Binary BH simulations and gravitational waves

Harald Pfeiffer

California Institute of Technology

Theoretical Astrophysics Center, UC Berkeley, Oct 18, 2006

Harald Pfeiffer	(Caltech)
-----------------	-----------

Outline & Bottom Line

Why to do black hole simulations

- Templates for GW detectors
- explore nonlinear gravity
- solve two body problem
- How to do black hole simulations Emphasis on the Caltech/Cornell spectral code
 - Really good for inspirals
 - No mergers yet
- First results
 - Eccentricity of current inspiral simulations is small

Gravitational wave detectors

LIGO (Hanford)

GEO 600

LISA (201x)

VIRGO

Gravitational Wave Sources

LIGO/GEO/TAMA/VIRGO

Compact Binary Inspiral Pulsars, Supernovae, GRBs

Casiopeia A (Spitzer/HST/Chandra)

LISA

Supermassive BH mergers Extreme mass ratio inspirals White dwarf binaries

NGC 326 (NRAO/AUI/NSF)

Signal Detection

- Signals extreme weak
- Detect via matched filtering against waveform templates

Instrument noise w/ signal

SNR vs. coalescence time

Waveform generation

Small phase errors essential for matched filtering

Role of numerical relativity

- Essential for GW detectors
 - Supply waveform templates
 - Test general relativity
- Explore stong field behavior of general relativity
 - Toroidal black holes (Shaprio, Teukolsky)
 - Critical behavior in BH formation (Choptuik)
- Solve the two-body problem

• Task: Find space-time metric g_{ab} such that $R_{ab}[g_{ab}] = 0$

- Task: Find space-time metric g_{ab} such that $R_{ab}[g_{ab}] = 0$
- Split space-time into space and time

- Task: Find space-time metric g_{ab} such that $R_{ab}[g_{ab}] = 0$
- Split space-time into space and time

Evolution equations

$$\partial_t g_{ij} = \dots$$

 $\partial_t \dots = \dots$

cf. Maxwell equations

$$\partial_t \vec{E} = \nabla \times \vec{B}$$
$$\partial_t \vec{B} = -\nabla \times \vec{E}$$
$$\nabla \cdot \vec{E} = 0$$
$$\nabla \cdot \vec{B} = 0$$

- Task: Find space-time metric g_{ab} such that $R_{ab}[g_{ab}] = 0$
- Split space-time into space and time

Evolution equations

$$\partial_t g_{ij} = \dots$$

 $\partial_t \dots = \dots$

Constraints

$$R[g_{ij}] + \ldots = 0$$

 $\ldots = 0$

cf. Maxwell equations

$$\partial_t \vec{E} = \nabla \times \vec{B}$$
$$\partial_t \vec{B} = -\nabla \times \vec{E}$$
$$\nabla \cdot \vec{E} = 0$$
$$\nabla \cdot \vec{B} = 0$$

Generalized Harmonic evolution system

$$0 = R_{ab} = -\frac{1}{2}\Box g_{ab} + \nabla_{(a}\Gamma_{b)} + \text{lower order terms} \qquad \Gamma_a = -g_{ab}\Box x^b$$

• The gauge condition $g_{ab} \Box x^b \equiv H_a$ (with H_a) given removes nasty piece from principal terms, which become wave-equations.

Generalized Harmonic evolution system

$$0=R_{ab}=-rac{1}{2}\Box g_{ab}+
abla_{(a}\Gamma_{b)}+ ext{lower order terms}$$
 $\Gamma_{a}=-g_{ab}\Box x^{b}$

- The gauge condition $g_{ab} \Box x^b \equiv H_a$ (with H_a) given removes nasty piece from principal terms, which become wave-equations.
- This introduces constraint $C_a \equiv H_a + \Gamma_a = 0$. Its simple structure allows constraint damping (Gundlach, et al, Pretorius, 2005)

$$0 = -rac{1}{2}\Box g_{ab} +
abla_{(a}C_{b)} + \gamma \left[t_{(a}C_{b)} - rac{1}{2}g_{ab}t^cC_c
ight] + I. ext{ o.}$$

 $\partial_t C_a \sim -\gamma C_a$

Generalized Harmonic evolution system

$$0 = R_{ab} = -rac{1}{2}\Box g_{ab} +
abla_{(a}\Gamma_{b)} + ext{lower order terms}$$
 $\Gamma_a = -g_{ab}\Box x^b$

- The gauge condition $g_{ab} \Box x^b \equiv H_a$ (with H_a) given removes nasty piece from principal terms, which become wave-equations.
- This introduces constraint $C_a \equiv H_a + \Gamma_a = 0$. Its simple structure allows constraint damping (Gundlach, et al, Pretorius, 2005)

$$0 = -rac{1}{2}\Box g_{ab} +
abla_{(a}C_{b)} + \gamma \left[t_{(a}C_{b)} - rac{1}{2}g_{ab}t^{c}C_{c}
ight] + I. o.$$

 $\partial_{t}C_{a} \sim -\gamma C_{a}$

- Lower order terms are very complicated: 1000's of FLOPS per grid-point per timestep
- In practice, rewrite in first order from (Lindblom, et al 2005)

Boundary conditions & BH excision

 Generalized harmonic evolution system is symmetric hyperbolic

 $u^{\alpha} + A^{k\alpha}{}_{\beta}\partial_k u^{\beta} = F^{\beta}$

- Boundary conditions
 - Decompose into characteristic fields
 - Impose BCs on incoming fields
- All modes propagate inside light cone
 ⇒ Excision boundaries inside horizon
 do not require any BC

Must prevent influx of constraint violations

- Must prevent influx of constraint violations
 - Derive constraint evolution system, decompose into characteristic fields, set incoming fields to zero
 ⇒ some BC on fundamental fields

- Must prevent influx of constraint violations
 - Derive constraint evolution system, decompose into characteristic fields, set incoming fields to zero
 ⇒ some BC on fundamental fields
- Must allow gravitational waves to exit without reflection.
 - Consider Newman-Penrose scalars
 - Ψ₄ is represented by outgoing characteristic fields (good!)
 - $\Psi_0\equiv 0$ implies conditions on some incoming char. fields

- Must prevent influx of constraint violations
 - Derive constraint evolution system, decompose into characteristic fields, set incoming fields to zero
 ⇒ some BC on fundamental fields
- Must allow gravitational waves to exit without reflection.
 - Consider Newman-Penrose scalars
 - Ψ₄ is represented by outgoing characteristic fields (good!)
 - $\Psi_0\equiv 0$ implies conditions on some incoming char. fields
- Must keep coordinates well-behaved (work in progress)

Spectral Methods I

Truncated series-expansion

$$u(x,t) = \sum_{k=1}^{N} \tilde{u}_k(t) \Phi_k(x)$$

(Fourier series, Chebyshev series, spherical harmonics)

 Differentiation, integration, interpolation become analytic operations on the basis-functions

$$\int u(x,t)\,\mathrm{d}x = \sum_{k=1}^N \tilde{u}_k(t)\int \Phi_k(x)\mathrm{d}x$$

• Use method of lines to evolve $\{\tilde{u}_k(t)\}$

Exponential convergence for smooth solutions

Spectral Methods II: Exponential convergence

• Example: Irreducible mass of BH in BBH evolution

Spectral Methods II: Exponential convergence

• Example: Irreducible mass of BH in BBH evolution

Spectral Methods II: Exponential convergence

• Example: Irreducible mass of BH in BBH evolution

Spectral Methods III: Low phase errors, no viscosity

\Rightarrow expect small cummulative errors in long-term evolutions

	Harald Pfeiffer (Caltech)
--	-------------------	----------

- Spectral methods work well for simple topologies: Blocks, shells, ...
- For BBH, must excise two spheres

- Spectral methods work well for simple topologies: Blocks, shells, ...
- For BBH, must excise two spheres

- Spectral methods work well for simple topologies: Blocks, shells, ...
- For BBH, must excise two spheres

- Spectral methods work well for simple topologies: Blocks, shells, ...
- For BBH, must excise two spheres

- Spectral methods work well for simple topologies: Blocks, shells, ...
- For BBH, must excise two spheres

 Changing domain-decomposition is difficult

 localize horizons in coordinate space (Scheel, HP, etal, 2006):

- Changing domain-decomposition is difficult

 localize horizons in coordinate space (Scheel, HP, etal, 2006):
 - Evolve inertial frame components of tensors

- Changing domain-decomposition is difficult

 localize horizons in coordinate space
 (Scheel, HP, etal, 2006):
 - Evolve inertial frame components of tensors
 - Represent solution at grid-points which move relative to inertial coordinates:

 $\vec{x}_{\text{inertial}} = a(t)R(t)\vec{x}_{\text{computational}}$

R(t) rotation matrix, a(t) overall scale factor

- Changing domain-decomposition is difficult

 localize horizons in coordinate space
 (Scheel, HP, etal, 2006):
 - Evolve inertial frame components of tensors
 Represent solution at grid-points which move relative to inertial coordinates:

 $\vec{x}_{\text{inertial}} = a(t)R(t)\vec{x}_{\text{computational}}$

R(t) rotation matrix, a(t) overall scale factor

R(t) and a(t) determined by dynamic control based on current AH location

Initial data

- Quasi-equilibrium initial data (Cook, HP, 2002, 2004, 2006)
- Exploit that black holes are in circular orbit
- Construct sequences of circular orbits at different separation

Orbits, at last!

AH-MOVIE 2D

Orbits, at last!

AH-MOVIE 2D

Orbits, at last!

Mergers

- Our code does extremely well during inspiral
- Plan for coalescence:
 - (a) Push BBH run to formation of common horizon
 - (b) Regrid onto one set of concentric spherical shells
 - (c) Continue
- No luck yet with orbiting binaries
- Practice with head-on collisions

Toward science – post-Newtonian expansions

• Post-Newtonian theory generates inspiral waveforms

When breaks PN down? Where must numerical relativity take over?

- Requires ...
 - long term, very accurate inspiral simulations $\Delta \phi \ll 1$ (ok!)
 - Realistic BBH initial data (??)

- $v_r = 0$ in initial data leads to oscillatory behavior. But BBH's will have circularized ¹⁰ during inspiral.
- Vary ν_r, Ω to minimize oscillations (requires multiple evolutions!)

- v_r = 0 in initial data leads to oscillatory behavior.
 But BBH's will have circularized during inspiral.
- Vary v_r, Ω to minimize oscillations (requires multiple evolutions!)
- After time-shift, the "eccentric" simulation oscillates nicely around non-eccentric one.

- v_r = 0 in initial data leads to oscillatory behavior.
 But BBH's will have circularized during inspiral.
- Vary v_r, Ω to minimize oscillations (requires multiple evolutions!)
- After time-shift, the "eccentric" simulation oscillates nicely around non-eccentric one.
- Is this significant??

Significance of eccentricity

Significance of eccentricity

who	when	system	N _{orbits}	notes
Caltech/Cornell	Apr 2006	GH	5.1	Spectral, excision

who	when	system	Norbits	notes
Caltech/Cornell	Apr 2006	GH	5.1	Spectral, excision
Pretorius	Apr 2005	GH	4.4	2nd order FD, AMR, excision

who	when	system	N _{orbits}	notes
Caltech/Cornell	Apr 2006	GH	5.1	Spectral, excision
Pretorius	Apr 2005	GH	4.4	2nd order FD, AMR, excision
Goddard Brownsville	Nov 2005 Nov 2005	BSSN BSSN	4.2 2 – 3	2nd/4th order FD, AMR 4th order FD uni-grid

who	when	system	Norbits	notes
Caltech/Cornell	Apr 2006	GH	5.1	Spectral, excision
Pretorius	Apr 2005	GH	4.4	2nd order FD, AMR, excision
Goddard Brownsville	Nov 2005 Nov 2005	BSSN BSSN	4.2 2 – 3	2nd/4th order FD, AMR 4th order FD uni-grid
Penn State AEI / LSU FAU / U. Jena LSU	Jan 2006 early 2006 early 2006 –	$\begin{array}{c} {\sf BSSN} \\ {\sf BSSN} \\ {\sf BSSN} \\ \sim {\sf GH} \end{array}$	≥ 1 ≥ 1 ≥ 1 ≥ 1	FD FD FD multi-block 8th order FD

who	when	system	Norbits	notes
Caltech/Cornell	Apr 2006	GH	5.1	Spectral, excision
Pretorius	Apr 2005	GH	4.4	2nd order FD, AMR, excision
Goddard Brownsville	Nov 2005 Nov 2005	BSSN BSSN	4.2 2 – 3	2nd/4th order FD, AMR 4th order FD uni-grid
Penn State AEI / LSU FAU / U. Jena LSU	Jan 2006 early 2006 early 2006 –	$\begin{array}{c} {\sf BSSN} \\ {\sf BSSN} \\ {\sf BSSN} \\ \sim {\sf GH} \end{array}$	> 1 > 1 > 1 > 1 > 1	FD FD FD multi-block 8th order FD

• Everybody can do mergers, except Caltech/Cornell

who	when	system	Norbits	notes
Caltech/Cornell	Apr 2006	GH	5.1	Spectral, excision
Pretorius	Apr 2005	GH	4.4	2nd order FD, AMR, excision
Goddard Brownsville	Nov 2005 Nov 2005	BSSN BSSN	4.2 2 – 3	2nd/4th order FD, AMR 4th order FD uni-grid
Penn State AEI / LSU FAU / U. Jena LSU	Jan 2006 early 2006 early 2006 –	$\begin{array}{c} {\sf BSSN} \\ {\sf BSSN} \\ {\sf BSSN} \\ \sim {\sf GH} \end{array}$	≥ 1 ≥ 1 ≥ 1 ≥ 1	FD FD FD multi-block 8th order FD

- Everybody can do mergers, except Caltech/Cornell
- Caltech/Cornell is at least 10x more accurate with 1/10-CPU cost – Important for inspiral simulations

Goddard simulations

UTB Brownsville

Orbital hangup for corotating BHs $J_{\rm final} \approx 0.9 M_{\rm final}^2$

Campanelli et al 2006

Conclusions & Outlook

- Black hole evolution codes are finally stable!
- First science results are obtained
- Accuracy and efficiency will become increasingly important
 - Longer evolutions
 - Vast parameter space (masses, spins)
- Caltech/Cornell spectral code has bright future (once mergers are accomplished...)

Collaborators: L. Lindblom, G. Lovelace, O. Rinne, M. Scheel (Caltech) L. Kidder, S. Teukolsky, J. York (Cornell) G. Cook (Wake Forest)