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LISA (201x)

Gravitational wave detectors

LIGO (2 sites)

@ Among prime targets: Binary black hole systems
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Stages of binary black hole evolution
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@ Knowledge of waveform allows to
» Enhance detector sensitivity
» Test general relativity
» Extract information about source (— astrophysics)
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Tools for computing the waveform

2, T -
Merger

@ Inspiral
— Vv < c: perturbative expansionin v/c 4|
(post-Newtonian expansion)

— v/c large: Numerical relativity o n

Inspiral Ringdown|

@ Merger
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@ Ringdown ‘ ‘ ‘ ‘ |

— BH perturbation theory -300 -200 -t}ro# 0 100

— Numerical relativity
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Tools for computing the waveform

2, T -
Merger

@ Inspiral
— Vv < c: perturbative expansionin v/c 4|
(post-Newtonian expansion)

— v/c large: Numerical relativity o n

@ Merger
— Numerical relativity A ,

Inspiral Ringdown|

@ Ringdown ‘ ‘
— BH perturbation theory -300 -200 -t}oo 0 100
— Numerical relativity m

@ Tasks for Numerical relativity:
— simulate “late” inspiral and merger.
— determine what “late” means.
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History

@ 1964 Hahn & Lindquist: Collisions of Wormholes
@ 1970’s Smarr & Eppley: Head on collisions
@ 1994-99 NSF Binary black hole grand challange
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History

1964 Hahn & Lindquist: Collisions of Wormholes
1970’s Smarr & Eppley: Head on collisions
1994-99 NSF Binary black hole grand challange

Since late 1990s: Groundwork and foundations
» New evolution systems
» AMR and spectral infrastructures
» Initial data
» Boundary conditions, gauge conditions

2005: The last pieces!

a) Pretorius — constraint damping for generalized harmonic
b) Goddard and Brownsville — Gauge conditions for moving punctures

@ Since 2005: The Golden Age of Numerical Relativity
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Overview

Problem characteristics
@ Multiple length scales
Size of BH’s ~ 1
Separation ~ 10
Wavelength A ~ 100
Wave extraction at several \
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Overview

Problem characteristics Computational approaches

@ Multiple length scales in the Golden Age
» Size of BH’s ~ 1 @ Finite difference AMR
> Separation ~ 10 » Albert-Einstein Institut
» Wavelength A ~ 100 (Germany), Goddard, Jena
» Wave extraction at several A (Germany), LSU, PSU,

@ Gravitational wave flux small Princeton, Rochester
» E/E~10"° » Impressive short inspirals with
» E drives inspiral mergers

. . Accurate long inspirals difficult
@ High accuracy required - ginsp

» Absolute phase error ¢ < 1
@ Solutions are smooth
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Overview

Problem characteristics Computational approaches

@ Multiple length scales in the Golden Age
» Size of BH’s ~ 1 @ Finite difference AMR
> Separation ~ 10 » Albert-Einstein Institut
» Wavelength A ~ 100 (Germany), Goddard, Jena
» Wave extraction at several A (Germany), LSU, PSU,

@ Gravitational wave flux small Princeton, Rochester
» E/E~10"° » Impressive short inspirals with
» E drives inspiral mergers

» Accurate long inspirals difficult
@ Multi-domain spectral methods
» Cornell/Caltech
» Impressive long inspiral
simulations
» Merger difficult

@ High accuracy required
» Absolute phase error ¢ < 1

@ Solutions are smooth
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Solving Einstein’s equations — basic idea

@ Task: Find space-time metric g, such that Rap[gap] = 0
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Solving Einstein’s equations — basic idea

@ Task: Find space-time metric g, such that Rap[gap] = 0

@ Split space-time into
space and time

t+dt
t
@ Evolution equations
ogj = ...
0K = ...

@ Constraints
Rlgj] + K2 — KyK' =0
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Solving Einstein’s equations — basic idea

@ Task: Find space-time metric g, such that Rap[gap] = 0

@ Split space-time into
space and time

t+dt
t
@ Evolution equations
hgGj=--- cf. Maxwell equations
oKy = ... }
HE= VxB
@ Constraints oB=-VxE
Rlgyl + K — KjK? =0 v.E—0
Vi (K - g'K) =0 v.B_0
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Evolution equations

@ Einstein’s equations:

1
0 = Rap[gap] = *EDgab + V(al ) +lower order terms M= fgabDXb.
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Evolution equations

@ Einstein’s equations:

1
0 = Rapl9ap] = *EDgab + V(al b)+lower order terms

@ Harmonic coordinates [x? = 0:

0Jgap = lower order terms.

@ Generalized harmonic coordinates g.,[1x? = H,
(Friedrich 1985, Pretorius 2005.)

@ Constraint C, = H, — gap[x? = 0.

Harald Pfeiffer (Caltech)
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Evolution equations
@ Einstein’s equations:
0 = Rap[9ap] = f%Dgab + V(al ) +lower order terms Fa= —gapIxP.

@ Harmonic coordinates [x? = 0:

0Jgap = lower order terms.

@ Generalized harmonic coordinates g.,[1x? = H,
(Friedrich 1985, Pretorius 2005.)

@ Constraint C, = H, — gap[x? = 0.
Constraint damping (Gundlach, et al., Pretorius, 2005)

1 1
0= —3500a + V(aCp) +7 | {aCh) — 59at°Co| +1. 0.
8103 ~ _'YCa
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Spectral Evolution code

@ Rewrite as first order symmetric hyperbolic system (Lindblom et al. 2005)

du + A(u)koku = F(u).

@ Approximate solution by truncated series
N—1
u(x,t) = uM(x, 1) =3 b(t) dk(x),

with associated collocation points x;.
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Spectral Evolution code

@ Rewrite as first order symmetric hyperbolic system (Lindblom et al. 2005)

du + A(u)koku = F(u).

@ Approximate solution by truncated series

N—1
u(x,t) = uM(x, 1) =3 b(t) dk(x),
k=0
with associated collocation points x;.
@ Derivatives known analytically
dM(x) & o do(x)
dx —~ dx

@ Evolve u(x;) by method of lines
Au(x;) = [F - A(u)kaku}

X=X
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Black hole singularity excision

@ Boundary conditions

» Find characteristic fields & speeds
» Impose BCs on incoming fields only
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Black hole singularity excision

@ Boundary conditions Q

» Find characteristic fields & speeds
» Impose BCs on incoming fields only

Horizon
Outside
Horizon

@ All modes propagate inside light cone

» Excise interior of BH
» No boundary condition needed
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Black hole singularity excision

Horizon
@ Boundary conditions Q ﬁ V
» Find characteristic fields & speeds Outside
» Impose BCs on incoming fields only Horizon

@ All modes propagate inside light cone

» Excise interior of BH
» No boundary condition needed

oe
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Domain-decomposition

Harald Pfeiffer (Caltech) Binary black hole simulations APS April Meeting, 2007 1/1



Domain-decomposition

Harald Pfeiffer (Caltech) Binary black hole simulations APS April Meeting, 2007 1/1



Domain-decomposition

Harald Pfeiffer (Caltech) Binary black hole simulations APS April Meeting, 2007 1/1



Domain-decomposition
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Domain-decomposition

@ Outer shells have fixed angular resolution. Cost increases linearly with
radius of outer boundary.
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Moving black holes — Dual frame method

Scheel et al., 2006
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Moving black holes — Dual frame method

Scheel et al., 2006

Outside
Horizon

X

Horizon

Outside
Horizon

X

@ Map between “moving” and “inertial” coordinates:

)_(;nertial - a( t) R( t))_()moving

R(t) rotation, a(t) radial scaling.
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Dynamic feedback control

o¢ @Icy

Example: Control of ¢ hTﬂ
@ Measure BH location C,(t), C,(f) @ x
@ Update ¢ periodically s.t. C, — 0: @-Control in action (1=5M,)
fo M)
W(t): br, KAT<t<(k+1)AT 2605
G- [1G,8d(C) 8¢ (CN] °
o= {F?X T dt(Cx> T raE\C -
-4e-05
0 1‘0 2‘0 3‘0 40
time
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Outer boundary conditions

@ Must prevent influx of constraint violations
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Outer boundary conditions

@ Must prevent influx of constraint violations
» Consider characteristics of constraint evolution system
» set incoming constraint-modes to zero
= BCs on some fundamental fields

@ Must be transparent to gravitational waves.
» Consider Newman-Penrose scalars
— Wy = 0 = BCs on some fundamental fields
Lindblom et al., 2006 10°
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Outer boundary conditions

@ Must prevent influx of constraint violations
» Consider characteristics of constraint evolution system
» set incoming constraint-modes to zero
= BCs on some fundamental fields

@ Must be transparent to gravitational waves.
» Consider Newman-Penrose scalars
— Wy = 0 = BCs on some fundamental fields
Lindblom et al., 2006 10°F .

@ Should keep coordinates well-behaved
— Sommerfeld BC on gauge modes
Rinne et al. 2007
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Outer boundary conditions

@ Must prevent influx of constraint violations
» Consider characteristics of constraint evolution system
» set incoming constraint-modes to zero
= BCs on some fundamental fields

@ Must be transparent to gravitational waves.
» Consider Newman-Penrose scalars
— Wy = 0 = BCs on some fundamental fields
Lindblom et al., 2006 10°F

@ Should keep coordinates well-behaved 102F
— Sommerfeld BC on gauge modes 10°
Rinne et al. 2007
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Improve initial data through evolutions

HP et al., 2007
@ Circular orbits = eccentric inspiral.

17.61  Proper separation M, 4 0001~  dg/dt . R
or 4
17.2 |
-0.001 4
16.8 |
-0.002 4
16.4 | -0.003r- 2
L R !
0 500 1000 0.00% 500 1000
t”vIADM t/MADM
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Improve initial data through evolutions

HP et al., 2007
@ Circular orbits = eccentric inspiral.
@ Allow for nonzero initial radial velocities of BHs.
@ Tune radial velocities (and ) to reduce orbital eccentricity.

17.61  Proper separation M, 4 0001~  dg/dt . R
— Quasi-circular — Quasi-circular
. ] — ldtiteration
— istiteration (e~7x10") 0 |
17.2- i
r -0.001 B
16.8 i
-0.002 4
16.4- | -0.003 2
I - |
0 500 1000 0% 500 1000
UM 5om M, 0,
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Improve initial data through evolutions

HP et al., 2007
@ Circular orbits = eccentric inspiral.
@ Allow for nonzero initial radial velocities of BHs.
@ Tune radial velocities (and ) to reduce orbital eccentricity.

T
17.61  Proper separation M, ., 4 0001~ dgdt 7
— — Quasi-circular
— Quasi-circular (e~0.91) | — 1dtiteration
— 1stiteration (e~7x104) 0 — 2nd iteration

— 2nd iteration (e~5x10™%)

17.2-

16.81-

-0.002
1641 -0.003
| - \
0 500 000 - 0 500 1000
M ADM M ADM
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Orbital trajectory

Quasi-circular
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Irreducible Mass

1.001 —
Mirr(t) / Mm(t—O)
1.000 < B
3
— N~43
0999~ | |\
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— N~57°
0.998 N~62> g
-~ N-67°
| | |
0 1000 2000 3000 4000
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Irreducible Mass

1.00002'ﬂ4’rr~k,,hTif(t)/,hﬂinffif»\ﬁ“4j |
1.00000 4
0.99998} |— N~432 ]

— N~48

099996/ | N-53
: — N-~57° 7
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0.999941 | N~67 1
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Irreducible Mass

1x10 T
1.00002 M O/ M, (=0) M, (/M (t=0) - 1
] | a0t N-57° i
1.00000 i . I
6x10 " N-67" |
099998 | — N~43° ] 5 J
— N~48° 4x10° 1
0.99996] | N-53 §
: — N~57° 2x10"F / 8
N~622 B //
099994 | N~67 J ok |
| M| M| Lol
0 1000 2000 3000 4000 1 10 100 1000
time time+1
@ M, initially increases by 6 - 10~/ — “Junk” radiation falling into BH

@ [0M,| < 10~ in the next 3.5 orbits — Limit on tidal heating
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Movie
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Waveforms
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Gravitational wave phase

o
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|
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Comparison with post-Newtonian (GW-phase)

T T T T
0.6 i
0.4 B
Ag
0.2 _
o _
_02 - |
| L | L | L | L
0 1000 2000 3000 4000
t(M,+M.)

Numerical error budget
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Comparison with post-Newto

nian (GW-phase)

T T
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Numerical error budget
@ Truncation error ~ 0.03rad
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Comparison with post-Newtonian (GW-phase)

M T T T T T
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Numerical error budget
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@ Extraction radius ~ 0.1rad
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Comparison with post-Newtonian (GW-phase)
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Comparison with post-Newtonian (GW-phase)
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Comparison with post-Newtonian (GW-phase)
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Testing LIGO detection templates

| [ — Max Overlap =0.880323 ]

ol i : : :

2.8 2.9 3.0 3.1 3.2 3.3

100 t. (seconds)
— 0093g/Levb

o @} —— TaylorT3threePointFivePN (10.05,10.05)  §|||lf

2 ; ] ]

g o

X

S . ARSAAL ARLL) AL .
-3 29 30 31 32 33

t (seconds)

@ In collaboration with D. Brown
@ Good overlap!
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Parameter estimation

ximum overlap for TaylorT3threePointFivePN at m; = 10.05, my = 10.05 [0093g/Lev5] faximum overlap for TaylorT3threePointFivePN at M = 8.75, 5 = 0.25 [0093g/Lev5]
0.99 025 8 0.99
10 (0.880). 0.949 0.949
0.902 0.902
0.855 [2
0.809 0.809
= =
0.762 = 0.762 =
2 2
g
015 0.715 g
0.668 0.668
0.622 0.622
3 14 1 17 057 84 8.6 8.8 9.0 9.2 057
m M

@ Masses in simulation: 10.07Msun. Recovered 10.05Msun.
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Head-on Merger

@ Evolve to common horizon, regrid, continue.

@ Apparent Horizons Event horizon (M. Cohen, in prep.)

@ Orbiting BHs have reached separation 2.2/
(common horizon forms at ~ 2M.)
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Summary

@ Numerical relativity is in its golden age
@ Spectral methods achieve stunning accuracy

@ Comparison to PN in progress
» Equal-mass non-spinning BHs
— Full agreement NR - PN up to ~ 15 cycles before merger
— Sufficient accuracy to identify deviations at all available PN-orders

@ Future
» Merger!
» PN comparisons for spinning, non-equal mass binaries
— Blanchet: PN converges exceptionally fast for g
— For q> 1, Timpiral xq
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