Binary black hole initial data

Harald P. Pfeiffer

Caltech

CGWA, University of Brownsville, Apr 9, 2004

Harald P. Pfeiffer, Caltech

World year of physics

Einstein and the Ricci Tensor

- 100 years of the "three papers"
- 90 years of general relativity
- Two body problem still unsolved

Gravitational wave detectors are rapidly improving

- GEO 600
- LIGO
- TAMA 300
- Virgo

Ligo Hanford site

One prime scientific target: Binary black hole coalescence

Binary black hole coalescence

Outline of talk

- 1. Construction any initial data Conformal method
- 2. *Construction* **BBH** *initial data* Quasi-equilibrium method
- 3. *Surprising properties of initial data* Non-uniqueness

Conformal method

Problem: Find solutions (g_{ij}, K_{ij}) of the constraint equations

 $R + K^{2} - K_{ij}K^{ij} = 0$ $\nabla_{j}\left(K^{ij} - g^{ij}K\right) = 0$

 Σ spacelike hypersurface g_{ij} induced metric on Σ K_{ij} extrinsic curvature of Σ $K = g_{ij}K^{ij}$ trace of ex. curvature N lapse, β^i shift $ds^2 = -N^2 dt^2 + g_{ij}(dx^i + \beta^i dt)(dx^j + \beta^j dt)$

Strategy: Split g_{ij} and K_{ij} into smaller pieces, such that some are *freely specifiable*, and the rest completely determined

Extrinsic curvature decomposition (HP, York 2003)

Task: Find g_{ij} and $K^{ij} = A^{ij} + 1/3 \ g^{ij}K$ which satisfy $R + A_{ij}A^{ij} + \frac{2}{3}K^2 = 0$ $\nabla_j \left(A^{ij} - \frac{2}{3} g^{ij} K \right) = 0$ Conformally rescale Decompose A^{ij} $g_{ij} = \psi^4 \tilde{g}_{ij}$ $A_{TT}^{ij} = \psi^{-10} \tilde{A}_{TT}^{ij}$ g_{ij} $A^{ij} = \frac{1}{2N} (\mathbb{L}V)^{ij} + A^{ij}_{TT}$ $V^i = V^i$ $N = \psi^6 \tilde{N}$

$$ilde{g}_{ij}, K, ilde{A}^{ij}_{TT}, ilde{N}$$
 freely specifiable
 ψ, V^i determined by elliptic eqns
 $ilde{
abla}^2 \psi + \ldots = 0$
 $ilde{\Delta}_{L, ilde{N}} V^i + \ldots = 0$

Conformal quantities

$$\tilde{g}_{ij}$$

$$\tilde{A}^{ij} = \frac{1}{2\tilde{N}} (\tilde{\mathbb{L}}V)^{ij} + \tilde{A}_{TT}^{ij}$$

Conformal thin sandwich

York 1999 - No decomposition; "just" say which free data you want

Specify these free data:

Elliptic equations follow:

- conformal 3-metric \tilde{g}_{ij}
- its time derivative $\partial_t \tilde{g}_{ij} = \tilde{u}_{ij}$ (tracefree)
- trace of ex. curvature K
- its time derivative $\partial_t K$

 $egin{aligned} & ilde{
abla}^2\psi+\ldots=0 \ & ilde{
abla}_i\left(rac{1}{2 ilde{N}}(ilde{\mathbb{L}}eta)^{ij}
ight)+\ldots=0 \ & ilde{
abla}^2 ilde{N}+\ldots=0 \end{aligned}$

Comparison

Extrinsic curvature decomposition (Hamiltonian viewpoint)

Two old versions: "Conformal TT" & "Physical TT" various disadvantages widely used, b/c they were around Conformal thin sandwich (Lagrangian viewpoint)

--- *Extended system* ---HP, York 2003 Five eqns. with free data

 $(\tilde{g}_{ij}, \partial_t \tilde{g}_{ij}; K, \partial_t K)$

+Time-derivatives more intuitive +often natural choice exists +obtain N, β^i

Final version w/ weight-function HP, York 2003

+ equivalent to standard CTS

- + Avoids disadvantages of old versions
- + conformally covariant
- + Kerr has $A_{\rm TT}^{ij} = 0$

- Choice of \tilde{M}^{ij} difficult (HP, Cook, Teukolsky, 2002) — Standard system —

York, 1999 Four eqns. with free data

 $(\tilde{g}_{ij}, \partial_t \tilde{g}_{ij}, K, \tilde{N})$ Conformal lapse $\tilde{N} = \psi^{-6}N$ + equivalent to "extrinsic curvature decomp." - Choice of \tilde{N} difficult

Solution procedure

1. Choose formalism

2. Choose free data:

- (a) \tilde{g}_{ij} , K, \tilde{M}^{ij} , \tilde{N} (extrinsic curvature decomposition) \tilde{g}_{ij} , K, $\partial_t \tilde{g}_{ij}$, $\partial_t K$ (conformal thin sandwich)
- (b) topology of $\boldsymbol{\Sigma},$ boundary conditions
- 3. Solve elliptic equations
- 4. Assemble physical initial data (g_{ij}, K_{ij})

Formalism finished. Next...

- numerics: Solving the elliptic equations
- **physics**: Choosing the free data

Spectral elliptic solver

Expand solution in basis-functions & solve for expansion-coefficients Smooth solutions \Rightarrow exponential convergence

- Superior accuracy: Numerical errors << physical effects
- Superior efficiency: Permits large parameter studies

Conformally flat Bowen-York data

How to choose the free data?

- 1. Maximal slice $K = 0 \Rightarrow$ Hamiltonian & momentum constraints decouple
- 2. Conformal flatness \Rightarrow equations simplify
- 3. Analytic solution for momentum constraint (Bowen-York 1980) \Rightarrow only Hamiltonian constraint left
- 4. Use puncture method or inversion symmetry to get boundary conditions

... Fairly simple to implement numerically. But convenience \Rightarrow quality.

Shortcomings of conformally flat Bowen-York data

Let me count the ways...

- 1. Single BH Bowen-York initial data do not represent stationary spacetimes
 - (a) Kerr is not conformally flat (Kroon, 2004)
 - (b) spinning BY is Kerr + gravitational waves
 - (c) boosted BY is boosted Schwarzschild + gravitational waves
- 2. Binary compact objects are *NOT* conformally flat at 2-PN (Rieth, 1997)
- 3. BBH initial data constructed from BY seems fishy
 - (a) ISCO disagrees with PN calculations
 - (b) ISCO disappears for corotating BH's (HP et al. 2000)
 - (c) ISCO is wrong even in the test-mass limit (HP, 2003, thesis)
 - (d) Evolutions from BY data find plunging BH's rather than orbiting ones (gr-qc/0411149)
- 4. Superposition of boosted single BH's is not an orbiting binary BH
 - (a) Boosted electron + boosted positron \neq positronium
 - (b) General relativity is nonlinear, so effects of superposition are even less predictable

From Bowen-York toward astrophysical initial data

What means "astrophysical"?

ultimate goal	today's goal	
hypersurface through inspiral as it occurs in nature	as little "junk radiation" as possible	
contains embedded wavetrain of earlier inspiral	reduce initial burst of GW	
BBH slowly inspiraling (i.e. \dot{r} small but nonzero)	get remotely circular orbit at all	
no BH quasi-normal ringing early in evolution		

How to judge "astrophysical relevance" of initial data?

- Ultimately, by evolutions.
- Robustness How sensitive are results to the arbitrary choices inherent in all (current) methods?
- Consistency Compute sequences of quasi-circular orbits, ISCO, take limits of large separation, and large mass ratio. Are various results consistent?

Recent approaches to BBH initial data

(old) extrinsic curvature decomposition

• Superposed Kerr-Schild (Matzner et al 1998, Marronetti & Matzner, 2000)

 $\tilde{g}_{ij} = \delta_{ij} + 2 \left[H l_i l_j \right]^A + 2 \left[H l_i l_j \right]^B, \qquad \tilde{M}^{ij} \approx K_A^{ij} + K_B^{ij}$

questionable until prooven otherwise (HP *et al* 2002)

• Incorporate PN information (Tichy et al 2003, Yunes et al 2004)

 $ilde{g}_{ij} pprox g_{ij}^{
m PN}, \qquad ilde{M}^{ij} pprox K_{
m PN}^{ij}$

very promising, looking forward to further results

Conformal thin sandwich equations

- Gourgoulhon, Grandclement, Bonazzola, 2002, 2002
 "Helical Killing vector approximation" (+other assumptions) basically right, but various deficiencies
 Laid some fundations for Cook & HP
- Cook & HP, 2002, 2003, 2004 Quasi-equilibrium method with isolated horizon BCs

Quasi-equilibrium method

• $T_{
m inspiral} \gg T_{
m orbit}$

Corotating coordinates $\Rightarrow \partial_t \approx 1/T_{\text{inspiral}} \approx 0$

 \Rightarrow natural choice: vanishing time derivatives

- N.B. Essentially equivalent:
 - Helical Killing vector
 - Quasi-equilibrium
 - Time independence in corotating coordinates

Depending on context, different pictures are useful.

• Conformal thin sandwich formalism

- 1. $\partial_t \tilde{g}_{ij} = 0 = \partial_t K$
- 2. Need not choose \tilde{M}^{ij}
- 3. \tilde{g}_{ij} and K still undetermined
- Boundary conditions at infinity from asymptotic flatness & corotation:

 $\psi = 1$ $\beta^{i} = (\vec{\Omega}_{\text{orbital}} \times \vec{r})^{i}$ N = 1

• New contribution: *inner boundary conditions* (next slide...)

Quasi-equilibrium excision boundary conditions

 n^{μ} – normal to hypersurface k^{μ} – outward pointing null normal to S \tilde{s}^{i} – (conformal) spatial normal to S \tilde{h}_{ij} – conformal induced metric of S

• Excise topological sphere(s) S

• Require

- 1. S be apparent horizon(s)
- 2. The shear $\sigma_{\mu\nu}$ of k^{μ} vanishes
- 3. When evolved, the coordinate locations of the AH's remain stationary
- Item 2 is an **isolated horizon condition**. It implies for the expansion

$${\cal L}_k heta = -rac{1}{2} heta^2 - \sigma_{\mu
u} \sigma^{\mu
u} = 0 \quad {
m on} \; {\cal S}$$

 \Rightarrow AH moves along k^{μ} , and its area is constant (initially)

Quasi-equilibrium excision boundary conditions cont'd

• **Rewrite** in variables of conformal thin sandwich

$$\tilde{s}^k \tilde{\nabla}_k \ln \psi = -\frac{1}{4} \tilde{h}^{ij} \tilde{\nabla}_i \tilde{s}_j + \frac{1}{6} \psi^2 K - \frac{\psi^2}{8N} \tilde{s}_i \tilde{s}_j (\tilde{\mathbb{L}}\beta)^{ij} \qquad \text{on } \mathcal{S}$$
(1)

$$\beta^{i} = \psi^{2} N \tilde{s}^{i} + \beta^{i}_{\parallel} \qquad \qquad \text{on } \mathcal{S} \qquad (2)$$

moderately complicated boundary conditions

• Rotating black holes

Vanishing shear $\Leftrightarrow \beta^i_{\parallel}$ is conformal Killing vector of \mathcal{S} .

Those exist for general rotation axis, conformal metric and shape of S:

- any 2-sphere is conformally flat
- Any rotation through the center of an Euclidean sphere is a Killing vector...
- ... and is therefore a conformal Killing vector of ${\mathcal S}$
- Lapse boundary condition not fixed by IH (also Jaramillo et al, 2004)

Numerical solutions: Single black holes I

- Quasi-equilbrium method works for any choice of \tilde{g}_{ij} , K, S and lapse-BC.
- For now arbitrary choices: Conformal flatness, (mostly) maximal slicing, S =sphere
- **Do not** use knowledge of single BH solutions use single BHs to **test** method

Spherical symmetry

- 1. w.l.o.g. conformllly flat
- 2. Try different choices for K and lapse boundary condition
- 3. any spherically symmetric K and any spherically symmetric lapse-BC yield:
 - exact slice through Schwarzschild
 - totally vanishing time-derivatives $\partial_t g_{ij} = \partial_t K_{ij} = 0$
- 4. Full success: Recover Schwarzschild independent of arbitrary choices.

Numerical solutions: Single black holes II

• Spinning/Boosted black holes

Compute quantities that vanish for Kerr:

$$E_{rad} \equiv \sqrt{E_{ADM}^2 - P_{ADM}^2} - \sqrt{M_{irr}^2 + J_{ADM}^2 / (4M_{irr}^2)}$$
(3)

$$\Delta \Omega \equiv \Omega_r - \frac{J_{\text{ADM}}/E_{\text{ADM}}^3}{2 + 2\sqrt{1 - J_{\text{ADM}}^2/E_{\text{ADM}}^4}}, \qquad \Delta v \qquad \equiv v - \frac{P_{\text{ADM}}}{E_{\text{ADM}}} \tag{4}$$

Harald P. Pfeiffer, Caltech

Binary black hole solutions (corotating, K = 0)

Test three different lapse boundary conditions

Compare to GGB and post-Newtonian results

No difference – solution robust

Excellent agreement

Testing the 2nd law

Normalize sequences such that $dE_{\mathsf{ADM}} = \Omega_0 \, dJ_{\mathsf{ADM}}$

Irreducible mass along these sequences CO: MS - $d(\alpha \psi)/dr = 0$ CO: MS - $\alpha \psi = 1/2$ 0.50005 CO: MS - $d(\alpha \psi)/dr = (\alpha \psi)/2r$ M. III 0.50000 0.500 Ž[≞] 0.499⊦ IR: MS - $d(\alpha \psi)/dr = 0$ IR: MS - $\alpha \psi = 1/2$ IR: MS - $d(\alpha \psi)/dr = (\alpha \psi)/2r$ 0.498 0.03 0.06 0.09 0.12 $m\Omega_0$

 $\Leftarrow \text{ corotating sequences} \\ \text{(three different lapse BC's)} \\ M_{\text{irr}} \text{ slightly increasing during inspiral - ok}$

 $\Leftarrow \text{ irrotational sequences} \\ \text{(three different lapse BC's)} \\ M_{\text{irr}} \text{ decreasing during inspiral} \\ - \text{Normalization of sequences wrong?} \\ \end{cases}$

Harald P. Pfeiffer, Caltech

ISCO location

- Excellent agreement between NR and PN
- GGB close; deviation due to their regularization?
- Bowen-York w/ effective potential is history

Summary of QE method

- **Framework** for BBH initial data in a kinematical setting (helical Killing vector)
- Explicitly displays the **remaining choices** \tilde{g}_{ij}, K, S , Lapse-BC
- Close in spirit to GGB, but greatly improved:
 - 1. Constraints are satisfied
 - 2. Incorporates isolated horizon boundary conditions
 - 3. General spins possible
 - 4. Retains freedom to choose any \tilde{g}_{ij}, K, S .
 - 5. Lapse is positive on horizon
- Agrees very well with PN (even with simple choices)
- Future: **physically motivated** choices for \tilde{g}_{ij} , K, S and Lapse-BC
- Far future: Replace " $\partial_t = 0$ " by radiation reaction

And now to something totally different...

Solutions to the extended system have been found numerically in quite a few situations.

Was this luck? Or can one solve for all choices of free data and boundary conditions?

• Existence?

- ★ Standard system (4 eqns): Many mathematical results
- ★ Extended system (5 eqns): terra incognita

• Uniqueness?

- ★ Standard system (4 eqns): Unique (in all known cases)
- ★ Extended system (5 eqns): terra incognita

Some results on the standard system

Mathematics:

- 1. asymptotically flat
- 2. no inner boundaries
- 3. maximal slice K = 0
- \rightarrow Yamabe constant $\mathcal{Y}[\tilde{g}_{ij}]$:

 $\mathcal{Y}[\tilde{g}_{ij}] > 0 \Leftrightarrow$ existence & uniqueness

(Cantor 1977, Murray & Cantor 1981, Maxwell 2005) \tilde{u}_{ij} and \tilde{N} irrelevant Def'n of $\mathcal Y$ not useful for numerical work

Free data based on "Teukolsky wave" ingoing, M = 0, odd parity, centered at r = 20

Extended system

$$\begin{split} \tilde{g}_{ij} &= \delta_{ij} + \tilde{\mathcal{A}} h_{ij} \\ \tilde{u}_{ij} &= \tilde{\mathcal{A}} \partial_t h_{ij} \\ K &= 0, \quad \partial_t K = 0 \end{split}$$

$$\begin{array}{l} \text{Smaller } \tilde{\mathcal{A}}_c \\ \textit{finite } \psi \text{ as } \tilde{\mathcal{A}} \to \tilde{\mathcal{A}}_c \\ \textit{Parabolic behavior} \\ \psi \approx \psi_c - \text{const.} (\tilde{\mathcal{A}}_c - \tilde{\mathcal{A}})^{1/2} \end{array}$$

Harald P. Pfeiffer, Caltech

A more comprehensive look

A second branch

• For
$$\delta \tilde{\mathcal{A}} \equiv \tilde{\mathcal{A}}_c - \tilde{\mathcal{A}} \ll 1$$
:
 $\mathbf{u}(\tilde{\mathcal{A}}, \vec{x}) = \mathbf{u}_c(\vec{x}) - \mathbf{v}_c(\vec{x})\sqrt{\delta \tilde{\mathcal{A}}}, \quad \mathbf{u} = (\psi, \beta^i, N)$
• Two branches??
 $\mathbf{u}_{\pm}(\tilde{\mathcal{A}}, \vec{x}) = \mathbf{u}_c(\vec{x}) \pm \mathbf{v}_c(\vec{x})\sqrt{\delta \tilde{\mathcal{A}}}$

 Problem: With "simple" initial guess, elliptic solver converges always to u_; need good guess to converge to u₊.

$$\frac{\mathrm{d}\mathbf{u}_{-}(\tilde{\mathcal{A}},\tilde{\mathbf{x}})}{\mathrm{d}\tilde{\mathcal{A}}} = \frac{1}{2\sqrt{\delta\tilde{\mathcal{A}}}}\mathbf{v}_{c}(\vec{x})$$
$$\mathbf{u}_{+}(\tilde{\mathcal{A}},\vec{x}) \approx \mathbf{u}_{-}(\tilde{\mathcal{A}},\vec{x}) + 4\,\delta\tilde{\mathcal{A}}\,\frac{\mathrm{d}\mathbf{u}_{-}(\tilde{\mathcal{A}},\tilde{\mathbf{x}})}{\mathrm{d}\tilde{\mathcal{A}}}$$

• Take two numeric solutions u_- of five coupled 3-D nonlinear elliptic equations, and finite-difference them to obtain $\mathrm{d} u_-/\mathrm{d} \tilde{\mathcal{A}}!!$

Constructing the upper branch u_+

Two branches

- Parabolic close to critical point
- \mathbf{u}_+ and \mathbf{u}_- meet at $\mathcal{\tilde{A}}_c$
- \mathbf{u}_+ extents to small $\mathcal{\hat{A}}$
- \mathbf{u}_+ deviates strongly from Minkowski at small $\mathcal{\tilde{A}}$
- No indication that \mathbf{u}_+ terminates
- Apparently two solutions for arbitrary small *Ã*!!

Energy & Apparent horizon

Unique solutions, nevertheless?

- *Physics* is determined by g_{ij}, K_{ij} . For example $g_{ij} = \psi^4 \tilde{g}_{ij} = \psi^4 \delta_{ij} + \psi^4 \tilde{\mathcal{A}} h_{ij}$
- *Physical* amplitude of perturbation is $\mathcal{A} = \psi^4 \tilde{\mathcal{A}}$
- Question: For given *physical* amplitude *A*, how many solutions exist?

Summary

- The conformal method is complete and self-consistent
 Conformal thin sandwich ↔ *extrinsic curvature decomposition* ... forget York 1973, Ó Murchadha & York 1974 ...
- Quasi-equilibrium initial data is state-of-the-art Built-in potential for the next round of improvements (\tilde{g}_{ij})
- Extended conformal thin sandwich harbors surprises:
 Non-uniqueness —