwicklung in v/c (post-Newtonsche N\u00e4herung)
 - v/c groß: Numerische Simulationen
- Verschmelzung
 - Numerische Simulationen
- Abklingen
 - Störungsrechnung Schwarzer Löcher
 - Numerische Simulationen
- Aufgaben der Numerik:
 - Simulation der letzen N Umläufe und der Verschmelzung.
 - Bestimmung von N.

Simulation der Feldgleichungen – Grundidee

• Aufgabe: Finde Raumzeit-Metrik g_{ab} , so daß $R_{ab}[g_{ab}] = 0$
- Aufgabe: Finde Raumzeit-Metrik g_{ab} , so daß $R_{ab}[g_{ab}] = 0$
- Spalte Raumzeit in Zeit und Raum

- Aufgabe: Finde Raumzeit-Metrik g_{ab} , so daß $R_{ab}[g_{ab}] = 0$
- Spalte Raumzeit in Zeit und Raum t+dt t
- Evolutions Gleichungen

$$\partial_t g_{ij} = \dots$$

 $\partial_t K_{ij} = \dots$

• Aufgabe: Finde Raumzeit-Metrik g_{ab} , so daß $R_{ab}[g_{ab}] = 0$

Evolutions Gleichungen

$$\partial_t g_{ij} = \dots$$

 $\partial_t K_{ij} = \dots$

 Zwangsbedingungen $R[g_{ii}] + K^2 - K_{ii}K^{ij} = 0$ $\nabla_i \left(K^{ij} - g^{ij} K \right) = 0$

• Aufgabe: Finde Raumzeit-Metrik g_{ab} , so daß $R_{ab}[g_{ab}] = 0$

Geschichte

- 1964: Kollisionen von Wurmlöchern (Hahn & Lindquist)
- 1970er: Axisymmetrische Simulationen (Smarr & Eppley)
- 1994-99: NSF Binary black hole grand challange

Geschichte

- 1964: Kollisionen von Wurmlöchern (Hahn & Lindquist)
- 1970er: Axisymmetrische Simulationen (Smarr & Eppley)
- 1994-99: NSF Binary black hole grand challange
- Seit Ende der 90'er Jahre: Fundamente
 - Sorgfältige Verbesserungen vieler Komponenten

Geschichte

- 1964: Kollisionen von Wurmlöchern (Hahn & Lindquist)
- 1970er: Axisymmetrische Simulationen (Smarr & Eppley)
- 1994-99: NSF Binary black hole grand challange
- Seit Ende der 90'er Jahre: Fundamente
 - Sorgfältige Verbesserungen vieler Komponenten
- 2005: Erfolg mit zwei völlig verschiedenen Methoden

Was ist so schwer?

- Singularitäten im Inneren der Schwarzen Löcher.
- Zwangsbedingungen $Z \equiv 0$
 - Für viele Jahre, $\partial_t Z \sim Z \Rightarrow Z \sim e^t$
- Koordinatenfreiheit

Wie wählt man Koordinaten für eine Raumzeit die man erst noch berechnen will?

- Hohe numerische Anforderungen
 - 20 50 Variable
 - Komplizierte Gleichungen (\gtrsim 1000 FLOPS pro Gitterpunkt)
 - Verschiedene Längenskalen
 - Hohe Genauigkeit, lange Laufzeiten nötig

• Feldgleichungen:

$$0 = R_{ab}[g_{ab}] = -rac{1}{2}\Box g_{ab} +
abla_{(a}\Gamma_{b)} + ext{niedrigere Ordnung}$$
 $\Gamma_a = -g_{ab}\Box x^b.$

• Feldgleichungen:

$$0=R_{ab}[g_{ab}]=-rac{1}{2}\Box g_{ab}+
abla_{(a}\Gamma_{b)}+ ext{niedrigere Ordnung} \qquad \Gamma_{a}=-g_{ab}\Box x^{b}.$$

• Harmonische Koordinaten $\Box x^a = 0$:

 $\Box g_{ab} =$ niedrigere Ordnung

• Feldgleichungen:

$$0=R_{ab}[g_{ab}]=-rac{1}{2}\Box g_{ab}+
abla_{(a}\Gamma_{b)}+ ext{niedrigere Ordnung}\qquad \Gamma_{a}=-g_{ab}\Box x^{b}.$$

• Harmonische Koordinaten $\Box x^a = 0$:

 $\Box g_{ab} =$ niedrigere Ordnung

 Verallgemeinerte harmonische Koordinaten g_{ab}□x^b ≡ H_a (Friedrich 1985, Pretorius 2005)

• Feldgleichungen:

$$0=R_{ab}[g_{ab}]=-rac{1}{2}\Box g_{ab}+
abla_{(a}\Gamma_{b)}+ ext{niedrigere Ordnung}\qquad \Gamma_{a}=-g_{ab}\Box x^{b}.$$

• Harmonische Koordinaten $\Box x^a = 0$:

 $\Box g_{ab} =$ niedrigere Ordnung

- Verallgemeinerte harmonische Koordinaten g_{ab}□x^b ≡ H_a (Friedrich 1985, Pretorius 2005)
- Neue Zwangsbedingung $Z_a \equiv H_a g_{ab} \Box x^b = 0$.

• Feldgleichungen:

$$0=R_{ab}[g_{ab}]=-rac{1}{2}\Box g_{ab}+
abla_{(a}\Gamma_{b)}+ ext{niedrigere Ordnung}\qquad \Gamma_{a}=-g_{ab}\Box x^{b}.$$

• Harmonische Koordinaten $\Box x^a = 0$:

 $\Box g_{ab} =$ niedrigere Ordnung

- Verallgemeinerte harmonische Koordinaten g_{ab}□x^b ≡ H_a (Friedrich 1985, Pretorius 2005)
- Neue Zwangsbedingung Z_a ≡ H_a g_{ab}□x^b = 0.
 Kontrolle der Zwangsbedingungen (Gundlach, et al., Pretorius, 2005)

$$0 = -\frac{1}{2}\Box g_{ab} + \nabla_{(a}Z_{b)} + \gamma \left[t_{(a}Z_{b)} - \frac{1}{2}g_{ab}t^{c}Z_{c} \right] + \text{n. O}.$$

$$\partial_t Z_a \sim -\gamma Z_a, \Rightarrow Z \sim e^{-\lambda t}$$

Behandlung der Singularität – "Black hole excision"

 Idee: Was innerhalb des Ereignishorizontes geschieht, kann die Außenwelt nicht beeinflussen – Warum nicht einfach das Innere weglassen? (Unruh, Anfang der 1980'er)

Behandlung der Singularität – "Black hole excision"

- Entferne Kugel innerhalb des Schwarzen Loches.
- Keine Randbedingung nötig!

Behandlung der Singularität – "Black hole excision"

- Entferne Kugel innerhalb des Schwarzen Loches.
- Keine Randbedingung nötig!

Numerik: Spektrale Methoden

- $u(t, \vec{x})$ Vektor der 50 Variablen
- Approximation der Lösung mit einer endlichen Serie

$$u(x,t)\approx u^{(N)}(x,t)\equiv\sum_{k=0}^{N-1}\tilde{u}_k(t)\Phi_k(x),$$

 Φ_k Fourier-Reihe, Tschebyshev-Polynome, Kugelflächen-Funktionen.

Numerik: Spektrale Methoden

- $u(t, \vec{x})$ Vektor der 50 Variablen
- Approximation der Lösung mit einer endlichen Serie

$$u(x,t)\approx u^{(N)}(x,t)\equiv\sum_{k=0}^{N-1}\tilde{u}_k(t)\Phi_k(x),$$

 Φ_k Fourier-Reihe, Tschebyshev-Polynome, Kugelflächen-Funktionen.

• Ableitungen sind analytisch bekannt

$$\frac{du^{(N)}(x)}{dx} = \sum_{k=0}^{N-1} \tilde{u}_k \frac{d\phi_k(x)}{dx}.$$

Numerik: Spektrale Methoden

- $u(t, \vec{x})$ Vektor der 50 Variablen
- Approximation der Lösung mit einer endlichen Serie

$$u(x,t)\approx u^{(N)}(x,t)\equiv\sum_{k=0}^{N-1}\tilde{u}_k(t)\Phi_k(x),$$

 Φ_k Fourier-Reihe, Tschebyshev-Polynome, Kugelflächen-Funktionen.

• Ableitungen sind analytisch bekannt

$$\frac{du^{(N)}(x)}{dx} = \sum_{k=0}^{N-1} \tilde{u}_k \frac{d\phi_k(x)}{dx}.$$

Zeitentwicklung von ũ_k(t) mit "method of lines"

$$\partial_t \tilde{u}_k = \Big[F - A(u) \cdot \nabla u \Big]_k.$$

۰

۰

۰

۰

۰

Warum Spektrale Methoden?

Glatte Lösungen \Rightarrow Exponentielle Konvergenz

Einige Details

- C++, 250 000 Zeilen.
- Cluster 500 Prozessoren, 30 TB Festplattenkapazität.
- Eine Simulation 10 000 CPU-h
- Caltech/Cornell: Knapp 20 Personen.

Verbesserte Anfangsdaten durch Evolutionen

HP et al., 2007

• Wähle radiale Geschwindigkeit um Exzentrizität des Orbits zu minimieren.

Verbesserte Anfangsdaten durch Evolutionen

HP et al., 2007

• Wähle radiale Geschwindigkeit um Exzentrizität des Orbits zu minimieren.

Verbesserte Anfangsdaten durch Evolutionen

HP et al., 2007

• Wähle radiale Geschwindigkeit um Exzentrizität des Orbits zu minimieren.

Trajektorien der Schwerpunkte

 $v_{r} = 0$

Trajektorien der Schwerpunkte

Movie

Numerische Wellenform

• $(10 + 10)M_{\odot}$ in einer Entfernung von $1Mpc \approx 3\,000\,000$ Lichtjahre

Vergleich mit Post-Newton'scher Näherung

Nur 1-PN Effekte im Sonnensystem getestet.

Vergleich mit Post-Newton'scher Näherung

Nur 1-PN Effekte im Sonnensystem getestet.

Vergleich mit Post-Newton'scher Näherung

- Nur 1-PN Effekte im Sonnensystem getestet.
- Exzellente Übereinstimmung für t ≤ 2000 (5 Umläufe)
 Wichtiger Test der Numerischen Rechnung!!
- Messbare Unterschiede in letzten 10 Umläufen.
Vergleich mit Post-Newton'scher Näherung

- Nur 1-PN Effekte im Sonnensystem getestet.
- Exzellente Übereinstimmung für t ≤ 2000 (5 Umläufe)
 Wichtiger Test der Numerischen Rechnung!!
- Messbare Unterschiede in letzten 10 Umläufen.

Was macht die Konkurrenz?

• Aktive Gruppen:

 Caltech (CA, USA) – Cornell (NY, USA) Spektra 	le Methoden
 Universität Jena 	FD
 Albert-Einstein-Institut (Potsdam) – Lousiana State Univ (LA, US) 	SA) FD
 Goddard Space Flight Center (MD, USA) 	FD
 Penn State University (PA, USA) 	FD
 Rochester University (NY, USA) 	FD

Was macht die Konkurrenz?

• Aktive Gruppen:

- Caltech (CA, USA) Cornell (NY, USA)
- Universität Jena
- Albert-Einstein-Institut (Potsdam) Lousiana State Univ (LA, USA)
- Goddard Space Flight Center (MD, USA)
- Penn State University (PA, USA)
- Rochester University (NY, USA)

• Spektrale Methoden...

- Hohe Genauigkeit während vieler Umläufe
- Verschmelzung bislang nur f
 ür Frontal-Kollision gelungen

Spektrale Methoden

FD

FD

FD

FD

FD

Was macht die Konkurrenz?

• Aktive Gruppen:

- Caltech (CA, USA) Cornell (NY, USA)
- Universität Jena
- Albert-Einstein-Institut (Potsdam) Lousiana State Univ (LA, USA)
- Goddard Space Flight Center (MD, USA)
- Penn State University (PA, USA)
- Rochester University (NY, USA)

• Spektrale Methoden...

- Hohe Genauigkeit während vieler Umläufe
- Verschmelzung bislang nur f
 ür Frontal-Kollision gelungen

• Finite Differenzen ...

- Adaptive Mesh Refinement, 4te Ordnung
- Dennoch Genauigkeit zu gering für viele Umläufe
- Verschmelzung Routine dank anderer Koordinaten-Bedingungen

Spektrale Methoden

FD

FD

FD

FD

FD

Code-Vergleich: Verschmelzung schwarzer Löcher

(Baker, Campanelli, Pretorius, Zlochower, 2007)

"Black hole kicks" (nicht-rotierend)

- Asymmetrische Konfiguration
 - \Rightarrow asymmetrische GW
 - ⇒ Impulsübertrag auf verbleibendes Schwarzes Loch
- Plot von gr-qc/0610154, Jena Gruppe (30.Okt. 2006)

(Gonzalez, et al, 2007)

Datum	gr-qc/	Gruppe	<i>v</i> (km/s)	
26. Jan	0701143	Penn State	400	
29. Jan	0701163	AEI/LSU	257	
29. Jan	0701164v1	Rochester	454	

Datum	gr-qc/	Gruppe	v (km/s)	
26. Jan	0701143	Penn State	400	
29. Jan	0701163	AEI/LSU	257	
29. Jan	0701164 <mark>v1</mark>	Rochester	454	
8. Feb	0702052	Jena	2500	

v (km/s)	Gruppe	gr-qc/	Datum
400	Penn State	0701143	26. Jan
257	AEI/LSU	0701163	29. Jan
454	Rochester	0701164 <mark>v1</mark>	29. Jan
2500	Jena	0702052	8. Feb
1830	Rochester	0701164 <mark>v2</mark>	22. Feb

Fluchtgeschwindigkeit verschiedener Galaxien

Warum gibt es Schwarze Löcher in Galaxien-Zentren??

Zusammenfassung

• Gravitationsphysik ist in Blütezeit.

• Detektion von Gravitationswellen heute möglich, in 5 Jahren wahrscheinlich (verbesserte Detektoren).

• Numerische Simulationen sind erwachsen geworden.

