Constraint control in hyperbolic evolution systems

Harald P. Pfeiffer

Caltech

Observatoire de Paris, Meudon, Dec 14, 2004

Collaborators:

Lee Lindblom, Rob Owen, Mark Scheel (Caltech) Larry Kidder, Saul Teukolsky (Cornell) Luisa Buchman (JPL), Michael Holst (UCSD)

Harald P. Pfeiffer, Meudon, Dec 14, 2004

Gravitational wave detectors are rapidly improving

- GEO 600
- LIGO
- TAMA 300
- Virgo

Ligo Hanford site

One prime scientific target: Binary black hole coalescence

Binary black hole coalescence

Plunge

0

Ringdown

100

3. Testing general relativity

Numerical relativity: Solving $R_{\mu\nu} = 0$

Foliate spacetime by t = const. surfaces

Split 4-dimensional quantities into:

- 1. 3-dim quantities within each surface
 - g_{ij} metric within surface
 - K_{ij} extrinsic curvature ("momentum" of g_{ij})
- 2. quantities that connect neighboring surfaces

evolution equations $\partial_t q_{ij} = \dots$

$$\partial_t K_{ij} = NR_{ij} + \dots$$

constraint equations

$$R + K^{2} - K_{ij}K^{ij} = 0$$
$$\nabla_{j}\left(K^{ij} - g^{ij}K\right) = 0$$

Maxwell-equations $\partial_t \vec{E} = \nabla \times \vec{B}$ $\partial_t \vec{B} = -\nabla \times \vec{E}$ $\nabla \vec{E} = 0$ $\nabla \vec{B} = 0$

Topic of this talk: Constraints "C = 0"

Analytically,

- If C = 0 for initial data, then C = 0 in domain of dependence
- BUT... $C \neq 0$ can enter through timelike boundaries
- AND... Small, but non-zero C may grow exponentially fast,

$$\partial_t C = \gamma C, \quad \text{for } \gamma \in \mathbf{R}$$

Outline

- 1. With toy-problem illustrate
 - both problems
 - and their solutions
- 2. For Einstein's equations
 - present C-preserving BC's

Massless scalar field $\Box \psi = 0$

• Reduction to first order system — define $\Pi \equiv -\partial_t \psi$, $\Phi_i \equiv \partial_i \psi$

 $\partial_t \psi + \Pi = 0$ $\partial_t \Pi + \delta^{ij} \partial_i \Phi_j = 0$ $C_i \equiv \partial_i \psi - \Phi_i = 0$ Constraint $\partial_t \Phi_i + \partial_i \Pi = 0 \iff \partial_t C_i = 0$

• In curved spacetime:

 $\partial_t \psi - \beta^k \partial_k \psi = -N\Pi$ $\partial_t \Pi - \beta^k \partial_k \Pi + Ng^{ikj} \partial_i \Phi_j = NJ^i \Phi_i + NK\Pi$ $\partial_t \Phi_i - \beta^k \partial_k \Phi_i + N\partial_i \Pi = -\Pi \partial_i N + \Phi_j \partial_i \beta^j$ Constraint $C_i \equiv \partial_i \psi - \Phi_i = 0$

Scalar field around Schwarzschild BH

Spectral method:

- expand $u(\vec{x}, t) = \sum \tilde{u}_{klm}(t)T_k(r)Y_{lm}(\theta, \phi)$ - evolve $u(x_i, t)$ by "method of lines" (x_i collocation points)

Harald P. Pfeiffer, Meudon, Dec 14, 2004

Boundary conditions

• Abstract form of evolution equations with $u^{\alpha} = \{\psi, \Pi, \Phi_i\})$

$$\partial_t u^{lpha} + A^{k lpha}{}_{eta}[u] \partial_k u^{eta} = F^{lpha}[u]$$

• Characteristic decomposition

1. eigenvectors $e^{\hat{\alpha}}{}_{\beta}$ & eigenvalues $v_{(\hat{\alpha})}$ $(n^i$ outward pointing unit-normal)

$$e^{\hatlpha}{}_{lpha} n_k A^{klpha}{}_{eta} = v_{(\hatlpha)} e^{\hatlpha}{}_{eta}$$

2. Characteristic fields

$$u^{\hat{lpha}}\equiv a^{\hat{lpha}}{}_{eta}\,u^{eta}$$

• (strong) hyperbolicity \rightarrow complete set of eigenvectors, and all real eigenvalues $v_{(\hat{\alpha})}$ \rightarrow Apply BC's precisely to *incoming* $u^{\hat{\alpha}}$ (those with $v_{(\hat{\alpha})} < 0$)

On last slide: freezing BC's: u^ˆ_{incoming} = const
 ⇒ freezing BC's are insufficient

Inside BH, ALL $u^{\hat{\alpha}}$ outgoing NO BC's needed, NONE applied

Constraint preserving BC's for the scalar field

 $\partial_t \psi - \beta^k \partial_k \psi = -N\Pi$ $\partial_t \Pi - \beta^k \partial_k \Pi + Ng^{ikj} \partial_i \Phi_j = NJ^i \Phi_i + NK\Pi$ $\partial_t \Phi_i - \beta^k \partial_k \Phi_i + N\partial_t \Pi = -\Pi \partial_i N + \Phi_j \partial_i \beta^j$ Constraint $C_i \equiv \partial_i \psi - \Phi_i = 0$

Characteristic fields $u^{\hat{\alpha}}$ and speeds $v_{(\hat{\alpha})}$

 $U^{\pm} = \Pi \pm n^{k} \Phi_{k} \qquad \qquad v_{\pm} = \pm 1 - n_{k} \beta^{k}$ $Z^{1} = \psi \qquad \qquad v = -n_{k} \beta^{k} < 0$ $Z^{2}_{i} = P^{k}_{\ i} \Phi_{k} \equiv (\delta^{k}_{\ i} - n^{k} n_{i}) \Phi_{k} \qquad \qquad v = -n_{k} \beta^{k} < 0$

Boundary conditions (at outer boundary)

 $\partial_t U^- = 0$ $\partial_t Z_i^2 = P^k{}_i \partial_t \partial_k \psi$ $\partial_t Z^1 = \beta^k \Phi_i - N\Pi$

physics: approx. outgoing wave BC enforce $P^k{}_iC_k = 0$ by choice of $P^k{}_i\Phi_k$ enforce $n^iC_i = 0$ by choice of ψ

Harald P. Pfeiffer, Meudon, Dec 14, 2004

Scalar field with constraint preserving BC's

N.B. Exponential convergence of spectral method apparent.

Bulk constraint violations — evil scalar wave system

- The scalar field system presented so far does not exhibit bulk-constraint violations.
- Introduce parameter γ and require $\partial_t C_i = -\gamma C_i$

 $\partial_t \psi + \Pi = 0$ $\partial_t \Pi + \delta^{ij} \partial_i \Phi_j = 0$ $\partial_t \Phi_i + \partial_t \Pi = \gamma \partial_i \psi - \gamma \Phi_i$

- Modified system still hyperbolic
- $\gamma \ge 0 \Rightarrow \mathsf{stable}$
- $\gamma < 0 \Rightarrow C_i$ exponentially growing

Constraint projection

Idea:

- Use free evolution until constraints become too large
- *Project* the current configuration \bar{u} back into the constraint-satisfying submanifold
- Continue with free evolution
- Repeat

Problem: Projection is not unique

Optimal constraint projection

- 1. Go to **closest** constraint-satisfying point u, measured by some positive definite metric $S_{\alpha\beta}$
- 2. Incorporate constraints by Lagrangian multipliers λ
- 3. Minimize Lagrangian

$$\mathcal{L} = \int \left\{ (u^lpha - ar{u}^lpha) S_{lphaeta} (u^eta - ar{u}^eta) + eta^i \, C_i
ight\}$$

with respect to u^lpha and λ^i

4. For symmetric hyperbolic evolution systems, there is a natural choice for $S_{\alpha\beta}$, the symmetrizer satisfying

$$S_{lphaeta}A^{klpha}{}_{\gamma} = S_{lpha\gamma}A^{klpha}{}_{eta}$$

NB: Most interesting evolution systems are symmetric hyperbolic

Optimal constraint projection for the evil scalar wave

Symmetrizer $S_{\alpha\beta}du^{\alpha}du^{\beta} = \Lambda^2 d\psi^2 - 2\gamma d\psi d\Pi + d\Pi^2 + g^{ij}d\Phi_i d\Phi_j$ with $\Lambda^2 > \gamma^2$ Lagrangian density

$$\mathcal{L} = g^{1/2} \Big[\Lambda^2 (\psi - \bar{\psi})^2 - 2\gamma (\psi - \bar{\psi}) (\Pi - \bar{\Pi}) + (\Pi - \bar{\Pi})^2 + g^{ij} (\Phi_i - \bar{\Phi}_i) (\Phi_j - \bar{\Phi}_j) + \lambda^i (\partial_i \psi - \Phi_i) \Big]$$

Variations (after integration by parts)

$$\frac{\delta \mathcal{L}}{\delta \psi} = 2g^{1/2} \left[\Lambda^2 (\psi - \bar{\psi}) - \gamma (\Pi - \bar{\Pi}) \right] \delta \psi - \partial_i (g^{1/2} \lambda^i) \tag{1}$$

$$\frac{\delta \mathcal{L}}{\delta \Pi} = 2g^{1/2} \left[\Pi - \bar{\Pi} - \gamma(\psi - \bar{\psi}) \right] \qquad \Rightarrow \qquad \Pi = \bar{\Pi} + \gamma \left(\psi - \bar{\psi} \right) \tag{2}$$

$$\frac{\delta \mathcal{L}}{\delta \Phi_i} = \left[2g^{1/2} g^{ij} (\Phi_i - \bar{\Phi}_i) - g^{1/2} \lambda^j \right] \tag{3}$$

$$\frac{\delta \mathcal{L}}{\delta \lambda^i} = g^{1/2} (\partial_i \psi - \Phi_i) \qquad \Rightarrow \quad \Phi_i = \partial_i \psi \qquad (4)$$

Substitute (3) into (1), use (2) and (3)

$$abla^2\psi-(\Lambda^2-\gamma^2)\psi=
abla^iar{\Phi}_i-(\Lambda^2-\gamma^2)ar{\psi}$$

Constraint projected evil scalar wave

 $\gamma\,{=}\,{-}M$ in evolution equations, constraint preserving BCs $\Lambda\,{=}\,2/M$ in symmetrizer, project every $T\,{=}\,2M$

Harald P. Pfeiffer, Meudon, Dec 14, 2004

Constraint projection as substitute for Constraint preserving BC's?

Evolve "nice" scalar wave system ($\gamma = 0$) with freezing boundary conditions Perform a single constraint projection at T = 20M

Convergence

Constraints

Spectral convergence is sigificantly reduced (lost?) after projection

Constraint-violations return within a *single* timestep

Constraint projection as substitute for Constraint preserving BC's?

Radial profiles just after constraint projection

Very sharp constraint violating pulse enters

Project after every timestep convergence with timestep Δt

Summary of experiments

	"nice" scalar field ($\gamma = 0$)		$\gamma = -1$
	freezing BC	C-preserving BC	C-preserving BC
no projection	C-influx	ok!	bulk C-violations
projection	convergence $\mathcal{O}(\Delta t)$ (at best!)	ok!	ok!

- Projection cures bulk-constraint violations.
- C-preserving BC's cure C-influx through boundaries.
- No other combination works.

Computational cost of projection

For Einstein's equations, bulk-C's grow slower, $T_{\rm growth}\gtrsim 100M$ Even fewer projections may suffice

Einstein's equations – KST-system

- Kidder-Scheel-Teukolsky evolution system (PRD, 2001)
- 30 evolved variables $u^{lpha} = \left\{ g_{ij}, \ K_{ij}, \ D_{kij} \equiv 1/2 \ \partial_k g_{ij} \right\}$
- g_{ij} spatial metric, K_{ij} extrinsic curvature D_{kij} brings system into first order form (cf. Φ_i for the scalar field)
- Evolution equations are the 3+1 evolution Eqs. with the replacement $\partial_k \partial_l g_{ij} \rightarrow 2 \partial_{(k} D_{l)ij}$ and with constraints added at several places

$$\begin{split} \partial_t g_{ij} &\simeq \beta^n \partial_n g_{ij} \\ \partial_t K_{ij} &\simeq \beta^n \partial_n K_{ij} - N \Big[(1 + 2\gamma_0) g^{cd} \delta^n{}_{(i} \delta^b{}_{j)} - (1 + \gamma_2) g^{nd} \delta^b{}_{(i} \delta^c{}_{j)} \\ &- (1 - \gamma_2) g^{bc} \delta^n{}_{(i} \delta^d{}_{j)} + g^{nb} \delta^c{}_i \delta^d{}_j + 2\gamma_1 g^{n[b} g^{d]c} g_{ij} \Big] \partial_n D_{bcd} \\ \partial_t D_{kij} &\simeq \beta^n \partial_n D_{kij} - N \Big[\delta^n{}_k \delta^b{}_i \delta^c{}_j - \frac{1}{2} \gamma_3 g^{nb} g_{k(i} \delta^c{}_j) \\ &- \frac{1}{2} \gamma_4 g^{nb} g_{ij} \delta^c{}_k + \frac{1}{2} \gamma_3 g^{bc} g_{k(i} \delta^n{}_j) + \frac{1}{2} \gamma_4 g^{bc} g_{ij} \delta^n{}_k \Big] \partial_n K_{bc} \end{split}$$

(lower order terms not shown)

Harald P. Pfeiffer, Meudon, Dec 14, 2004

Evolutions with freezing boundary conditions

Kerr-Schild with superposed Teukolsky wave (low amplitude, $E_{
m ADM}/M_{
m AH} pprox 1 + 10^{-5}$)

Harald P. Pfeiffer, Meudon, Dec 14, 2004

Constraints

$$\mathcal{C} = \frac{1}{2} \left({}^{(3)}R - K_{ij}K^{ij} + K^2 \right)$$
$$\mathcal{C}_i = \nabla_j K^j{}_i - \nabla_i K$$
$$\mathcal{C}_{kij} = \partial_k g_{ij} - 2D_{kij}$$
$$\mathcal{C}_{klij} = 2\partial_{[k}D_{l]ij}$$

Hamiltonian constraint Momentum constraint Def'n of D_{kij} 2nd partial derivs commute

Movie showed
$$C \equiv \left(\mathcal{C}^2 + \mathcal{C}_i \mathcal{C}^i + \mathcal{C}_{ij} \mathcal{C}^{ij} + \mathcal{C}_{ijk} \mathcal{C}^{ijk} + \mathcal{C}_{ijkl} \mathcal{C}^{ijkl} \right)^{1/2}$$

Characteristic fields

$$\begin{split} Z^{1} &= \gamma_{3}n^{i}D_{i}^{1} - 2(1+\gamma_{4})n^{i}D_{i}^{2}, \\ Z_{i}^{2} &= \gamma_{4}P^{j}{}_{i}D_{j}^{1} - (\gamma_{3}+2\gamma_{4})P^{j}{}_{i}n^{k}n^{l}D_{jkl}, \\ Z_{i}^{3} &= 3P^{j}{}_{i}D_{j}^{1} - 2P^{j}{}_{i}D_{j}^{2} - 4P^{j}{}_{i}n^{k}n^{l}D_{jkl}, \\ Z_{i}^{4} &= +48v_{2}^{2}n^{l}P^{j}{}_{i}n^{k}D_{ljk} + 2\gamma_{4}(5-9\gamma_{2})P^{j}{}_{i}D_{j}^{2} - 2(6+\gamma_{4})(5-9\gamma_{2})P^{j}{}_{i}n^{k}n^{l}D_{jkl} + \dots \\ Z_{ij}^{5} &= \left(P^{a}{}_{i}P^{b}{}_{j} - \frac{1}{2}P_{ij}P^{ab}\right)n^{k}D_{abk}, \\ Z_{kij}^{6} &= P_{kij}^{cab}D_{cab}, \\ U^{1\pm} &= \pm \left[1+2v_{1}^{2} + (1+2\gamma_{1})q\right]n^{i}D_{i}^{1} - v_{1}(1-q)P^{ij}K_{ij} + 2v_{1}n^{i}n^{j}\left[K_{ij} \pm v_{1}n^{k}D_{kij}\right] + \dots \\ U_{i}^{2\pm} &= \pm 2v_{2}n^{k}P^{j}{}_{i}K_{jk} + (1+2\gamma_{0})P^{j}{}_{i}D_{j}^{1} - (1-\gamma_{2})P^{j}{}_{i}D_{j}^{2} + (2\gamma_{0}-\gamma_{2})P^{j}{}_{i}n^{k}n^{l}D_{jkl}, \\ U^{3\pm} &= \pm (1+2\gamma_{1})n^{i}D_{i}^{1} \mp (1+2\gamma_{1}+\gamma_{2})n^{i}D_{i}^{2} + v_{3}P^{ij}K_{ij}, \\ U_{ij}^{4\pm} &= \left(P^{a}{}_{i}P^{b}{}_{j} - \frac{1}{2}P_{ij}P^{ab}\right)\left[K_{ab} \pm n^{k}D_{kab} \mp (1+\gamma_{2})n^{k}D_{(ab)k}\right]. \end{split}$$

Only $U^4 \pm_{ij}$ has characteristic speed ± 1 independent of parameter choices. **Physical mode!**

Constraint preserving boundary conditions

General procedure to derive constraint preserving BCs (Steward, 1998, Calabese et al., 2003):

1. Derive constraint evolution system

$$\partial_t C^A + A[u^\alpha]^{kA}{}_B \partial_k C^B = F[u^\alpha]^A{}_B C^B$$

where $C^A = \{C, C_i, C_{kij}, C_{klij}\}$

- 2. For the KST-system, this is strongly hyperbolic whenever the KST-system is
- 3. Comptute characteristic fields of the C-system, $C^{\hat{A}}$
- 4. Require that the *incoming* C-fields vanish

$$C^{\hat{A}} \equiv 0$$
 for $v_{\hat{A}} < 0$ (1)

- 5. The $C^{\hat{A}}$ are functions of u^{α} and therefore of $u^{\hat{\alpha}}$. Consequently, (1) represents conditions on $u^{\hat{\alpha}} \leftarrow Constraint \ preserving \ BCs$
- 6. This procedure fixes many of the required boundary conditions on the $u^{\hat{lpha}}$.

Physical boundary conditions

C-preserving BCs cannot fix physical modes U_{ij}^{4-}

Follow the idea of Bardeen & Buchman, 2002:

• Consider Weyl-tensor, decomposed into electric and magnetic parts

$$E_{\mu\nu} = C_{\mu\sigma\nu\tau} n^{\sigma} n^{\tau}, \tag{5}$$

$$B_{\mu\nu} = \frac{1}{2} C_{\mu\omega\sigma\tau} \,\epsilon^{\sigma\tau}{}_{\nu\rho} n^{\omega} n^{\rho}, \tag{6}$$

- The evolution system for $E_{\mu\nu}$ and $B_{\mu\nu}$ is strongly hyperbolic compute its characteristic fields
- One of its incoming characteristic fields, U^{8-}_{ij} , is proportional to Ψ_0 (Newman-Penrose component)
- **Prescribing** Ψ_0 on the boundary determines U_{ij}^{8-} , which in turn **determines** U_{ij}^{4-} .

• NB:
$$U_{ij}^{4+} \sim \Psi_4$$

Gauge fixing boundary conditions

- No boundary conditions yet for the fields U^{1-} and $Z_i^4 \rightarrow \text{Gauge modes}$
- $\partial_t K = 0$ (on bdry) results in condition for U^{1-}
- "Gamma-freezing" (on bdry) gives conditons on Z_i^{4-}
- In practice, we use $\partial_t K$ for the l = 0, 1, 2-components of U^{1-} and $\partial_t U^{1-} = \partial_t Z_i^4 = 0$ for the remaining components

Success

outer bdry at $r_{\mathrm{max}}=21.9M$

Independent residual evaluator

Are we solving vacuum Einstein's equations?

- At each timestep, assemble ${}^{(4)}g_{\mu
 u}$
- Compute $\partial_t^{(4)}g_{\mu\nu}$ and $\partial_t\partial_t^{(4)}g_{\mu\nu}$ by finite differences
- Assemble ${}^{(4)}R_{\mu
 u}$ and compute suitable norm ||R||

Fineprint...

- Exponentially growing C-violation remains
- growth slower (but there) for larger r_{\max}
- Similar growth seen in evolutions of timeindependent unperturbed Kerr-Schild solution with freezing BCs
- Bulk constraint violation??

More fineprint...

A non-convergent angular instability exists (if one looks hard enough)

(Unperturbed Kerr-Schild, Ylm-decomposition of $K-K_{
m analytic}$)

Instability not present with freezing BC's

Summary

- For constrained evolution systems, C-violations can enter through time-like boundaries, or can grow in the bulk
- Experiments with the "evil" scalar wave system showed
 - 1. C-preserving BC's necessary, but don't cure bulk C-violations
 - 2. C-preserving BC's and C-projection control the system
- We developed BC's for the Einstein system...
 - 1. C-preserving & physical & gauge
- …and presented tests in time-dependent situations
 - 1. Very effective against influx of C-violations
 - 2. Slowly growing (convergent) bulk C-violation remains
 - 3. Weak angular (nonconvergent) instability appears