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Outline & Bottom Line

1 Why to do black hole simulations
– Templates for GW detectors
– explore nonlinear gravity
– solve two body problem

2 How to do black hole simulations
Emphasis on the Caltech/Cornell spectral code
– Really good for inspirals
– No mergers yet

3 First results
– Eccentricity of current inspiral simulations is small
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Gravitational wave detectors

LIGO (Hanford)

VIRGO

LISA (201x)

GEO 600
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Gravitational Wave Sources
LISA
Supermassive BH mergers
Extreme mass ratio inspirals
White dwarf binaries

NGC 326 (NRAO/AUI/NSF)

LIGO/GEO/TAMA/VIRGO
Compact Binary Inspiral
Pulsars, Supernovae, GRBs

Casiopeia A (Spitzer/HST/Chandra)
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Signal Detection

Signals extreme weak
Detect via matched filtering against waveform templates

Instrument noise w/ signal SNR vs. coalescence time
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Waveform generation
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Inspiral
– post-Newtonian expansions

Late inspiral & merger
– Numerical relativity

Ringdown
– BH perturbation theory

Small phase errors essential for matched filtering
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Role of numerical relativity

Essential for GW detectors
I Supply waveform templates
I Test general relativity

Explore stong field behavior of general relativity
I Toroidal black holes (Shaprio, Teukolsky)
I Critical behavior in BH formation (Choptuik)

Solve the two-body problem
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Solving Einstein’s equations – basic idea

Task: Find space-time metric gab such that Rab[gab] = 0

Split space-time into
space and time

Evolution equations

∂tgij = . . .

∂t . . . = . . .

Constraints

R[gij ] + . . . = 0
. . . = 0

cf. Maxwell equations

∂t ~E = ∇× ~B

∂t~B = −∇× ~E

∇ · ~E = 0

∇ · ~B = 0
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Generalized Harmonic evolution system

0 = Rab = −1
2

�gab +∇(aΓb)+lower order terms Γa = −gab�xb

The gauge condition gab�xb ≡ Ha (with Ha) given removes nasty piece
from principal terms, which become wave-equations.

This introduces constraint Ca ≡ Ha + Γa = 0. Its simple structure allows
constraint damping (Gundlach, et al, Pretorius, 2005)

0 = −1
2

�gab +∇(aCb) + γ

[
t(aCb) −

1
2

gabtcCc

]
+ l. o.

∂tCa ∼ −γCa

Lower order terms are very complicated: 1000’s of FLOPS per grid-point
per timestep
In practice, rewrite in first order from (Lindblom, et al 2005)
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Boundary conditions & BH excision

Generalized harmonic evolution system
is symmetric hyperbolic

uα + Akα
β∂k uβ = Fβ

Boundary conditions
I Decompose into characteristic fields
I Impose BCs on incoming fields

All modes propagate inside light cone
⇒ Excision boundaries inside horizon
do not require any BC

h
o
riz
o
n

r

H
o
riz
o
n
s
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Outer boundary conditions

0 100 200 30010
-12

10
-9

10
-6

10
-3

t/M

〈RΨ4〉

Must prevent influx of constraint violations

I Derive constraint evolution system,
decompose into characteristic fields,
set incoming fields to zero
⇒ some BC on fundamental fields

Must allow gravitational waves to exit without reflection.
I Consider Newman-Penrose scalars

– Ψ4 is represented by outgoing
characteristic fields (good!)

– Ψ0 ≡ 0 implies conditions on
some incoming char. fields

Must keep coordinates well-behaved
(work in progress)
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Spectral Methods I

Truncated series-expansion

u(x , t) =
N∑

k=1

ũk (t)Φk (x)

(Fourier series, Chebyshev series, spherical harmonics)
Differentiation, integration, interpolation become analytic operations on
the basis-functions ∫

u(x , t) dx =
N∑

k=1

ũk (t)
∫

Φk (x)dx

Use method of lines to evolve {ũk (t)}
Exponential convergence for smooth solutions
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Spectral Methods II: Exponential convergence

Example: Irreducible mass of BH in BBH evolution
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Spectral Methods III: Low phase errors, no viscosity
1D travelling wave
(courtesy Mike Boyle)
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BBH Evolution: Ylm-coefficients
in sphere around BH
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⇒ expect small cummulative errors in long-term evolutions
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Multi domain-method
Spectral methods work well for simple topologies: Blocks, shells, ...
For BBH, must excise two spheres
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Comoving coordinates

Changing domain-decomposition is difficult
– localize horizons in coordinate space
(Scheel, HP, etal, 2006):

1 Evolve inertial frame components of tensors
2 Represent solution at grid-points which move

relative to inertial coordinates:

~xinertial = a(t)R(t)~xcomputational

R(t) rotation matrix, a(t) overall scale factor

3 R(t) and a(t) determined by dynamic control
based on current AH location

Cx

δϕ C
y

0 10 20 30 40

-4e-05

-2e-05

0

2e-05

t/M
1

φ-Control in action (τ=5M
1
)

C
y
/C

x

d
3φ/dt

3
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Initial data

Quasi-equilibrium initial data (Cook, HP, 2002, 2004, 2006)
Exploit that black holes are in circular orbit
Construct sequences of circular orbits at different separation
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Orbits, at last!

AH-MOVIE 2D

-10 -5 0 5 10
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Inspiral trajectory of  one BH
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Orbits, at last!

AH-MOVIE 2D
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Orbits, at last!

Computational requirements:
643 points: 6000 CPU-h
(10 CPU-h/MADM)
763 points: 18000 CPU-h
(27 CPU-h/MADM)
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Mergers

Our code does extremely well during inspiral
Plan for coalescence:
(a) Push BBH run to formation of common horizon
(b) Regrid onto one set of concentric spherical shells
(c) Continue
No luck yet with orbiting binaries
Practice with head-on collisions

Harald Pfeiffer (Caltech) BBH Simulations Berkeley, Oct 18, 2006 19 / 1



Toward science – post-Newtonian expansions

Post-Newtonian theory generates inspiral waveforms

When breaks PN down?
Where must numerical relativity take over?

Requires ...
– long term, very accurate inspiral simulations ∆φ� 1 (ok!)
– Realistic BBH initial data (??)
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Eccentricity in BBH simulations
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vr = 0 in initial data leads to
oscillatory behavior.
But BBH’s will have circularized
during inspiral.

Vary vr , Ω to minimize
oscillations (requires multiple
evolutions!)

After time-shift, the “eccentric”
simulation oscillates nicely
around non-eccentric one.

Is this significant??
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Significance of eccentricity
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Overlap between waveforms 0.989
Quite good – good enough? Behavior for longer runs??
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Overview of BBH simulations

who when system Norbits notes

Caltech/Cornell Apr 2006 GH 5.1 Spectral, excision

Pretorius Apr 2005 GH 4.4 2nd order FD, AMR, excision

Goddard Nov 2005 BSSN 4.2 2nd/4th order FD, AMR
Brownsville Nov 2005 BSSN 2− 3 4th order FD uni-grid

Penn State Jan 2006 BSSN & 1 FD
AEI / LSU early 2006 BSSN & 1 FD
FAU / U. Jena early 2006 BSSN & 1 FD
LSU – ∼ GH – multi-block 8th order FD

Everybody can do mergers, except Caltech/Cornell
Caltech/Cornell is at least 10x more accurate with 1/10-CPU cost
– Important for inspiral simulations
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Goddard simulations

Merger waveform independent
of early evolution
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UTB Brownsville

Orbital hangup for corotating BHs Jfinal ≈ 0.9M2
final
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Conclusions & Outlook

Black hole evolution codes are finally stable!

First science results are obtained

Accuracy and efficiency will become increasingly important
– Longer evolutions
– Vast parameter space (masses, spins)

Caltech/Cornell spectral code has bright future
(once mergers are accomplished...)

Collaborators: L. Lindblom, G. Lovelace, O. Rinne, M. Scheel (Caltech)
L. Kidder, S. Teukolsky, J. York (Cornell)
G. Cook (Wake Forest)
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