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World year of physics

Emstein and the Ficel Tensor

e 100 years of the “three papers”
e 90 years of general relativity

e Two body problem still unsolved

Harald P. Pfeiffer, Caltech



Gravitational wave detectors are rapidly improving

GEO 600
LIGO
TAMA 300
Virgo

Ligo Hanford site

One prime scientific target: Binary black hole coalescence
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Binary black hole coalescence

e Inspiral — post-Newtonian expansions 2T Plunge i
e Late inspiral & plunge — numerical relativity
e Ringdown — perturbation theory I Ingpiral Ringdown|
ok
Waveforms from all three phases are
important for...
1. Event detection - | |
2. Parameter extraction
3. Testing general relativity 300 -2b0 | -1|o(:)[/' Io ' 1(I)o '
m

numerical relativity
0 — Initial data |
— Evolutions (Lee Lindblom last week)

Harald P. Pfeiffer, Caltech



Outline of talk

1. Construction any initial data — Conformal method
2. Construction BBH initial data — Quasi-equilibrium method

3. Surprising properties of initial data — Non-uniqueness
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Conformal method

Problem: Find solutions (g;;, ;)
of the constraint equations

R+ K’ — K ;K" =0

Vj (KZJ — gin> =0

>’ spacelike hypersurface
gij induced metric on 3
K extrinsic curvature of X

K = g,L-jKij trace of ex. curvature
N lapse, (3* shift ‘ ‘ . ‘
ds® = —N°dt® + g;;(da’ + B'dt)(da’ + B dt)

Strategy: Split g;; and K; into smaller pieces, such
that some are freely specifiable, and the rest completely
determined
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Extrinsic curvature decomposition (HP, York 2003)

gij,

K,AY

1, N freely specifiable

1, V" determined by elliptic eqns

Ve + .
A gVi+...=0

Task: Find N N
9ij and K" = A% + 1/3 ng
which satisfy
ij | 2.2
R+AijA7+§K =0
ij 2 ij

V; (Aj—gng) =0

Decompose AY
gij |
ij 1 ij ij

AY = ﬁ(LV) +Apr
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Conformally rescale
4~
9ij = ¥ gij
ATT — w_loA?iZT
V=V’
N = ¢°N

Conformal quantities

gij

iy 1 oo i i
AY = —(LV)"+ Ay




Conformal thin sandwich

York 1999 — No decomposition; “just” say which free data you want

tot = (N + B) 6t

K + 0,K ot _ _
o gij + u;j 0t

,
,
,
,
;
’ Nn

7 n ot
y
,
,

3ot gij [
% J

Specify these free data: Elliptic equations follow:
e conformal 3-metric g;; ~

onorma e i Pip ... =0
e its time derivative 0;g;; = U,

(tracefree) v, ( 1~ (]’Lﬁ)ij> +...=0
e trace of ex. curvature K 2N
e its time derivative 0; K V'N +...=0
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Comparison

Extrinsic curvature decomposition
(Hamiltonian viewpoint)

Conformal thin sandwich
(Lagrangian viewpoint)l

Two old versions:

“Conformal TT" & “Physical TT"
various disadvantages

widely used, b/c they were around

— Extended system —
HP, York 2003
Five eqns. with free data

(gija at.gw) K7 8tK)I
+ Time-derivatives more intuitive

+often natural choice exists
+obtain N, 3"l

Final version w/ weight-function

HP, York 2003l

+ equivalent to standard CTS

+ Avoids disadvantages of old versions
+ conformally covariant

+ Kerr has A% = 0l

— Choice of M¥ difficult
(HP, Cook, Teukolsky, 2002) §

— Standard system —
York, 1999
Four egns. with free data

(gma atgij7 K7 N)
Conformal lapse N = ¢ N

+ equivalent to “extrinsic curvature decomp.”ll
— Choice of N difficultl
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Solution procedure

1. Choose formalism

2. Choose free data:
(a) Gij, K, M N (extrinsic curvature decomposition)

9ij, K, 0:9ij, 0+ KK (conformal thin sandwich)

(b) topology of %I, boundary conditions

3. Solve elliptic equations

4. Assemble physical initial data (g;;, K;,)

Formalism finished. Next...

— numerics: Solving the elliptic equations
— physics: Choosing the free data
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Spectral elliptic solver

Expand solution in basis-functions & solve for expansion-coefficients
Smooth solutions => exponential convergence

e Superior accuracy: Numerical errors < physical effects

e Superior efficiency: Permits large parameter studies

1071
10°*F
10°F .
++ [HIl, *
C [ x=x M,
10 AA DM, |
oo [0
i .
| 1 1 | 1 | | |
30 45 60 75 90
N

Cook & HP, 2004
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Conformally flat Bowen-York data

How to choose the free data?

1. Maximal slice K = 0 = Hamiltonian & momentum constraints decouple
2. Conformal flatness = =- equations simplify

3. Analytic solution for momentum constraint (Bowen-York 1980)
= only Hamiltonian constraint left

4. Use puncture method or inversion symmetry
to get boundary conditions

. Fairly simple to implement numerically. But convenience #-quality.
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Shortcomings of conformally flat Bowen-York data

Let me count the ways...

1. Single BH Bowen-York initial data do not represent stationary spacetimes

(a) Kerr is not conformally flat (Kroon, 2004)
(b) spinning BY is Kerr + gravitational waves
(c) boosted BY is boosted Schwarzschild + gravitational waves

2. Binary compact objects are NOT conformally flat at 2-PN (Rieth, 1997)

3. BBH initial data constructed from BY seems fishy

(a) ISCO disagrees with PN calculations

(b) ISCO disappears for corotating BH's (HP et al. 2000)

(c) ISCO is wrong even in the test-mass limit (HP, 2003, thesis)

(d) Evolutions from BY data find plunging BH's rather than orbiting ones (gr-qc/0411149)

4. Superposition of boosted single BH's is not an orbiting binary BH

(a) Boosted electron 4 boosted positron # positronium
(b) General relativity is nonlinear, so effects of superposition are even less predictable
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From Bowen-York toward astrophysical initial data

What means “astrophysical”?

ultimate goal

today’s goal

hypersurface through inspiral
as it occurs in nature

contains embedded wavetrain
of earlier inspiral

BBH slowly inspiraling (i.e. 7
small but nonzero)

no BH quasi-normal ringing
early in evolution

as little “junk radiation” as
possible

reduce initial burst of GW

get remotely circular orbit
at all S

How to judge “astrophysical relevance” of initial data?

e Ultimately, by evolutions.

e Robustness — How sensitive are results to the arbitrary choices
inherent in all (current) methods?

e Consistency — Compute sequences of quasi-circular orbits, ISCO,
take limits of large separation, and large mass ratio. Are various
results consistent?
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Recent approaches to BBH initial data

(old) extrinsic curvature decomposition

e Superposed Kerr-Schild (Matzner et al 1998, Marronetti & Matzner, 2000)
Gij = 0 + 2 [HLL)* + 2 [HLL)P, MY~ KY + KY

questionable until prooven otherwise (HP et a/ 2002)
e Incorporate PN information (Tichy et a/ 2003, Yunes et al 2004)

-  __ PN ~ij L prij
very promising, looking forward to further results

Conformal thin sandwich equations

e Gourgoulhon, Grandclement, Bonazzola, 2002, 2002
“Helical Killing vector approximation” (+other assumptions)

basically right, but various deficiencies
Laid some fundations for Cook & HP

e Cook & HP, 2002, 2003, 2004
Quasi-equilibrium method with isolated horizon BCs
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Quasi-equilibrium method

® Linspiral > Torbit N.B. Essentially equivalent:
Corotating coordinates = 0, =~ 1/Tinspiral = O — Helical Killing vector

_ _ : . : — Quasi-equilibrium
= natural choice: vanishing time derivatives — Time independence in

corotating coordinates

Depending on context, different
pictures are useful.

e Conformal thin sandwich formalism
2. Need not choose M¥
3. gi; and K still undetermined

e Boundary conditions at infinity from asymptotic flatness & corotation:

Y =1
57J - (Qorbital X 7"
N =1

e New contribution: inner boundary conditions (next slide...)
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Quasi-equilibrium excision boundary conditions

n" — normal to hypersurface

k" — outward pointing null normal to S

5" - (conformal) spatial normal to S
h;j — conformal induced metric of S

e Excise topological sphere(s) S

e Require
1. S be apparent horizon(s)
2. The shear o, of k" vanishes
3. When evolved, the coordinate locations of the AH's remain stationary

e Item 2 is an isolated horizon condition. It implies for the expansion
1 2 uv
L0 = —59 — oo =0 onS

= AH moves along k", and its area is constant (initially)
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Quasi-equilibrium excision boundary conditions cont’d

e Rewrite in variables of conformal thin sandwich
2
~k2 - 1 ~id 1 9 w o - ..
§"Vilnty = _Zh”visj + gw K — N i5;(LB)"Y on S
8" =y°N§' + 5| on S

moderately complicated boundary conditions

e Rotating black holes
Vanishing shear < Bﬁ is conformal Killing vector of S.
Those exist for general rotation axis, conformal metric and shape of S:

— any 2-sphere is conformally flat

— Any rotation through the center of an Euclidean sphere is a Killing vector...

— ... and is therefore a conformal Killing vector of S

e Lapse boundary condition not fixed by IH (also Jaramillo et al, 2004)
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Numerical solutions: Single black holes |

e Quasi-equlibrium method works for any choice of g;;, K, & and lapse-BC.
e For now arbitrary choices: Conformal flatness, (mostly) maximal slicing, S =sphere

e Do not use knowledge of single BH solutions — use single BHs to test method

Spherical symmetry

1. w.l.o.g. conformllly flat
2. Try different choices for K and lapse boundary condition

3. any spherically symmetric K and any spherically symmetric lapse-BC vyield:
— exact slice through Schwarzschild
— totally vanishing time-derivatives 0;g;; = 0:K;; = 0

4. Full success: Recover Schwarzschild independent of arbitrary choices.
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Numerical solutions: Single black holes Il

e Spinning/Boosted black holes
Compute quantities that vanish for Kerr:

_ 2 2 2 2 2
Erad = \/EADM — Paom — /My + Japw/ (4M ) (3)
J E3 P
AQ = Q, — ADM/ Eapm | Av - EADM (@)
2+ 2\/1 — Jiom/ Eapm ADM
T ' T T I T T T T ' I I T T T T ' T .l ] I T T L '
10t |SCO orhital frequency | 1 ISCO velocities
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Binary black hole solutions (corotating, K = 0)

Test three different lapse boundary conditions
Compare to GGB and post-Newtonian results

T T I T T T I T T T I T T T | T

0.02H— 6 Ms- dawyar=o - -0.02H{— CO: MS- d(aw)/dr = (ay)/2r -
| |---- CO: MS-ayp=12 | | CO: HKV - GGB ]

..... G0 WS- soapt = o~ i
-0.03 - -0.03f{ - - CO: EOB - 1PN -

11

004 4 gooo4r i
O o]

L] 1 ur- ot -
-0.05 14 -0.05\- -
-0.06 - -0.06+ _

] _1 T T N R T | 13'41I L | I1 316 I1 | |
3.6 4 4.4 4.8
Jum

No difference — solution robust
Excellent agreement
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Testing the 2nd law

Normalize sequences such that dFEapm = 20 dJapm

Irreducible mass along these sequences

T T I T T I T T I T ;:I I
- |—— CO: MS - d(ay)/dr =0 | .
- |---- CO: MS-ay=12 |

<= corotating sequences

0.50005{-~ -~ CO: MS - d(aw)/dr = (ay)/2r A (three different lapse BC's)
EE I /;/ ] M;,, slightly increasing during inspiral — ok
0.50000{- = A

0.500 I I | I I | I I | I I |

<= irrotational sequences

o
S

S [ : (three different lapse BC's)
0.499 . | . Lo
- IR MS- d(ay)/dr=0 o My decr_eas!ng during inspiral
[ |---- IRIMS-ay=12 \ ] — Normalization of sequences wrong?
| == IR: MS - d(ay)/dr = (aw)/2r N\
] ] | ] ] | ] ] | u ] N
0.498 003 006 009 012
mQO
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ISCO location

Caution: ISCO is not a sharp, i 2PN .

i 3 PN
well-defined concept! Anyway... -0.014 \\L / ~
- thiswork (3 data points)T
-0.016 / —

O.

Color: Corotating BH's A
£0.018F GGB .
Grey: lrrotational BH's ny - T
-0.02- _
-0.0221- Cook 1994 — 5 |
B ] | ] ] ] | ] ] ] | ]
0.08 0.12 0.16
mQ

e Excellent agreement between NR and PN
e GGB close; deviation due to their regularization?

e Bowen-York w/ effective potential is history

Harald P. Pfeiffer, Caltech



Summary of QE method

e Framework for BBH initial data in a kinematical setting (helical Killing vector)
e Explicitly displays the remaining choices g;;, K, S, Lapse-BC

e Close in spirit to GGB, but greatly improved:
Constraints are satisfied

Incorporates isolated horizon boundary conditions
General spins possible

Retains freedom to choose any g;;, K, S.

Lapse is positive on horizon

ok b=

e Agrees very well with PN (even with simple choices)
e Future: physically motivated choices for g;;, K, S and Lapse-BC

e Far future: Replace “0; = 0" by radiation reaction
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And now to something totally different...
Solutions to the extended system have been found numerically in quite a few situations.

Was this luck? Or can one solve for all choices of free data and boundary conditions?

e Existence?

Standard system (4 eqns): Many mathematical results
Extended system (5 eqns): terra incognita

e Uniqueness?

Standard system (4 eqns): Unique (in all known cases)
Extended system (5 eqns): terra incognita
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Some results on the standard system

Free data based on “Teukolsky wave”

Mathematics: ingoing, M =0, odd parity, centered at r =20

1. asymptotically flat Gij = 0i; + Ahyy
2. no inner boundaries ~

ﬂij = .Ac‘)thij
K=0, N=1

3. maximal slice K = 0

— Yamabe constant Y|gi;]:

YV[gi;] > 0 < existence & uniqueness -

100 =

(Cantor 1977, Murray & Cantor 1981, OE ]

Maxwell 2005) o

w;; and N irrelevant I |
Def'n of )V not useful for numerical work 0.10

10 0.05 E

- 0.00] .

I
1

<
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Extended system

Gij = 8i; + Ahyj S_m.aller Ac )
finite ¢ as A — A,

;= AOthy Parabolic behavior
K=0 0;K=0 (RS wc—const.(.Ac—.A)l/2
Look max(y) _

. 0.03[F -
S i T T T T
1.06 < . : ]
= 001 max ()
T i 100 .
L 57 | - - 1/ max(y) :
0.003 | 0.15 - i
1.03 n i 0101 . 1
T 10F E

0 0.1 0.2 0.3
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A more comprehensive look

00097 ]

max(p) _

(p(I)I | | | | | |I

296 0.300 0.304

B max(y)
/ 1.12
1.00
i 1.10
0.80k min(N) 1.08
0.72
0.60- 0.64
B 0.56
0.40
i 0.18
0.20 y@) 0.16
i 0.1
OOO I L vl I | I %i
003 01 03
A
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A second branch

° Foréﬂzflc—f{<<1:

u(A, ) = u (@) — vo(@) VA, —u= (w, g, N)

e Two branches??

ur (A, @) = u (@) £ v (F) VA

e Problem: With “simple” initial guess, elliptic solver converges always to u_;
need good guess to converge to u..

du_(A,%x) 1

dA 2vV5 A

up (A, %) ~u_(A,Z)+4804

v ()

du_(A, %)

e Take two numeric solutions u_ of five coupled 3-D nonlinear elliptic equations, and
finite-difference them to obtain du_ /d.A!!
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Constructing the upper branch u,

3.0F
B 1.12
1.10
1.0
- 1.08
B 0.72
0.3 0.64
1 I 0.56
0.1 0.18
E 0.16
0.03F 00%" “ 1
n 0'16.296 0.300 0.304
| L v 111l | L v vl | L1
0.03 0.1 0.3 1.0

A
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Two branches

3.0F~__
B \\\\\\ max(w) 1.12
TT~<l 110
1.0 \
- min(N); e Parabolic close to critical point

0.72 e u, and u_ meet at Ac

~

0.3 0.64 e u, extents to small A

e u. deviates strongly from

0.56 Minkowski at small A

0.1 0.18 _<_><><><> e No indication that u, terminates
- e Apparently two §olutions for
0.16 - | arbitrary small A!!
0.03 01669??| ..|.
296 0.300 0.304
003 0T 03 o
A
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Energy & Apparent horizon

ADM energy

100F ! E

Apparent

10 3 appafent

- horizon 30

1F — 20
: ] 10
Ool:_ _:
: g N0
0.01F ; 0
Sy o ] 220
0.01 0.1 1
~ -30Q 1 1 1 1 1 ]
A 30 20 -10 )0( 10 20 30
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Unique solutions, nevertheless?

e Physics is determined by g;;, K;;. For example g;; = ¢4§ij = ¢45z‘j + rA hij
e Physical amplitude of perturbation is A = ¥*A

e Question: For given physical amplitude A, how many solutions exist?

ADM energy

3.0 max(\p)// L12F maX(Wy 100 FT T T I
e i % | F

4

/7 1.10+ - i u+

1.0 \ M _ _
! ] ! ]

Y min(N) min(N) | 10

\‘ 0.64 %J% .

0.3 \

| \ 0.60|- R,
max(f) -~ - .
\t -~ 056 , | ., | ] | F i
0.1 N 0.181 max(p) |
N AN i “
- \
- 017 -

I 042 044 046

0.1 03 10 - - b 10
A =(max y) A A =(max y) A

oww i 0.1F
0.03}- g™ ] F
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Summary

e The conformal method is complete and self-consistent

Conformal thin sandwich < extrinsic curvature decomposition
.. forget York 1973, O Murchadha & York 1974 ...

e Quasi-equilibrium initial data is state-of-the-art

Built-in potential for the next round of improvements (g;,)

e Extended conformal thin sandwich harbors surprises:
— Non-uniqueness —
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