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Chapter 1

Introduction

This course serves as in-depth introduction to the gravitational wave discoveries that hap-
pened in 2015, and new discoveries that –we hope– are going to happen soon: Coalescing
binary black holes were observed, and we hope on coalescing neutron stars in the near fu-
ture. As such, you will learn about the objects that are colliding: black holes and neutron
stars, and the basics of gravitational waves. Because gravitational waves are only emitted
in dynamical and non-symmetric situations, we will pay significant emphasis on how to
treat General Relativity in such generic circumstances, where few (or no) symmetries are
present, and the standard GR-I analytical techniques are not applicable.

Textbooks

There is no good text-book that covers all material to be discussed (hey, GW discoveries
are still too new!). We will refer to the following sources:

• Hobson, Efstathiou, Lasenby: “General Relativity: An Introduction for Physicists”
(Cambridge University Press)

• Carroll, “Spacetime and Geometry: An Introduction to General Relativity”, Pearson
(early version of notes available at https://arxiv.org/abs/gr-qc/9712019).

• Townsend, “Black holes (Lecture Notes)” https://arxiv.org/abs/gr-qc/9707012

• The 2nd half of the course (taught by Prof. Chris Thomson) will also refer to Shapiro
& Teukolsky: “Black holes, white dwarfs and neutron stars”
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Chapter 2

Geodesics around Schwarzschild &
Kerr black holes

Geodesics describe orbits of test-masses, here, around a black hole. Binary black hole orbits
inherit many features that are already present in the simpler geodesic motion. We will
perform an in-depth analysis using the effective potential method. This method utilizes
constants of motion to simplify the problem so much that all qualitative features of the
solutions (and quite a few quantitative features) can be understood with little calculations.

Some of this lecture re-cap material of GR-I, but not all of you took GR-I.

2.1 Geodesics, space-time symmetries and constants of mo-
tion

We parameterize the geodesic as a curve

xa(λ), λ ∈ R. (2.1)

The velocity is

ua =
dxa

dλ
= ẋa. (2.2)

For affine parameter λ, the geodesic equation reads

ua∇aub = 0. (2.3)

It holds that

− ẋaẋbgab = κ ≡

{
1, time-like geodesics (massive particles)

0, null geodesics (massless particles)
(2.4)

Proof: The derivative of gabẋ
aẋb along the curve is

ua∇a
(
gbcu

buc
)

= ua
(
ubuc∇agbc + gbcu

b∇auc + gbcu
c∇aub

)
= 0 + 2gbcu

bua∇auc

= 0.
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We see that gabẋ
aẋb =const along the geodesic. Rescale λ by a constant factor to achieve

Eq. (2.4)

Equation (2.4) is our first constant of motion. To obtain more, we need to consider
symmetries of the spacetime. Symmetries are described by Killing vectors. A Killing
vector ka satisfies ∇(akb) ≡ 1

2 (∇akb +∇bka) = 0. It follows:

ua∇a(kbub) = kbu
a∇aub + uaub∇akb

= 0 + uaub∇(akb)

= 0.

Here, we have used the geodesic equation to eliminate the first term. Adding symmetriza-
tion in ∇akb in the second term is possible because it is multiplied by the symmetric
tensor uaub. Then Killing’s equation causes the second term to vanish.) Therefore, a
Killing-vector induces a constant of motion along the geodesic:

ẋa∇a
(
kbẋ

b
)

= 0 ⇒ kaẋ
a = const (2.5)

2.2 Schwarzschild spacetime

The Schwarzschild black hole in Schwarzschild coordinates (t, r, θ, φ) is given by

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dΩ2 + sin2 θdφ2

)
, (2.6)

where we have used units such that G = 1, c = 1. Note that the term “Schwarzschild” is
used with two meanings: “Schwarzschild spacetime” refers to the whole manifold which
solves Einstein’s equations. “Schwarzschild coordinates” are just one of many coordinate-
systems one can use to describe this manifold.

The geodesic has coordinates xa = [t, r, θ, φ], and velocity ua = ẋa = [ṫ, ṙ, θ̇, φ̇]. Note
that overdot indicates the derivative with respect to the affine parameter, e.g. ṫ ≡ dt/dλ.

We rotate the coordinates such that the orbit is in the equatorial plane: θ = pi/2,
θ̇ = 0, sin θ = 1.

Time-translation Killing vector
(∂t)

a = [1, 0, 0, 0]. Lowering the index yields (∂t)a = gab(∂t)
b =

[
−
(
1− 2M

r

)
, 0, 0, 0

]
, and

therefore, the associated constant of motion is

− (∂t)aẋ
a =

(
1− 2M

r

)
ṫ = const ≡ E. (2.7)

This is the energy per unit-restmass of the orbiting body.

Rotational Killing vector
(∂φ)a = [0, 0, 0, 1] (rotation axis normal to orbital plane). Lowering the index yields
(∂φ)a = gab(∂φ)b = [0, 0, 0, r2], and the associated constant of motion is

(∂φ)aẋ
a = r2φ̇ = const ≡ L, (2.8)
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the angular momentum of the test-body per unit-mass.

Now let’s combine the three constants of motion that we have discovered: Spelling out
Eq. (2.4) explicitly for the Schwarzschild metric (recall θ = π/2) yields

− κ = −
(

1− 2M

r

)
ṫ2 +

(
1− 2M

r

)−1

ṙ2 + r2φ̇2. (2.9)

Multiplying by (1−2M/r), and replacing the terms with ṫ2 and φ̇2 by E and L, respectively,
gives:

− κ
(

1− 2M

r

)
= −E2 + ṙ2 +

(
1− 2M

r

)
L2

r2
. (2.10)

Solving for ṙ2, we find:

1

2
ṙ2 + V (r) =

1

2
E2, (2.11)

where

V (r) =
1

2
κ− κM

r
+
L2

2r2
− ML2

r3
(2.12)

is called the effective potential. Equations (2.11) and (2.12) are extremely powerful to
understand the structure and qualitative properties of geodesics around a Schwarzschild
black hole

Equation (2.11) is identical to the equation that governs mechanical motion in a 1-
dimension poential. E.g., taking a time-derivative of Eq. (2.11) yields

ṙr̈ + V ′(r)ṙ = 0, (2.13)

where V ′(r) = ∂V/∂r. Division by ṙ yields the well-known second order ODE for 1-D
motion,

r̈ = −V ′(r). (2.14)

The only differences are: (i) in the GR-case, derivatives ṙ are derivatives with respect
to the affine parameter of the geodesic (i.e. proper time of the test-mass for time-like
geodesics). This changes the timing of how the orbit is traversed, but not the shape of
the orbit. And, (ii) the energy squared appears on the right-hand-side of Eq. (2.11). This
is just what happens. However, because E also contains the rest-mass of the particle this
is still quite similar to standard Newtonian mechanics. Let’s separate out the rest-mass
and write E = 1 + Enewtonian (recall that our E is the energy per unit-rest mass, so the
rest-mass is just ’one’). We now have

1

2
E2 − 1

2
= Enewtonian +

1

2
E2

newtonian ≈ Enewtonian. (2.15)

2.2.1 Geodesics of massive particles: κ = 1

Let’s get going!
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V (r) =
1

2
− M

r
+
L2

2r2
− L2M

r3
, L = r2φ. (2.16)

The terms on the right-hand-side represent, in order:

• rest-mass

• Newtonian gravitational attraction

• Centrifugal repulsion

• A genuine GR term, which increases the gravitational attraction

2.2.1.1 Graph and qualitative features

Figure 2.1: Effective potential for a Schwarzschild black hole. Plotted are
several curves of V (r) for different values of L.

Figure 2.1 plots several effective potential contours. From these contours we learn:

• Each line represents V (r) at a fixed value of L, with smaller values of L being further
down.

• For given value of E2 < 1/2 (e.g. dotted horizontal line), the radial motion is
bounded between with radius rmin ≤ r ≤ rmax, i.e. a bound eccentric orbit.

• Minima of V correspond to circular orbits at that given angular momentum L.
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• There is an innermost stable circular orbit, rISCO.

• unstable circular orbits correspond to maxima of V . Bound, unstable, circular orbits
(i.e. E2/2 < 1/2) exist for rmb < r ≤ rISCO, i.e. closer to the black hole.

• rmb (mb=”marginally bound”) is also the closest distance any orbiting test-mass can
come to the black hole, no matter how eccentric its orbit is.

• Unbound, unstable circular orbits correspond to maxima of V at positive values of
V − 1/2. They occur at radii rphoton < r < rmb.

• rphoton (ph=’photon’) is also the closest distance any geodesic can approach the BH
and still escape, no matter the values of E and L.

2.2.1.2 Circular orbits

• For given L, circular orbits for massive particles exist at radii rc satisfying

0 =
∂V

∂r
(rc) =

M

r2
c

− L2

r3
c

+
3ML2

r4
c

⇒ rc =
L2

2M
±
√

L4

4M2
− 3L2. (2.17)

The +-sign in Eq. (2.17) corrresponds to stable circular orbits, the −-sign to unstable
orbits. Note that the square-root only exists if L ≥ LISCO =

√
12M . This is the

minimum angular momentum of a test-body orbiting a Schwarzschild black hole.

• Solve Eq. (2.17) for L:

L2(rc − 3M) = Mr2
c ⇒ L =

√
Mr2

c

rc − 3M
(2.18)

The angular momentum L→∞ as the radius r → 3M = rphoton.

• The Energy of a circular orbit is:

E2 = 2V = 1− 2M

r
+
L2

r2
− L2M

r3
. (2.19)

Substitute Eq. (2.18) and simplify:

E2 = 1− M

r

r − 4M

r − 3M
. (2.20)

Because of the factor r−4M , the energy E2 = 1 when r = rmb = 4M . We now have
all three characteristic radii determined:

rISCO = 6M Innermost stable circular orbit
rmb = 4M smallest radii achievable by eccentric, bound orbits

rphoton = 3M smallest radius achievable by geodesics not falling into the BH
(also only radius for a circular null geodesic, hence the name)

• Accretion disks end at rISCO. Particles at the inner edge have energy per unit rest-
mass of

EISCO =
√

2V (rISCO) =
√

8/9 ≈ 0.943. (2.21)

The difference to 1 (i.e. about 5.7% of the restmass) represents gravitational binding
energy, which was emitted during the slow inspiral of the particle to rISCO.
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2.2.1.3 Small eccentricity – periastron advance

Let’s Taylor expand around a circular orbit. We write r(t) = rc + δr(t) and substitute
into Eq. (2.14).

δr̈ + V ′(rc + δr) = 0. (2.22)

Taylor expansion yields V ′(rc + δr) = V ′(rc) + V ′′(rc)δr = V ′′(rc)δr, because V ′(rc) = 0,
by virtue of rc being a circular orbit. Therefore, we obtain the equation for a harmonic
oscillator:

δr̈ + V ′′(rc)δr = 0. (2.23)

As for any harmonic oscillator, the oscillation frequency ωr satisfies

ω2
r =V ′′(rc) (2.24)

=− 2M

r3
c

+
3L2

r4
c

− 12ML2

r5
c

(2.25)

=− 2

rc

(
M

r2
c

− L2

r3
c

+
3ML2

r4
c

)
+
L2

r4
c

− 6ML2

r5
c

, (2.26)

where the second equality just rearranges some terms. We do this, because the quantity
inside the parentheses equals V ′(rc), which vanishes because rc is a circular orbit. In the
remaining terms, we substitute in L = r2

c φ̇ (this is Eq. 2.8), and thus obtain

ω2
r = φ̇2 − 6M

rc
φ̇2. (2.27)

Therefore, the ratio of radial and angular frequencies are

ωr

φ̇
=

√
1− 6M

rc
≈
(

1− 3M

rc

)
, (2.28)

where the last approximation is valid for r/M � 1.
The radial oscillations have lower frequency than the orbital frequency. Therefore, dur-

ing one radial oscillation period, the phi-motion proceeds through more than one full orbit:
We have established periastron advance. Per radial oscillation period, the periastron
advances by

∆φ = 2π

(
1−

√
1− 6M

rc

)
≈ 2π

3M

rc
= 6π

GM

c2rc
(2.29)

This result is only valid in the limit of small eccentricity, but still, we could obtain this
result with remarkable simple calculations, compared to explicitly integrating the geodesic
equations.

2.2.1.4 Large eccentricity – Zoom-Whirl orbits

Going back to Figure 2.1, let’s consider values for E and L, such that (i) the orbit is
bounded (E2 < 1/2) and (ii) the effective potential contour has its maximum (the unstable
circular orbit) just barely larger than the energy E. This situation is plotted in Figure 2.2.

By our careful choice of effective potential contour and energy, we have achieved that
rmin of the orbit is very close to the maximum of V (r). Therefore, near rmin, the gradient

10
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Figure 2.2: Zoom-whirl orbits. Top: a typical effective-potential contour
that yields to zoom-whirl orbits. Bottom: illustration of the resulting or-
bital trajectory.

V ′(r) is very small. By Eq. (2.14), therefore r̈ near apastron will be very small, and
therefore, the the test-mass will spend a large amount of time near rmin. The test-mass
still orbits the central black hole with an orbital frequency φ̇, which is not exceptionally
small, and therefore it is possible that the test-mass performs several orbits near rmin

before moving away toward rmax. This is indicated in the lower panel of Fig. 2.2.

2.2.2 Photon trajectories κ = 0

For photons which have κ = 0, Eq. (2.11) simplifies to

1

2
ṙ2 +

1

2

(
1− 2M

r

)
L2

r2
=

1

2
E2. (2.30)

It is not yet obvious, but it is possible to eliminate one of the two parameters L, E from
this equation. To do this, we first divide by L2:

1

2

(
dr

Ldλ

)2

+
1

2r2

(
1− 2M

r

)
=

E2

2L2
. (2.31)

Next, we note that for null-trajectories, the affine parameter λ can be freely rescaled
(ds2 = 0, and multiplication by an overall constant does not change this). We use this
freedom to redefine the affine parameter λ′ = Lλ. Furthermore, we define

b ≡ L

E
. (2.32)
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Figure 2.3: Photon-Trajectory approaching the black hole from infinity with
an offset of b relative to a straight line. The incoming particle has momentum
p = E/c. Its angular momentum (relative to the center of the black hole is
L = bp = Eb/c. Setting c = 1 yields Eq. (2.32).

The meaning of b is illustrated in Fig. 2.3: For an unbound particle (or photon) approach-
ing the black hole from large distance, b is the impact parameter, i.e. the distance by
which the particle would miss the black hole, if it moved on a straight line.

With these two changes, Eq. (2.31) becomes

1

2

(
dr

dλ′

)2

+
1

2r2

(
1− 2M

r

)
=

1

2b2
. (2.33)

As promised, individual appearance of E and L has been eliminated from Eq. (2.33),
and the effective potential depends only on the geometric parameter b. This means that
photon-trajectories are independent of the energy of the photon. The properties of photon-
trajectories are determined by the effective potential

Vnull(r) =
1

2r2

(
1− 2M

r

)
, (2.34)

which is plotted in Figure 2.4.

Figure 2.4: Effective potential Vnull for null geodesics, Eq. (2.34).

Vnull(r) is qualitatively very different from the effective potential for massive particles.
The main differences are:

• No local minima of Vnull, and therefore no bound stable photon orbits around the
black hole.
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• Vnull(r) has only one maximum at r = rphoton = 3M . This maximum corresponds
to a critical impact parameter of

bcrit =

√
1

Vnull(rphoton)
=
√

27M. (2.35)

• At the maximum, i.e. r = rphoton there is one unstable circular orbit for photons
(the existence of this orbit explains the name “photon-radius” rphoton).

• Geodesics that approach the black hole with impact parameter b > bcrit will approach
the black hole until they encounter the potential Vnull (cf. Fig. 2.4. They will reverse
direction and move away to infinity – I.e. the photon is scattered by the black hole.

• Photons with b < bcrit will pass over the maximum of Vnull(r) in Fig. 2.4, and will
reach r = 0 – i.e. these photons are captured by the black hole.

• Therefore, the cross-section of a Schwarzschild black hole to photon-capture is σ =
πb2crit = 27πM2.

2.3 Kerr Black holes

To recap, the Kerr-metric in Boyer-Lindquist coordinates is given by

ds2 =−
(

1− 2Mr

ρ2

)
dt2 − 2Mar sin2 θ

ρ2
(dtdφ+ dφdt)

+
ρ2

∆
dr2 + ρ2dθ2 +

[
r2 + a2 +

2Mra2 sin2 θ

ρ2

]
dφ2, (2.36)

where
∆ = r2 − 2Mr + a2, ρ2 = r2 + a2 cos2 θ.

The parameters have the following meaning:

• M mass

• aM angular momentum; a/M ≡ χ dimensionless spin. To avoid naked singularities,
the spin must not exceed 1, i.e. χ ≤ 1.

• The event horizon is at ∆ = 0, i.e. r± = M ±
√
M2 − a2.

2.3.1 Equatorial Geodesics

For equatorial orbits, the analysis techniques for geodesics in Schwarzschild are still ap-
plicable, although more tedious. The results are qualitatively similar, but the numerical
values vary with spin. This calculation has been done in Bardeen, Press, Teukolsky,
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ApJ 178, p.347 (1972):

Note that Bardeen et al use the symbol rms for rISCO. The general tendency is that
for co-rotating orbits, all characteristic radii become smaller, whereas for counter-rotating
orbits, the characteristic radii become larger. The limiting values for extremal black holes
(χ = 1) are summarized in Table 2.1.

Spin a/M r+ rISCO 1− EISCO rmb rphoton

-1 (counter-rotating) M 9M 3.8% (3 +
√

2)M 4M
0 2M 6M 5.7% 4M 3M
+1 (co-rotating) M M 42% M M

Table 2.1: Important radii for equatorial geodesics co- or counter-rotating
around Kerr black holes.

For extremal spin and co-rotating orbits, rISCO = rmb = rph = r+ = M . It appears all
these orbits are coincident with the horizon. This appearance, however, is deceptive, and
the radii are at very different physical locations. To see this, we compute the radial proper-
separation between the horizon r+ and a radius r0 > r+, by setting dt = dθ = dφ = 0 in
Eq. (2.36):

ds2 =
ρ2

(r − r−)(r − r+)
dr2, (2.37)

⇒ ∆s(r+, r0) =

∫ r0

r+

ρ√
(r − r−)(r − r+)

dr (2.38)

For a non-extremal black hole, a < M and r− < r+. Therefore, the integrand in Eq. 2.38
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diverges as 1/
√
r − r+, as r → r+. A 1/

√
x-singularity integrates to a finite value. How-

ever, as a → M , r− approaches r+, and the integrand diverges as 1/x and the integral
Eq. (2.38) diverges for any value r0 > r+. It is this divergence that counteracts the fact
that rISCO, rmb and rphoton all approach the same coordinate value.

2.3.2 Non-equatorial geodesics

Counting the symmetries of Kerr, one finds three constants of motion along geodesics: the
4-velocity gabu

aub = −1, the energy E and z-component of angular momentum, i.e. the
equivalent of Eq. (2.8) for Kerr. Equatorial orbits remain equatorial, so this suffices for
integrability (i.e. given values of the constanst, and a point in the equatorial plane, in
general the velocity ẋa of the geodesic is completely determined).

Kerr also possesses a second rank Killing tensor, which results in a fourth constant of
motion, the Carter constant. Therefore, non-equatorial orbits are also integrable. Such
orbits have three characteristic frequencies, φ̇, ωr and ωθ.

Non-equatorial geodesics show a very rich variety of structure. Usually the frequencies
are incommensurate, and the geodesic is volume-filling. Sometimes, the three frequencies
are commensurate and the geodesic closes after a finite number of orbits (“resonance”).

15
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Figure 2.5: Illustration of the geodesic orbit of a small body around a spinning Kerr black
hole. The left image shows the generic case, where the three characteristic frequencies
φ̇, ωr, ωθ are not commensurable, and the trajectory is volume-filling. The right image
shows a resonance, where the orbits repeat after a certain time. (Images are snapshots
from a movie by Steve Drasco, available at http://www.tapir.caltech.edu/~sdrasco/
animations/)
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Chapter 3

Useful coordinate systems

3.1 Schwarzschild spacetime

3.1.1 Schwarzschild coordinates

The starting point are Schwarzschild coordinates

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2, (3.1)

where dΩ2 = dθ2 + sin2 θdφ2, and where we have used units such that G = 1, c = 1. Note
that the term “Schwarzschild” is used with two meanings: “Schwarzschild spacetime”
refers to the whole manifold which solves Einstein’s equations. “Schwarzschild coordi-
nates” are just one of many coordinate-systems one can use to describe this manifold.

The radial coordinate r is an areal radius coordinate. This means that the surface
area of a t = const, r = const sphere in Schwarzschild coordinates has surface area 4πr2,
i.e. the same formula as in Euclidean space.

As r →∞, ds2 approaches Euclidean metric. Schwarzschild is asymptotically flat.

3.1.2 Kerr-Schild coordinates

Schwarzschild coordinates have a coordinate singularity at r = 2M . Changing the time-
coordinate via t→ t̄ = t+ 2M ln(r/(2M)− 1) results in Kerr-Schild coordinates:

ds2 = −dt̄2 + dr2 + r2dΩ2 +
2M

r
(dt̄+ dr)2 (3.2)

These coordinates are very useful, because they’re simple and extend easily to Kerr.

• Coordinate singularity at r = 2M gone.

• Physical singularity at r = 0.

Let us compute the radial null-directions. Ignoring the angular part by setting dΩ→ 0,
Eq. (3.2) becomes:

0 = ds2 = (dr + dt̄)

((
1 +

2M

r

)
dr −

(
1− 2M

r

)
dt̄

)
(3.3)
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Therefore, dr = −dt̄ (incoming light-rays), or dr = (1− 2M/r)(1 + 2M/r)−1dt̄ (outgoing
lightrays). For r < rH ≡ 2M , outgoing lightray goes to smaller radius: Event Horizon

3.1.3 Kruskal coordinates

Sometimes called “Kruskal-Szekres coordinates”. These coordinates cover the maximal
extension of the Schwarzschild spacetime, i.e. the complete manifold (actually quite re-
markable that this can be done with a single coordinate system).

From Schwarzschild coordinates, first go to double null coordinates u, v. Then extend
the range of these coordinates through the horizon by defining u′ = −e−u/(4M), v′ =
e−v/(4M). Combined, this is

v′ =
( r

2M
− 1
)1/2

e(r+t)/4M (3.4)

u′ = −
( r

2M
− 1
)1/2

e(r−t)/4M (3.5)

u′ v′ are still null-coordinates (outgoing and incoming, respectively). Return to a spacelike
and one time-like coordinate by defining

T =
1

2
(v′ + u′), R =

1

2
(v′ − u′). (3.6)

When the dust settles, the metric becomes

ds2 =
32M3

r
e−r/(2M)(−dT 2 + dR2) + r2dΩ2, (3.7)

where r is defined implicitly by the solution of

T 2 −R2 =
(

1− r

2M

)
er/(2M) (3.8)

Kruskal Diagram, taken from p. 188 of gr-qc/9712019

• Lightcones at “45 degrees”
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• t=const hypersurfaces are straight lines

• r=const hyperboloids

• Future singularity r = 0 at T 2 −R2 = 1

3.1.4 Carter-Penrose diagram for Schwarzschild

Also called “Conformal Diagram”, and short “Penrose diagram”. We’d like to go one step
further beyond the Kruskal diagram, by pulling in infinite distance to a finite coordinate
value. Returning to the (u′, v′) coordinates, define

v′′ = arctan(v′), u′′ = arctan(u′), (3.9)

so that −∞ < u′, v′ < +∞ is mapped to −π/2 < u′, v′ < π/2.

Penrose diagram for Schwarzschild, taken from p. 205 of gr-qc/9712019.

• Lightcones at “45 degrees”

• spacelike infinity — i0

• future null infinity — I+ “scri-plus”

• future timelike infinity — i+ (separate from the singularity)

• Two asymptotically flat ends

The curves r =const are tangent to the time-translation symmetry.

3.2 Kerr spacetime

3.2.1 Kerr-Schild coordinates

gab = ηab + 2Hlalb (3.10)
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H is a scalar function, la is null, la = gablb and lala = 0. Substitute into Eq. (3.10),

0 = gabl
alb = ηabl

alb + 2Hlal
albl

b = ηabl
alb.

Hence, la is null with respect to both gab and ηab. In Cartesian coordinates (t, ~x), for spin
vector ~a (3-D vector)

H =
Mr3

r4 + (a · ~x)
, (3.11)

la = [1,~l ], ~l =
r~x− ~a× ~x+ (~a · ~x)~a/r

r2 + a2
. (3.12)

Here, vector-operations are the usual 3-dimensional flat-space operations, which we have
used for compactness. The quantity r is the Boyer-Lindquist radial-coordinate, which is
related to ~x by

r4 −
(
~x2 − ~a2

)
r2 − (~a · ~x)2 = 0 (3.13)

The horizon r = r+ maps to an ellipsoid in Kerr-Schild coordinates.
Boosts: Because the Kerr-Schild form is written in terms of tensorial objects, coordi-

nate transformations can be computed by acting on the individual objects. For instance,
a Lorentz-transformation

xa → xaΛa
b (3.14)

is represented by one constant matrix Λa
b. Under this transformation:

ηab → ηab (3.15)

la → Λa
blb (3.16)

and the form of the metric Eq.(3.10) is unchanged. By choosing Λa
b to be a Lorentz boost,

one obtains moving, spinning black holes; this is exploited, e.g. in numerical relativity.
(Of course, all quantities have to be expressed as function of the transformed coordinates
xaΛa

b).
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Chapter 4

Event Horizon

4.1 Intro & Examples

The event horizon is the boundary between regions of space-time that are in causal contact
with “infinity”, i.e. regions from which light can escape to large distance. For stationary
(i.e. time-independent) space-times, one can find the event horizon by a local analysis just
near the black hole at one instant in time. For time-varying space-times, this is no longer
possible:

To decide whether null-rays from a certain point in space-time can reach infinity, we
must know what happens in the future of the spacetime, because the null-rays must travel
through those future regions of the space-time. Therefore, the event horizon is a global
property of the entire spacetime.

Figure 4.1: Illustration of geodesics for a spherically symmetric, accreting
black hole. The dashed curve represents a radially outgoing null-ray which
starts outside the r = 2M surface of the original black hole, but is trapped
by the enlarged final black hole.
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Figure 4.1 illustrates that the event horizon can be at places different than one would
navively expect: We start with a Schwarzschild black hole of mass M . If nothing were to
happen in this space-time, the event horizon would be at r = 2M . However, in Fig. 4.1,
we now have a spherical shell of matter accreting onto the black hole.

Because the configuration is spherically symmetric, it suffices to consider radially mov-
ing lightrays when determining the event horizon. One such lightrau Figure 4.1 plots one
suchlightray that starts slightly outside the original r = 2M surface and propagates out-
ward. Due to the matter falling into the black hole at later time, this light-ray may be
captured by the enlarged black hole. If so, this light ray was always inside the event
horizon of this spacetime.

Figure 4.2: Event horizon in a spherical collapse of a star. Left: “tra-
ditional” Schwarzschild-like coordinates. Right: The same situation in a
conformal diagram (Carter-Penrose diagram).

4.2 Formal Definitions

Let’s define the event horizon more formally. This discussion follows Townsend, https:
//arxiv.org/abs/gr-qc/9707012, Chapter 2.6. We define

• Causal past of an event P, J−(P ): All events in the past of P, which can be
connected to P with time-like or null curves (any curve, need not be geodesics).

• Causal past of a set S: All events that lie in J−(P ) of at least one event of S.

• J−(I+): All events from which one can reach future null infinity by a null- or time-
like curve, i.e. all events from which one can escape to infinity.

• Event Horizon: Boundary of J(I+).
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4.3 Properties of the Future Event Horizon

1. No two points in H+ are timelike separated.

Assume points α and β are timelike separated with both
α, β on the closure of J−(I+), and with β in the future
of α. Then one could move β by an infinitesimal distance
into the interior of J−(I+) and one could move α by an
inifinitesimal distance to the outside of J̄−(H+), while α′

and β′ still timelike separated. Now we have:
α′ /∈ J−(I+), but α′ ∈ J−(β′) ∈ J−(I+).

This is a contradiction.

2. H+ is a null hypersurface...

4.3.1 Interlude – Null surfaces

Before continuing with properties of event horizons, we need to explain some features of
null hypersurfaces. A null hypersurface is a surface, which has a surface-normal which
is null l is null: l2 = 0. Such surfaces are surprising beasts.

To make our discussion more precise, consider a smooth function S(x) of the space-time
coordinates x, and consider surfaces S=const.

• A one-form la that is normal to S=const–surfaces is given by

la =
∂S

∂xa
. (4.1)

Given a surface defined as a level-set (as here, S=const) the normal one-forms can
be defined even if no metric is present.1

• Raising the index to obtain a normal-vector requires an (inverse) metric gab:

lb = gab
∂S

∂xa
. (4.2)

• The surface S=const is null, if everywhere on the surface lala = 0. Let’s call this
surface N .

• Tangent vectors ta are vectors normal to la, that is t · l = tala = 0. Note that la

itself satisfies l · l = 0. Therefore, la is both the surface normal and a tangent
vector to N !

1We could also introduce an arbitrary normalization constant f̃(x), and write the normal-one form as
la = f̃(x)∂aS. The normalization slightly complicates the following calculation, but does not change the
result (cf. Townsend chapter 2.3.5).
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• Because la is tangent to N , there is a curve xa(λ) within N such that la = dxa/dλ.
We now show that this curve xa(λ) is a geodesics. We do so by confirming la satisfies
the geodesic equation:

lb∇bla = lb∇b∂aS
= lb (∂b∂aS − Γcab∂cS)

= lb (∂a∂bS − Γcba∂cS)

= lb∇a∂bS
= lb∇alb

=
1

2
∇a
(
lblb

)
.

Although lblb = 0 on N , the last term may be non-zero, because lblb is allowed to
be non-zero away from N . However, because lblb =const within N , for any tangent
vector ta to N , it must hold that

ta∇a
(
lblb

)
= 0. (4.3)

The one-form ∇a
(
lblb
)

is therefore orthogonal to every tangent vector. Therefore,
it must be parallel to the normal la, i.e.

∇a
(
lblb

)
∝ la. (4.4)

We therefore have that
lb∇bla ∝ la, (4.5)

i.e. xa(λ) is a geodesic, albeit in possibly non-affine parameterization.

• Therefore, a null-surface is foliated by null-geodesics. These null-geodesics are
called generators.

4.3.2 Properties of Future Event Horizon cont’d

2. ... H+ is a null hypersurface, foliated by null-geodesics, called “generators”.

3. Generators of H+ may have past end-points. I.e. if the geodesic is continued
further into the past, it is no longer on H+.
Example: In the stellar collapse shown in Fig. 4.2, new geodesics enter the horizon
at the point where it first forms.

4. Generators of H+ do not have future end-points.
This was shown by Penrose, who used non-timelike arguments like in EH property 1
above, to show that geodesics on H+ can always be continued further on H+. (see
Townsend, Chapter 2.6)

5. ⇒ Geodesics can join the horizon H+, but they cannot leave it.
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4.4 Example: Head-On collision of two black holes

From arXiv/0809.2628

4.5 Area theorem

The area theorem states that the area of an event horizon cannot decrease.
This theorem is central to the identification of BH-area as the analog of entropy in

black hole thermodynamics. It also makes it impossible for black holes to bifurcate, and
it limits the amount of energy that can be extracted from a rotating black hole.

Let us sketch the ingredients into a proof of the area theorem.

Null-geodesic congruences

A congruence is a set of curves, such that exactly one curve passes through each point. If
all curves are null-geodesics, then this is a null-geodesic congruence. The congruence can
be written as

xa(λ; yα), (4.6)

where λ is an affine parameter along each geodesic, and yα parameterizes the different
geodesics. The tangent to the geodesics is

ka =
∂xa

∂λ
. (4.7)

For the geodesic congruence, one can define expansion θ, shear σ̂ab and twist ω̂ab (see
Caroll, Appendix F or Townsend Chapter 6.1). The expansion, in particular yields the
change in the area-element a spanned by nearby geodesics:

da

dλ
= θa. (4.8)
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The expansion is governed by the Raychaudhuri equation for null-congruences,

dθ

dλ
= −1

2
θ2 − σ̂abσ̂ab + ω̂abω̂

ab −Rabkakb. (4.9)

Negative expansion diverges in finite affine length

We need a bound on the right-hand-side of Eq. (4.9), so let’s consider the various terms:
(i) As a square, σ̂abσ̂

ab ≥ 0.
(ii) By Frobenius theorem, ω̂ab = 0 for surface-forming congruences (as for the horizon we
are interested in).
(iii) Using Einstein’s equations, the last term becomes

Rabk
akb = 8πG

(
Tab −

1

2
Tgab

)
kakb = 8πGTabk

akb ≥ 0 (4.10)

The last inequality requires that the matter satisfies the null-energy condition, Tabk
akb ≥ 0

or the slightly stronger weak-energy condition Tabv
avb ≥ 0 for all time-like vectors va.

With the inequalities (i) to (iii), Eq. (4.9) implies

dθ

dλ
≤ −1

2
θ2. (4.11)

Assume θ(λ) becomes negative somewhere along a geodesic, say, θ(0) = θ0 < 0. It follows:

dθ

dλ
≤ −1

2
θ2 ⇒ d

dλ

(
θ−1
)
>

1

2
⇒ θ−1 ≥ 1

2
λ+

1

θ0
⇒ θ(λ) ≤ θ0

1 + λθ0/2
. (4.12)

Therefore, θ will reach −∞ within affine length λ ≤ |θ0|/2.

Negative expansion implies caustics

Equation (4.8) implies
d ln a

dλ
= θ. (4.13)

Therefore, if θ → −∞, then the area element a → 0, i.e. nearby geodesics converge onto
each other in finite affine length, a caustic.

Caustics forbidden on event horizons

Finally, Penrose has shown that the null-generators of event horizons must not have caus-
tics. (if they had a caustic, one can argue via infinitesimal deformations that such geodesics
cannot be on the event horizon).

The previous arguments imply that the expansion of null-generators of event horizons
must satisfy

θ ≥ 0. (4.14)

Therefore, each area-element of the event horizon satisfies

da

dλ
≥ 0, (4.15)

which implies the area-theorem,
dAEH

dλ
≥ 0. (4.16)
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Chapter 5

post-Newtonian Approximation

My discussion follows Norbert Strautmann “General Relativity”, Springer.

The goal of post-Newtonian approximation is to study the interaction of multiple
isolated bodies under mutual gravitational interaction. The first results in this area were
obtained by Einstein, Droste and de Sitter in the first years after GR was formulated. The
research field is still very active today, with the major current effort spent on computing
the 4-PN corrections for non-spinning bodies, and 3-PN corrections for spinning bodies.

Post-Newtonian theory is one of the corner stones for the complete solution of the
general relativistic two-body problem. It covers the inspiral-phase of the two bodies (e.g.
black holes or neutron stars). The last orbits before merger, and merger of the two objects,
and the post-merger evolution must be treated with full numerical simulations of Einstein’s
equations.

5.1 Effacement Property

In Newtonian gravity, the motion of extended bodies can be approximated by the motion of
their centers of mass. In this way, very complicated equations of the motion of extended
bodies (e.g. fluids like Jupiter) can be simplified to a small set of ordinary differential
equations.

In GR, the same property holds: the overall motion of extended bodies (this also
includes black holes – after all, there are no point-masses in GR) turns out to be very
insensitive to the internal structure of the bodies.

To motivate this property, consider bodies which would be spherical in isolation. De-
note the characteristic size of each body by L, and their characteristic separation by R.

Tidal effects of the other body/bodies will induce an ellipticity of each body of order

ε ∼ tidal gravity

self-gravity
∼ GML/R3

GM/L2
=

(
L

R

)3

. (5.1)

This results in a quadrupole-moment of the body of order

Q ∼ εM L2, (5.2)
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which results in an additional force onto other bodies of

δF ∼ GQM

R4
. (5.3)

The ratio of this additional force to the leading Newtonian force is

δF

F
∼ GεM2L2/R4

GM2/R2
= ε

(
L

R

)2

=

(
L

R

)5

. (5.4)

If the bodies are well-separated, L� R, this is indeed a very small perturbation.

5.2 post-Newtonian gravitational field

post-Newtonian theory combines two distinct perturbative expansions that have to be
joined for the complete solution. Near the bodies, one expands in the characteristic velocity
of the bodies, v/c, the post-Newtonian approximation per se. Far away in the wave-zone,
one expands in powers of Newton’s constant G, the so-called post-Minkowski expansion.

Let us sketch the near-field solution. We assume that bodies are widely separated (i.e.
R� RS = 2GM/c2), and slowly moving (i.e. v � c). Let’s call the small parameter

ε ∼
(
RS
2R

)1/2

=

(
GM

c2R

)1/2

∼ v

c
∼
(
p

ρ

)1/2

� 1. (5.5)

The middle equality, GM/R ∼ v2 arises by the virial theorem, which asserts under weak
assumptions that the kinetic energy is comparable to the potential energy for a system of
point masses in equilibrium.

The relative sizes of the terms can be easily derived for two point masses in circular
orbits in Newtonian gravity. Let the masses be m1 and m2, and denote their separation
by R. The masses are separated from the center of mass by the distances

r1 =
m2

m
r, r2 =

m1

m
r, (5.6)

where m = m1 +m2 is the total mass.
The virial theorem reads

Ekin = −1

2
Epot. (5.7)

Using the velocities of body 1 and 2 in the form v1 = Ωr1 = m2Ωr/m and v2 = Ωr2 =
m1Ωr/m, we find quickly Kepler’s 3rd law:

1

2
m1v

2
1 +

1

2
m2v

2
2 =

Gm1m2

2r
, (5.8)

⇒
(
m1m

2
2 +m2m

2
1

) Ω2r2

m2
=
Gm1m2

r
, (5.9)

⇒ Ω2r3 = Gm. (5.10)

Dividing Eq. (5.10) by c2r, we find

γ ≡ Gm

c2r
=

(
Ωr

c

)2

=
(v
c

)2
, (5.11)
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where v = Ωr is the magnitude of the relative velocity of the two point-masses (because
we assumed a circular orbit, here, v is constant). Multiplying Eq. (5.10) by Ω/c3, we find

x ≡
(
GmΩ

c3

)2/3

=

(
Ω3r3

c3

)2/3

=
(v
c

)2
. (5.12)

γ and x defined in Eqs (5.11) and (5.12) define two common parameters in post-
Newtonian expressions. They are particularly useful for the two-body problem in circular
orbits, which we disucss below in Sec. 5.3. Until then, Eqs. (5.11) and (5.12) merely serve
as a demonstration of the equalities indicated in Eq. (5.5).

5.2.1 Perturbative expansion

We will now make an Ansatz in powers of ε, and attempt to solve for consecutive orders
in ε. In practice, we will stop at the first non-trivial order past Newtonian gravity, which
turns out to be O(ε2) = O(v2/c2). We assume the metric gab takes the form

g00 = −1 +(2) g00 +(4) g00 + . . . , (5.13a)

g0i = (3)g0i + . . . , (5.13b)

gij = δij +(2) gij + . . . . (5.13c)

Here, the superscripts (n) denote terms of order εn, which are successively smaller with
increased value of n. The even- and odd-ness of the different components of gab can be
motivated by the behavior under time-reversal t → −t, where only the space-time cross-
terms of the metric (i.e. g0i) change sign. However, ultimately, the ansatz is only justified
after the fact when a consistent solution is found.

Having a perturbative metric of the form Eqs. (5.13), one next calculates various
derived quantities also as a perturbative series. One has to be careful to keep all terms at
the relevant orders, and to discard all higher-order terms. Precisely what order of terms is
necessary isn’t obvious ahead of time; again, the final result justifies which precise terms
we keep.

As long as one is sufficiently careful, the calculations are straightforward, but tedious.
We only give a few exemplary intermediate results.

• For the inverse metric:

g00 = −1 +(2) g00 +(4) g00, (5.14)

. . .

where

(2)g00 = −(2)g00, (5.15)

(4)g00 = −(4)g00 −
(

(2)g00

)2
. (5.16)

Note the general trend ere: The lowest perturbative terms are linear, whereas higher
order terms may involve products of lower-order terms.
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• For the Christoffel-symbols:

Γi00 = (2)Γi00 + (4)Γi00, (5.17)

. . .

where

(2)Γi00 = −1

2
(2)g00,i, (5.18)

(4)Γi00 = −1

2
(4)g00,i +(3) g0i,0 +

1

2
(2)gij

(2)g00,j . (5.19)

To keep expressions reasonably compact, we are using the notation that a sub-script
, i denotes a partial derivative with respect to xi. Note that because velocities are
assumed to be much smaller than the speed of light, v/c � 1, a time-derivative
increases the order by 1:

∂

∂t
∼ ε ∂

∂xi
∼ ε 1

R
. (5.20)

Because a time-derivative increases the order of a term, indeed all terms in Eq. (5.16)
are O(ε4).

• For the Ricci-tensor:

R00 =(2) R00 +(4) R00 + . . . (5.21)

. . .

Substituting in the expansion of the Christoffel symbols, and then the Christoffel
symbols in terms of the metric, one finds

(2)R00 =(2) Γi00,i = −1

2
(2)g00,ii = −1

2
∆g00 (5.22)

(4)R00 =(4) Γi0,i −(3) Γi0i,0 +(2) Γi00
(2)Γjij −

(2) Γi00
(2)Γ0

0i = −1

2
∆(4)g00 +(3) g0i,0i + . . .

(5.23)

. . .

We have used the symbol ∆ for the Laplacian. As can be seen from Eqs. (5.22)
and (5.23), the Laplacian acting on the metric perturbation appears quite commonly.

5.2.2 post-Newtonian Gauge conditions

At this stage, we have quite lengthy expressions for the components of the Ricci tensor
Rab in terms of the perturbations of the metric gab. To simplify the expressions, we use
the typical trick in GR, namely to choose a coordinate gauge, in which the expressions
simplify.

A good gauge is given by:

g0j,j −
1

2
gjj,0 = O(ε5), (5.24)

gij,j −
1

2
(gjj − g00),i = O(ε4). (5.25)
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This essentially constrains some of the lower-order terms of the metric, namely:

(3)g0j,j −
1

2
(2)gjj,0 = 0, (5.26a)

(2)gij,j −
1

2
(2)gjj,i +

1

2
(2)g00,i = 0. (5.26b)

Using these gauge-conditions, one can simplify the expressions for the Ricci-tensor to

(2)R00 = −1

2
∆(2)g00, (5.27a)

(4)R00 = −1

2
∆(4)g00 + [terms quadratic in (2)g00 and (2)gij ] (5.27b)

(3)R0i = −1

2
∆(3)g0i −

1

4
(2)gjj,0i +

1

2
(2)gij,0j , (5.27c)

(2)Rij = −1

2
∆(2)gij . (5.27d)

5.2.3 Einstein’s equations

We’ll write Einstein’s equations in the form

Rab = 8πG

(
Tab −

1

2
gabT

c
c

)
. (5.28)

From the stress-energy tensor, we’ll need:

T 00 = (0)T 00 + (2)T 00 + . . . , (5.29a)

T 0i = (1)T 0i + . . . , (5.29b)

T ij = (2)T ij + . . . . (5.29c)

(0)T 00 is the rest-mass, (2)T 00 includes, for example, the kinetic energy 1
2ρv

2.

5.2.4 Solving Einstein’s equations

Substituting Eqs. (5.27) into Eq. (5.28), we arrive at Laplace equations for that are sourced
by the energy-monentum tensor. Substituting in Eqs. (5.29), it turns out that the 00 and
ij Einstein-equations reduce to essentially the same equation:

∆(2)g00 = −8πG (0)T 00, (5.30)

∆(2)gij = −8πG (0)T 00 δij . (5.31)

Both equations are solved by the Newtonian potential φ:

∆φ = 4πG (0)T 00, (5.32a)

φ = −G
∫ (0)T 00(t, ~x′)

|~x− ~x′|
d~x′, (5.32b)

(2)g00 = −2φ, (5.32c)

(2)gij = −2φ δij . (5.32d)
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In fact, this is exactly the Newtonian limit of the Einstein equation, and indeed,
Eqs. (5.27a) and (5.27d) are the lowest-order at which non-trivial terms arise.

We can now substitute Eqs. (5.32) back into Eqs. (5.27b) and (5.27c). Then all terms
are determined except of the leading ∆(4)g00 and ∆(3)g0i. Still having Laplace-equations,
we expect the solution to be given in terms of additional potentials ψ and ~ξ. These two
potentials appear at higher order in ε and are the first post-Newtonian potentials.

Let’s do (4)R00 first. Substitute φ into Eq. (5.27b), and equate to the appropriate
O(ε4) terms of the 00-component of Eq. (5.28). After some algebra, one finds

∆
(

(4)g00 + 2φ2
)

= −8πG
(

(2)T 00 + (2)T ii
)
. (5.33)

This is solved by

∆ψ = 4πG
(

(2)T 00 + (2)T ii
)
, (5.34a)

ψ = −G
∫ (0)T 00(t, ~x′) + (2)T ii(t, ~x′)

|~x− ~x′|
d~x′, (5.34b)

(4)g00 = −2φ2 − 2ψ. (5.34c)

The 0i-components of Einsteins equations –cf. Eq. (5.27c)– are somewhat more in-
volved. It turns out, they require two extra potentials. Perhaps as expected, the first
potential is a vector-potential, written ~ξ or ξi:

∆ξi = 16πG (3)T 0i, (5.35a)

ξi = −4G

∫ (3)T 0i(t, ~x′)

|~x− ~x′|
d~x′. (5.35b)

(Here, as in all other equations, we insert pre-factors into the definitions for later conve-
nience). However, one also needs one further scalar potential χ, to absorb extra terms
with derivatives of φ:

∆χ = φ, (5.36a)

χ = −G
2

∫ ∣∣~x− ~x′∣∣ (2)T 00(t, ~x′)d~x′. (5.36b)

In terms of the potentials ξi and χ, we have

(3)g0i = ξi + χ0i. (5.37)

At this point, we have the complete post-Newtonian metric in terms of the potentials
φ, ψ, ξi, χ. We can now also express the Christoffel-symbols in terms of these potentials.

5.2.5 Conservation of T ab

If we rewrite the gauge condition (5.26a) in terms of potentials, one finds

ξi,i + 4φ,0 = 0. (5.38)
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Taking the Laplacian,

4
∂

∂t
∆φ+

∂

∂xi
(∆ξi) = 0, (5.39)

and substituting Eqs. (5.32) and (5.35), we get

∂(0)T 00

∂t
+
∂(1)T 0i

∂xi
= 0. (5.40)

This is the leading-order conservation of the energy-momentum.
Therefore, we see that the post-Newtonian potential ~ξ implies the leading order energy-

momentum conservation. The next-higher order conservation of T ab does not follow, but
must be separately imposed. Specifically, the O(ε2) terms of ∇bT ab = 0 yield

∂(1)T i0

∂t
+
∂(2)T ij

∂xj
= − ∂φ

∂xi
(0)T 00. (5.41)

This is the force-law of Newtonian gravity.

5.2.6 Interlude: Equations of motion of test particle

Our results so far allow to write down two useful intermediate results. The first one is the
motion of test particles in the post-Newtonian metric.x

Having the solution for the metric, Eqs. (5.32), (5.34), (5.35) and (5.36), we can also
write out the equation of motion for a test-particle, i.e. a geodesic.

One could either just write down the Geodesic equation itself. Or, one can start from
the extremal principle for geodesics

δ

∫ (
dτ

dt

)
dt = 0. (5.42)

Writing va = dxa/dt = [1, dxi/dt] = [1, ~v], we have(
dτ

dt

)2

= −gabvavb. (5.43)

There is a great freedom in writing down a Lagrangian, as it merely needs to be
a monotoninc function in dτ/dt, in order for the extremality condition (5.42) to yield
geodesics.

One natural choice is L = 1− dτ/dt, because it reduces to the Newtonian Lagrangian
in the Newtonian limit. Substituting in dxa/dt = [1, ~v], multiplying out terms, and trun-
cating at the order ε4 yields

L = 1− dτ

dt
=

1

2
v2 − φ+

1

8
v4 − 1

2
φ2 − ψ − 3

2
φv2 + vi (ξi + χ0i) . (5.44)

The Euler-Lagrange equations read

d

dt

(
∂L
∂vi

)
− ∂L
∂xi

= 0. (5.45)
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Substitute in Eq.(5.44), and discard higher-order terms. Furthermore, one higher-order
term contains v̇i itself. In this term, substitute in the Newtonian acceleration. Eventually,
one finds

d~v

dt
= −∇

(
φ+ 2φ2 + ψ

)
− d

~ξ

dt
− ∂2

∂t2
∇χ+~v× (∇× ~ξ) + 3~v

∂φ

∂t
+ 4~v(~v ·∇φ)− v2∇φ. (5.46)

The very first term on the right-hand side represents Newtonian gravity. All other terms
are the 1-PN corrections.

5.2.7 Interlude: Asymptotic form of stationary fields

The second intermediate result concerns the asymptotic form of the metric for stationary
matter distributions.

Consider the integrals for the potential, for instance Eqs. (5.32):

φ = −G
∫ (0)T 00(t, ~x′)

|~x− ~x′|
d~x′. (5.47)

If hte matter is limited to a region in space, say |~x′| < L, and if one is interested in
the value of the potential far away, i.e. |~x| = e � L, then one can make a multi-polar
expansion,

1

|~x− ~x′
| = 1

r
+
~x · ~x′

r3
+ . . . . (5.48)

Substituting this form for 1/|x− x′| back into Eq. (5.32), one finds

φ = −G
(0)M

r
− G ~x · (0) ~D

r3
+O(1/r3) (5.49)

The impact of the matter onto the far-field is reduced to a monopole and a dipole term,

(0)M =

∫
(0)T 00 d3~x, (5.50)

(0)Di =

∫
xi (0)T 00 d3~x. (5.51)

The same game can be played for the other potentials. One can simplify in the time-
independent case somewhat, and substitute into the formulae that give the metric in term
of the potentials. One can further shift the origin of the coordinate system to eliminate
the dipole term. The end result is:

g00 = −1 +
2GM

r
− 2

G2M2

r2
+O(1/r3), (5.52)

g0i = −2Gεijk
J jxk

r3
+O(1/r3), (5.53)

gij =

(
1 +

2GM

r

)
δij +O(1/r2), (5.54)
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where M and J i are the total mass and angular momentum of the matter distribution:

M =

∫ (
(0)T 00 + (2)T 00 + (2)T ii

)
d3~x, (5.55)

J i =

∫
εijkx

j(1)T 0k d3~x. (5.56)

Therefore, the far-field metric for a stationary matter distribution depends only on mass
and angular momentum of the matter.

5.2.8 Point-particle limit: Einstein-Infeld-Hoffman Equations

Let us now return to our main objective, to figure out how multiple bodies move under
their mutual gravitational interaction when we include post-Newtonian corrections.

The the first post-Newtonian order, in which we work here, one can show that the
internal structure of the individual bodies does not matter (e.g. Damour, The problem
of motion in Newtonian and Einsteinian gravity. In 300 Yeaes of Gravitation, Cambridge
University Press).

We can replace the individual bodies by point-particles, i.e. the matter distribution
of each body is replaced by a Dirac delta-function. The stress-energy tensor of several
point-particles labeled by A = 1, 2, . . . then takes the form

T ab(~x, t) =
1√
−g
∑
A

mA

∫
dxaA
dτA

dxbA
dτA

δ4 (x− xA(τA)) dτA. (5.57)

The integral of the A-th particle is along its world-line xaA(τA). At each instant of
time, t, the integral only has support at the position of the particle at that time, xiA(t).
The integration over proper time collapses the delta-function in time by the factor factor∫

δ(t− tA(τA))dτA =

(
dt

dτA

)−1

. (5.58)

Replacing the d/dτA-derivatives by d/dt derivatives adds two further factors of dt/dτA, so
that overall, we have

T ab(~x, t) =
1√
−g
∑
A

mA
dxaA
dt

dxbA
dt

(
dτA
dt

)−1

δ3 (~x− ~xA(t)) . (5.59)

We can now substitute in the expansion of the metric, Eqs. (5.13), into the term
√
−g,

and substitute in further the solution in terms of the PN-potentials. This yields

− g = 1− 4φ+O(ε4),
1√
−g

= 1 + 2φ+O(ε4). (5.60)

Furthermore, dτA/dt can be read off from Eq. (5.44),

dτA
dt

= 1− L = 1− 1

2
v2
A + φ+O(ε4). (5.61)
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Overall, the stress-energy tensor becomes

(0)T 00 =
∑
A

mAδ
(3)(~x− ~xA), (5.62a)

(2)T 00 =
∑
A

mA

(
φ+

1

2
v2
A

)
δ(3)(~x− ~xA), (5.62b)

(1)T 0i =
∑
A

mAv
i
Aδ

(3)(~x− ~xA), (5.62c)

(2)T ij =
∑
A

mAv
i
Av

j
Aδ

(3)(~x− ~xA). (5.62d)

Note that (2)T 00 depends on the Newtonian potential φ. That’s ok. We can solve for φ
from the lower-order terms first, and then substitute into (2)T 00.

Ok, let’s solve for the potentials! From Eq. (5.32),

φ = −G
∑
A

mA

|~x− ~xA|
. (5.63)

From Eq. (5.34),

∇ψ = 4πG
(

(2)T 00 + (2)T ii
)

(5.64)

= 4πG
∑
A

mA

(
φ′A +

3

2
v2
a

)
δ(3)(~x− ~xA). (5.65)

Here, the first difficulty occurs. The potential φ in Eq. (5.65) will have to be evaluated
at the particle locations ~xA. However, the term mA/|~x− ~xA| is singular there. By careful
renormalization of a finite-size body, one can show that one can simply leave out the
offending term. Defining

φ′A := −G
∑
B 6=A

mB

|~x− ~xB|
, (5.66)

we therefore find

ψ = −G
∑
A

mAφ
′
A

|~x− ~x′|
− 3

2
G
∑
A

mAv
2
A

|~x− ~xA|
. (5.67)

Finally, from (5.35) and (5.36):

ξi = −4G
∑
A

mAv
i
A

|~x− ~x′|
, (5.68)

χ = −G
2

∑
A

mA|~x− ~x′A|. (5.69)

And evaluating the partial derivatives in χ,0i, we finally find the space-time-components
of the metric:

g0i = ξi + χ,0i = −4G
∑
A

mA

|~x− ~xA|
(
7viA + (~vA · n̂A)n̂A

)
. (5.70)
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Here, n̂A = (~x− ~xA)/|~x− ~xA|.
At this point, we have computed the metric that arises from a collection of point

particles. We can now begin to use it. Let us begin to write down the geodesic equation
for particle A, i.e. the equation of motion mA would follow in the limit mA → 0. To do
so, we need to evaluate Eq. (5.44) at the position ~xA. While doing so, one can again show
that singular terms can be neglected, i.e. we will remove the A-term from sums whenever
it is singular. One finds

LA =
1

2
v2
A +

1

8
v4
A +G

∑
B 6=A

mB

rAB
− G2

2

∑
B 6=A

∑
C 6=A

mBmC

rABrAC

−G2
∑
B 6=A

∑
C 6=B

mBmC

rABrBC
+

3G

2
v2
a

∑
B 6=A

mB

rAB
+

3G

2

∑
B 6=A

mBv
2
B

rAB

− G

2

∑
B 6=A

mB

rAB
(7~vA · ~vB + (~vA · n̂AB)(~vB · n̂AB)) . (5.71)

Here we have introduced the short-hand rAB = |~xA − ~xB| and n̂AB = (~xA − ~xB)/rAB.

We are almost there!
Given the test-particle Lagrangian Eq. (5.71), we can now guess how the total La-

grangian for an N -body system must look like. It must be symmetric under exchange of
any two particles. And the portion for the A-th particle must reduce to Eq. (5.71) in the
limit mA → 0.

The answer is

L =
1

2

∑
A

mAv
2
A +

1

8

∑
A

mAv
4
A +

G

2

∑
A

∑
B 6=A

mAmB

rAB
+

3G

2

∑
A

∑
B 6=A

mAv
2
A

mB

rAB

− G

4

∑
A

∑
B 6=A

mAmB

rAB
− (7~vA · ~vB + (~vA · n̂AB)(~vB · n̂AB))− G2

2

∑
A

∑
B 6=A

∑
C 6=A

mAmBmC

rABrAC

(5.72)

Finally, evaluating the Euler-Lagrange equations, we find the Einstein-Infeld-Hofmann
equations, which determine the motion of N point particles in the 1-st post-Newtonian
approximation:

d~vA
dt

=−G
∑
B 6=A

~xAB
rAB

[
1− 4G

∑
C 6=A

mC

rAC
+G

∑
C 6=B

mC

(
− 1

rBC
+
~xAB · ~xBC

2r3
BC

)

+ v2
A − 4~vA · ~vB + 2v2

B −
3

2

(
~vB · ~xAB
rAB

)2 ]
− 7G2

2

∑
B 6=A

∑
C 6=B

mB

rAB

mC~xBC
r3
BC

+G
∑
B 6=A

mB
~xAB
r3
AB

(4~vA − 3~VB) · (~vA − ~vB) (5.73)
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5.3 The two-body problem

Let us now specialize to two bodies, with our aim being to describe systems of binary
compact objects that lead to gravitational wave emission.

Going to the center of mass frame, Eqs. (5.73) reduce to

d~v

dt
= −Gm

r2
n̂

(
1− (4 + 2ν)

Gm

r
+ (1 + 3ν)v2 − 3ν

2
(~v · n̂)2

)
+
Gm

r2
(4− 2ν) (~v · n̂)~v.

(5.74)
Here,

~v = ~v1 − ~v2 relative velocity (5.75)

r = |~x1 − ~x2| separation (5.76)

n̂ = (~x1 − ~x2)/r unit-vector pointing from m2 to m1 (5.77)

m = m1 +m2 total mass (5.78)

µ =
m1m2

m
reduced mass (5.79)

ν =
µ

m
=
m1m2

m2
symmetric mass-ratio (5.80)

Equation (5.74) must be invariant under the exchange of the particles 1 ↔ 2. There-
fore, it is natural that the mass-ratio of the two bodies enters Eq. (5.74) only through the
symmetric mass-ratio ν. For a binary of highly unequal masses m1 � m2 or m1 � m1,
the symmetric mass-ratio reduces to the usual mass-ratio, independent of which of the
two bodies is the more massive one:

ν ≈ msmall

mbig
(5.81)

For equal-mass systems, m1 = m2 = m/2, the symmetric mass-ratio takes the value 1/4.
Equation (5.74) forms the basis of general relativistic motion in a wide variety of

systems. The corresponding metric gab as given in Eqs. (5.32), (5.34), (5.35) and (5.36)
can be used to describe propagation effects. For instance:

• Relativistic binary pulsars (e.g. the Hulse-Taylor pulsar)

• Solar system tests of general relativity

• Gyroscope precession

• Relativistic time-delays (most notably the global positioning system GPS)

All these systems share a very weak gravitational field. For instance, for the Earth’s
motion around the sun: ε = v/c ∼ 10−4. For the Hulse-Taylor pulsar: ε ∼ 10−3. Note

from Eq. (5.74) that corrections enter at the square
(
v
c

)2 ∼ ε2. The next-higher corrections

enter at
(
v
c

)4 ∼ ε4. This implies that Newtonian gravity is accurate in the solar system to
10−8, and 1-PN theory to about 10−16.

Weak-field applications of GR will be discussed in the second half of the course by
Prof. Thompson. For now, we want to chart our way to the sources of gravitational waves
for LIGO.
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Nomenclature:
(1) post-Newtonian order counts the number of squares of v/c. Terms O(ε2) ∼ v2/c2 are
called “1-PN”. Terms O(ε5) are called “2.5PN”.
(2) post-Newtonian order is generally counted relative to the leading (Newtonian) term.
The leading order term in Eq. (5.74) is GM/r2 ∼ ε2. This sets the reference, and so the
corrections in Eq. (5.74) are called “1-PN” terms.

5.3.1 Binary black holes – inadequacy of low-order PN

The 1-PN equations (5.74) have been quite a large effort to derive. Unfortunately, they
are nowhere near accurate enough for LIGO purposes. We’ll give two reasons why much
more accurate results are needed.

In the 2nd homework set, you computed the gravitational wave energy flux F of two
point-masses in a circular orbit:

FGW =
32Gµ2r4Ω6

5c5
(5.82)

If energy-conservation holds in post-Newtonian theory, then this energy-loss must be deriv-
able from the equation of motion Eq. (5.74), through a term of the form “force times
velocity”:

FGW ∼ m
d~v

dt
· ~v. (5.83)

Substituting v = Ωr into the formula for FGW, we find

32Gµ2r4Ω6

c5
=

32Gµ2v6

c5r2
∼ vmGm

r2

(
. . .+

(v
c

)n
+ . . .

)
(5.84)

On the right-hand-side, we have schematically highlighted the post-Newtonian term of
PN-order n/2. To have the powers of velocity v balance in Eq. (5.84), the lowest-order
PN-term that can contribute to the GW energy loss must have n = 5, i.e. 2.5PN-orders
beyond Newtonian gravity, or an extra factor of (v/c)3 smaller than the 1-PN corrections
we have so laboriously computed in Eq. (5.74)!

Hence, if we were to derive the inspiral of two point-masses under their gravitational
wave emission, we would have to go to 2.5PN order of the Newtonian-like equations of
motion to find any inspiral at all !

Moreover, as we show below, the leading order GW-driven inspiral is woefully inade-
quate for LIGO needs. One needs to go at least 3-PN orders beyond leading order radiation
reaction. That means, if we were to compute gravitational waveforms for LIGO based on
Newtonian-like ODE’s for the motion of the black holes (like Eq. (5.74)), one would need
to have the ODE’s at least to PN-order 2.5 + 3 = 5.5, i.e. (v/c)11. This is impractical.

5.3.2 Energy Balance

Problem set 2 outlines the important trick how one can achieve the inspiral motion of two
orbiting masses, without having to go to excessive post-Newtonian order.

The trick is called energy balance: The energy removed from the binary through
gravitational waves must be supplied by the total energy of the binary.
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For a Newtonian circular binary, the total energy is

E = Ekin + Epot =
1

2
Epot = −Gm1m2

2r
. (5.85)

This can be easily shown from our little calculation of Newtonian circular orbits, Eqs. (5.10)–
(5.12), and we have used in the middle equality the Virial theorem, once again.

Now, assuming that the GW-energy loss is equal to the change in the energy of the
binary, we have

FGW = −dE
dt

= −dE
dr

dr

dt
. (5.86)

This equation is called the energy-balance equation. We know the flux FGW, we know
the energy E(r), so we can derive from the energy-balance equation an equality for the
inspiral rate dr/dt. This is your homework, so here, we will proceed slightly differently.

To proceed, we consider the inspiral in terms of orbital frequency Ω. Instead of using
Ω directly, the variable x defined in Eq. (5.12) turns out to be more convenient.

In FGW, we replace distance r by Ω via Kepler’s 3rd law, and replace further by x.
One finds

FGW =
32c5ν2

5G
x5. (5.87)

In the (Newtonian) energy of the binary, we likewise replace r by x, to find:

E = −1

2
µc2 x. (5.88)

Using energy-balance, we find:

FGW = −dE
dt

= −dE
dx

dx

dt
=

1

2
µc2dx

dt
⇒ dx

dt
=

64c3ν

5Gm
x5. (5.89)

We shall use this expression to work out how many orbits an inspiraling binary will perform
between frequencies x1 and x2 > x1.

We define the orbital phase Φ via

dΦ

dt
= Ω. (5.90)

Φ changes by 2π each orbit, so if we know Φ, we also know the number of orbits. To
compute the phase as a function of frequency, we use the product rule:

dΦ

dx
=
dΦ

dt

dt

dx
= Ω

64c3ν

5Gm
x5 =

5

64

1

ν
x−7/2. (5.91)

Integrating yields

Φ(x) = − 1

32

1

ν
x−5/2 = − 1

32

1

ν

(
GmΩ

c3

)−5/3

(5.92)

The number of orbits between x1 and x2 are then simply

N(x1, x2) =
Φ(x2)− Φ(x1)

2π
. (5.93)

Equation (5.92) is important, and we’ll need some time to discuss it.
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• There is a negative power of frequency. That means that in the early inspiral (at
lower frequencies), there is an increasingly larger number of orbits. No real surprise,
GW emission is weak at large separation i.e. small frequencies, and therefore the
binary does many orbits there. In fact, arbitrarily many as the frequency approaches
0.

• There is a negative power of symmetric mass-ratio. This implies that large mass-
ratio systems (ν � 1) will execute increasingly more orbits at each frequency as
the mass-ratio becomes more and more extreme. Equal-mass binaries spiral in quite
rapidly. Extreme mass-ratio systems spiral in much more slowly. Black Hole–neutron
star binaries (where the mass-ratio is expected to be somewhere between 5 and 15)
will execute more orbits in LIGO’s frequency band than a binary black hole of same
total mass with mass-ratio near unity. Extreme mass ratio inspirals where the more
massive object is a super-massive black hole with massm1 ∼ 106M� have mass-ratios
of m2/m1 ∼ 105. Such systems will spend 100, 000’s of orbits in LISA’s sensitivity
band. Because such systems spiral in so slowly, the geodesic approximation becomes
quite good, and linking us back to our initial discussion of geodesics (see page 16)

• Finally, Eq. (5.92) is only the leading order term of a post-Newtonian expansion
which happens to take the form

Φ(x) = − 1

32

1

ν
x−5/2

(
1 + (. . .)x+ (. . .)x2 + (. . .)x5/2 ln(x) + (. . .)x3 + . . .

)
. (5.94)

The leading-order behavior here –x−5/2– arises through the lowest-order radiation
reaction, i.e. 2.5PN in the Newtonian-like equations of motions (5.74). The 1-PN
correction in Eq. (5.92) –schematically denoted by (. . .)x— therefore corresponds to
3.5PN in the Newtonian-like equations of motion.

LIGO detects gravitational waves by matched filtering, which, essentially, is a phase-
coherent integration of the detector output. This requires the waveform-templates
to be phase-accurate to within ∼ 1 GW-cycle. For this to be the case in the low-
frequency regime, we must know all negative powers of x in Eq. (5.94), i.e. at least
up to 2.5-PN order past the leading order, corresponding to 5-PN in the Newtonian-
like equations of motion. This argument for 2.5-PN order in phase is very rough, it
turns out higher orders are yet better.

However, note that energy-balance avoids the need to use the Newtonian-like equa-
tions of motion at such excessively high PN-order (they aren’t known there anyway).
We have it replaced by the following four ingredients:

1. The assumption that binaries move on circular or

bits [you will investigate this assumption in Problem set number 3]

2. The assumption of energy-balance [Note: for those PN-orders where the Newton-
like equations or motions are known, energy-balance is confirmed to hold]

3. The GW-energy flux FGW(x) as a function of frequency x

4. The total energy of the inspiraling binary E(x) as a function of frequency x.

Here FGW(x) and E(x) are both PN-expansions, which are known to 3.5PN order.
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5.3.3 High-order post-Newtonian results

A vast amount of high-order post-Newtonian results have been computed. The review
article “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact
Binaries” by Luc Blanchet summarizes them nicely:

Living Reviews in Relativity December 2014, 17:2 http://link.springer.

com/article/10.12942/lrr-2014-2

For your entertainment, here are pointers to the higher-order PN versions of some of
the equations we have encountered:

• The Newtonian-like equation of motions, Blanchet Eq. 203, pages 79-82.

• The center-of-mass Newtonian-like equations of motion: Blanchet Eqs. 219, 220
(pages 91-92).

• The total energy E(x) of a circular binary as a function of orbital frequency, Blanchet
Eq. 232, page 95

• GW energy flux FGW(x), Blanchet Eq. 314, pages 122-123. The GW energy-flux
includes some extra effects, which we have not yet mentioned: In the quadrupole
formula we have assumed that there is direct propagation from the source to the
observer. This manifested itself by evaluating the quadrupole moments simply at
the suitable retarded time. However, at higher PN orders a new effect shows up:
The outgoing radiation is scattered at the curved background space-time. Such
scattering can happen anywhere in the space-time, and therefore, the corresponding
contribution to the energy-flux involves an integral over the entire past trajectory of
the binary. This is called a “tail-term”. At higher PN order there are also tails-of-
tails.
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Chapter 6

Numerical Relativity

At sufficiently high post-Newtonian order, post-Newtonian theory is capable of represent-
ing the inspiral of two compact objects to sufficient accuracy for LIGO. Near merger
of two inspiraling black holes, however, their separation will approach the sum of their
Schwarzschild radii:

r = rS,1 + rS,2 =
2Gm1

c2
+

2Gm2

c2
=

2Gm

c2
. (6.1)

Substituting this distance into Kepler’s 3rd law yields

v

c
=

1√
2
∼ 1. (6.2)

This can be most easily read off Eq. (5.11). We see that near the merger of two black
holes, the orbital velocities become so large that the perturbative expansion in ε = v/c
no longer is a perturbative expansion. Moreover, the basis assumption of post-Newtonian
theory –the existence of two discrete point-masses– does not apply during the merger of
the two bodies.

Therefore, we need entirely different techniques to explore what happens when two
black holes (or two neutron stars) collide: Numerical relativity.

Numerical solutions of Einstein’s equations have a long history. The first attempt to
simulate two colliding black holes was made in 1964 by Hahn & Lindquist, “The two=body
problem in geometrodynamics” Annals of physics 29, 304 (1964). The break-through on
black-hole simulations was accomplished by Frans Pretorius in 2005.
Good references:

• Baumgarte & Shapiro: “Numerical Relativity”, Cambridge University Press

• Baumgarte & Shapiro, Phys.Rept.376:41-131,2003, arXiv:gr-qc/0211028.

• For 3+1 decomposition, see also the PhD thesis of Gregory Cook “Initial Data for the
Two-Body Problem of General Relativity” (1990) http://users.wfu.edu/cookgb/
Thesis2side.pdf
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Figure 6.1: Illustration of elliptic and hyperbolic problems. Left: Elliptic
problems only deal with space, and they need boundary conditions on D.
Right: Hyperbolic problems involve both space and time; they need initial
conditions (at t = T1) and boundary conditions (at ~x = ∂D).

6.1 Recap: partial differential equations

There are two important types of partial differential equations that we will need going
forward: Elliptic and hyperbolic ones.

These two types of equations differ radically in their mathematical properties, and
therefore also in the numerical strategies that are used to solve them. We need both types
when solving Einstein’s equations, so we start by briefly introducing them.

6.1.1 Elliptic equations

The prototypical elliptic equation is the Laplace equation or Poisson equation:

∇2u(x) = ρ(x), x ∈ D, (6.3a)

where the domain D and the right-hand-side ρ(x) are given. Elliptic equations like
Eq. (6.3a) cover only space and do not involve time, as illustrated in the left panel of
Fig. 6.1. Therefore the domain D on which the equation is being solved is typically
D ⊆ R3 (I use dimension 3 for concreteness, but this discussion applies to any dimension).
If D has boundaries, then we need one boundary condition on each boundary, for instance
a Dirichlet boundary condition:

u(x) = A(x), x ∈ ∂D, (6.3b)

or a von Neumann boundary condition that uses the derivative along the normal to the
boundary:

∂nu(x) = B(x), x ∈ ∂D. (6.3c)

If D extends to infinity, then we need suitable fall-off conditions there, e.g.

u→ 0, as x→∞ (6.3d)
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(or any other asymptotic condition that makes sense for the problem under study). We
already encountered the Poisson-equation when solving Newtonian and post-Newtonian
potentials.

Elliptic equations can be more complicated, and they can also consist of a set of
multiple equations, rather than just a single equation. For instance, instead of the simple
∇2 = ∂2

x + ∂2
y + ∂2

z , there could be a generic 2-nd order differential operator

Aij(x)
∂2u(x)

∂xi∂xj
= . . . . (6.4)

The coefficient matrix Aij can also be spatially dependent.
If the matrix Aij is positive definite, then the equation is called elliptic. In that case,

it requires boundary conditions (as indicated above). If the right-hand-side is sufficiently
simple (e.g. zero, or linear in u with a positive sign), then there exists precisely one
solution.

6.1.2 Hyperbolic equations

Hyperbolic equations are evolutionary equations, that determine how a spatial function
changes in time. The typical example is the wave equation:(

∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2

)
u(~x, t) = S(~x, t), (~x, t) ∈ D × [T0, T1] (6.5a)

The solution u(~x, t) of a hyperbolic equation is a function of space and time, as indicated
on the right side of Fig. 6.1. Usually, such equations are defined on a certain spatial
domain D ⊆ R3 and for a certain time-interval [T1, T2] ⊆ R.

Hyperbolic equations require initial conditions that give the field-values at the initial
time T0:

u(~x, T0) = A(~x). (6.5b)

∂u

∂t
(~x, T0) = B(~x). (6.5c)

Furthermore, hyperbolic equations typically require boundary conditions. In its simplest
form they can be written as

u(~x, t) = C(~x, t), ~x ∈ ∂D, t ∈ [T0, T1]. (6.5d)

Note that initial conditions are applied at t = T0 on a spacelike boundary, whereas bound-
ary conditions are imposed on ~x =const time-like boundaries.

Equation (6.5a) also has the form of Eq. (6.4), if one uses a 4-d coefficient matrix
A = diag(1,−1,−1,−1). In terms of this coefficient matrix, the difference between elliptic
and hyperbolic boils down to the signature of the oefficient matrix: If A is symmetric and
positive definite (i.e. has only positive eigenvalues), then we have an elliptic equation. If
precisely one of the eigenvalues has the opposite sign then the problem is hyperbolic (and
the corresponding eigenvector plays the role of time).
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6.1.3 First order symmetric hyperbolic systems

By introducing new variables, it is possible to reduce 2nd order hyperbolic equations
to first order form. For instance, for a scalar wave Eq. (6.5a), one can define the first
derivative and the gradient,

~Φ ≡ ∇u, (6.6)

Π ≡ ∂u

dt
. (6.7)

Then, the wave-equation takes the form

∂Π

∂t
= ∇ · ~Φ + S, (6.8)

∂u

∂t
= Π, (6.9)

∂Φ

∂t
= ∇Π. (6.10)

If we label the vector of variable uα = (u,Π,Φk), then the first-order representation
takes the form

∂uα

∂t
+
∑
k,β

Aαβ
k ∂u

β

∂xk
= Rα. (6.11)

The coefficient-matrices Aαβ
k and the right-hand-side can depend on space, time and

the fundamental fields uα, however, they are not allowed to depend on derivatives ∂ku
α.

There is a vast amount of mathematical results that concerns first order hyperbolic
equations of the form Eq. (6.11). For instance:

• Whether a system of the form (6.11) is hyperbolic depends on properties of the
matrices Aαβ

k. Specifically, if the matrices Aαβ are symmetric for each k, then the
system is hyperbolic.

• Information propagates only at finite speed(s), and those speeds can be determined
from the matrices Aαkβ .

• What boundary conditions must be imposed at time-like boundaries can also be
determined from the Aαkβ .
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6.2 General Relativity

Our goal is to find numerically a space-time metric gab that satisfies Einstein’s equations

Gab[gab] = 8πTab. (6.12)

This requires several steps. The first one is to “undo” the great achievement of Einstein,
namely the unification of space and time into space-time. It turns out that comput-
ers cannot deal with covariant space-time; rather they want explicit and unambiguous
instructions of what to calculate at any step in the “computational time”.

6.2.1 Introduce “time” explicitly – Foliation

Foliate space-time by space-like hypersurfaces Σt, labelled by a continuously and mono-
tonically increasing real value, the time t. This is illustrated in Fig 6.2.

From the choice of Σt a whole host of further objects follow:

• Future-pointing unit normal na

A one-form normal to Σt is given by dt = ∂at. By rescaling

na = −α∂at, na = −αgab∂bt, nana = −1, (6.13)

where the scale factor α is given by α = (−gab∂at∂bt)−1/2. The function α is called
the lapse function. It measures the separation of nearby hypersurfaces Σt in the
direction normal to the hypersurfaces.

• Spatial metric The space-time metric induces a spatial metric γab on the Σt

hypersurfaces,

γab = gab + nanb, γab = δab + nanb, γab = gab + nanb. (6.14)

The mixed upper-lower metric γab removes components orthogonal to Σt, i.e. it
projects into the hypersurfaces.

γab = gab + nanb, γab = δab + nanb, γab = gab + nanb. (6.15)

The mixed upper-lower metric γab removes components orthogonal to Σt, i.e. it
projects into the hypersurfaces.

• Adopted coordinates and spatial tensors
Write space-time coordinates as xa = (t, xi), where i, j, . . . = 1, 2, 3 are coordinates
within each Σt. Spatial tensors “live within Σt”, this means each component is
orthogonal to the normal na:

T abna = 0, T abn
b = 0. (6.16)

For spatial tensors, the spatial components carry all information, so we’ll write T ij
instead of T ab.
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• 3-D differential geometry within Σt

The space-time metric induces a spatial metric γij on the Σt hypersurfaces. Con-
sider two points xa and xa + dxa within the same Σt. Because they are in the same
hypersurface, dxa is purely spatial, and we can write it as dxi.

Their separation is
ds2 = gabx

adxb ≡ γijdxadxj , (6.17)

where the second equality defines the spatial metric γij .

Along with it there are spatial Christoffel-symbols

(3)Γijk =
1

2
γil (γjl,k + γlk,j − γjk,l) , (6.18)

a spatial covariant derivative operator

DiT
j
k... = ∂iT

j
k... +(3) Γj ilT

l
k... −(3) ΓlikT

j
l... − . . . , (6.19)

(tensors to be differentiated must be spatial, otherwise Leibnitz’s rule fails), and the
spatial Riemann tensor

(DiDj −DjDi)Wk =(3)RlijkWl. (6.20)

• Extrinsic curvature Kij

The spatial metric γij determines the intrinsic geometry of the hypersurface, but
does not contain information about how Σt is embedded in the surrounding space-
time. The latter information is contained in the extrinsic curvature tensor, which
can be defined in several equivalent ways:

Kab = γa
cγb

d∇(cnd) (6.21)

= −1

2
Lnγab. (6.22)

The first of these two definitions is quite intuitive: If the unit-normal na changes
direction as one moves along Σt (i.e. na has non-zero gradient), then the extrinsic
curvature is non–zero.

The Lie-derivative along na that appears in the second definition is, roughly-speaking,
a “time-derivative”. Therefore, the extrinsic curvature can be thought of, roughly
speaking, as the time-derivative of the spatial metric.

6.2.2 Choose space-time coordinates — 3+1 split

So far, we’ve considered only one hypersurface Σt, on which we chose spatial coordinates
xi. We now need to decide how to relate spatial coordinates on neighboring hypersurfaces
Σt+δt. For this purpose, introduce a time-vector field ta

ta = αna + βa, (6.23)

and define the spatial coordinates xi such that integral curves of ta connect points with
the same spatial coordinates xi.
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Figure 6.2: 3+1 decomposition of space-time.

This vector field has some component αna normal to Σt, and a component βa parallel
to Σt. The spatial vector βa is called shift vector. In these special coordinates, the
space-time metric takes the form

ds2 = −α2dt2 + γij
(
dxi + βidt

) (
dxj + βjdt

)
(6.24)

that is

gab =

(
−α2 + βiβi βi

βj γij

)
. (6.25)

The upper space–time metric can be written as

gab =

(
−α−2 α−2βi

α−2βj γij − α−2βiβj

)
. (6.26)

Note that the spatial metric γij is given by the spatial components of the space-time
metric gab. However, note that the spatial inverse metric γij is not equal to the spatial
compontents of the inverse space-time metric gab.

6.2.3 Decompose Einstein’s equations — ADM–equations

Having described the nomenclature, we can now look at Einstein’s equations, Gab = 8πTab.
The Riemann-tensor can be split into pieces normal and tangential to Σt. In the preferred
3+1 coordinates, this boils down to choosing specific components. It turns out that the
spatial derivatives inside the space-time Riemann tensor can be rewritten in terms of
the spatial (3-D) Riemann tensor within Σt. The normal derivatives (along na) can be
rewritten in terms of the extrinsic curvature Kij , cf. Eq. (6.22). The derivatives along na

can be re–expressed as time-derivatives and a Lie-derivative along the shift-vector using

∂t = Lt = aLn + Lβ.
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(The first equality is an identity for Lie-derivatives taken along coordinate basis-vectors.
The second identity arises because of ta = αna + βa).

For the time-time, time-space and space-space components of the Einstein equations,
one finds:

(3)R+K2 −KijK
ij = −16πρ (6.27)

DjK
j
i −DiK = 8πji (6.28)

∂tKij = −DiDjα+α
(

(3)Rij − 2KikK
k
j +KKij

)
− α 8π

(
Sij −

1

2
γij(S − ρ)

)
(6.29)

+ βkDkKij +KikDjβ
k +KkjDiβ

k.

Here K = γijKij is the trace of the extrinsic curvature, and ρ, ji and Sij the matter
density, momentum density, and stress density arising from the stress-energy tensor. The
final crucial equation is the definition of the extrinsic curvature, Eq. (6.22), from which it
follows that

∂tγij = −2αKij +Diβj +Djβi (6.30)

Eqs. (6.27)–(6.30) are referred to as the ADM–equations. (named after Arnowitt,
Deser, Misner, 1962, who wrote down a slightly different set of equations. The precise set
of Eqs. (6.27)–(6.30) was first published by J. W. York in 1979)

Let’s discuss the structure of the ADM–equations by comparison with Maxwells Equa-
tions:

~∇ · ~E = 4πρe (6.31)

~∇ · ~B = 0 (6.32)

∂t ~E = ~∇× ~B − 4π ~J (6.33)

∂t ~B = −~∇× ~E (6.34)

Maxwell’s equations (as well as Einstein’s equations) contain equations without time-
derivatives (Eqs. (6.31), (6.32) and Eqs. (6.27), (6.28)). These are constraint equations,
restricting the set of allowable field-configurations at a given time t. Then there are
evolution equations, prescribing how the fields are changing in time (Eqs. (6.33), (6.34)
and Eqs. (6.29), (6.30)).

Hence, in principle, solvinging Einstein’s equations mirrors solving Maxwell’s equa-
tions. First, find initial data that satisfies the constraint equations. Second, evolve forward
in time.

One important difference lies in the functions α and βi. They appear in the evo-
lution equations, but there aren’t equations that determine them! These functions are
freely specifiable; they determine the coordinate system in which the solution is being
constructed.

However, there are three important differences between Maxwell’s Equations and the
ADM-equations:
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1. Maxwell’s equations are linear, whereas Einstein’s equations are highly non-linear
(there are squares of extrinsic curvature, and the Ricci-tensors appearing in the
ADM-equations is a highly nonlinear combination of the metric components and
their derivatives).

2. The Maxwell constraint equations (6.31) and (6.32) are easily solvable, because
of their simple form. In contrast, the Einstein constraint equations as written in
Eq. (6.27) and (6.28) are of no known mathematical type. We will have to first
rewrite them in a form in which it becomes clear how to solve these equations.

3. The Maxwell evolution equations (6.33) and (6.34) are well-posed hyperbolic evolu-
tion equations. In contrast, the ADM evolution equations as written in Eqs. (6.29) (6.30)
are not hyperbolic, and therefore naively coding these as they are written will lead to
computer codes that will fail. We will have to first rewrite the evolution equations in
a form which allows implementation on computers. This is a highly non-trivial com-
ment: It took decades until the importance of hyperbolicity was noted, and several
more years until correct and useful hyperbolic formulations were developed.

6.3 Constructing initial data

Let’s tackle the first problem. How can we rewrite the initial data constraint equa-
tions (6.27) and (6.28) into equations that we know how to solve?

6.3.1 Conformal transformation

The constraint equations (6.27) and (6.28) are coupled non-linear partial differential equa-
tions, of no specific mathematical form. They can be transformed into elliptic equations
by a suitable variable transformation. One separates from the spatial metric an overall
conformal factor,

γij = ψ4γ̄ij . (6.35)

The Ricci-scalar in Eq. (6.27) can now be expressed in terms of the Ricci-scalar R̄ of γ̄ij
and covariant derivatives with respect to γ̄ij ,

R = ψ−4R̄− 8ψ−5D̄2ψ.

Substituting back into the Hamiltonian constraint Eq. (6.27) gives an equation of the form

D̄2ψ = . . . . (6.36)

This is a non-linear elliptic equation for ψ. Furthermore, one makes an Ansatz for Kij in
terms of a vector-potential, and arrives at elliptic equations for the vector-potential. The
point of view is now:

1. Choose γ̄ij and some further “free data” that enter the ansatz for Kij

2. Solve Eq. (6.36) and elliptic equations for the vector-potential.

3. Assemble the full physical initial data γij and Kij
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6.3.2 BBH initial data

Puncture–initial data (Brandt, Bruegmann, PRL 78 (1997), p. 3606), makes many
simplifying assumptions, to reduce the complexity of the numerical problem. Very widely
used for BBH evolutions, because simple. Major deficit: Can only deal with black holes
of spins S/M2 . 0.9.

Conformal–thin sandwich initial data (Cook, Pfeiffer, PRD 70 (2004), p.104016)
preserves generality, allows construction of very high spins (Lovelace et al, 2008). Not as
widely used. Major deficit: More complicated equations to solve.

All BBH initial data are constructed with so-called spectral methods. One expands
the solution in basis-functions (e.g. spherical harmonics), and solves for the expansion
coefficients. Two codes: For puncture data, Ansorg’s code is the standard work-horse
(Ansorg. “A multi-domain spectral method for initial data of arbitrary binaries in general
relativity”. Classical and Quantum Gravity (2007) vol. 24 pp. 1). For conformal–
thin sandwich initial-data, my code continues to be state-of-the-art (Pfeiffer et al. “A
multidomain spectral method for solving elliptic equations.” Computer Physics Commu-
nications (2003) vol. 152 pp. 253). Although Trevor Vincent (a graduate student at
CITA) is developing a superior code.

6.4 Evolution equations

BH evolutions have four unique features:

• The Constraints must be preserved
Analytically, vanishing constraints C = 0 are preserved under evolutions. Numeri-
cally, small errors tend to exponentially amplify:

dC

dt
∝ C ⇒ C ∼ eλt

• One has to deal with singularities inside black holes

• One must choose coordinates “on the fly”
In principle any coordinate system should do. But one must avoid coordinate singu-
larities, ensure the coordinates cover the region of space-time of interest.

• Analytical properties of the equations. One has to work hard to find a formulation
that is well-behaved. Specifically, writing out (3)Rij in terms of derivatives of the
metric, Eq. (6.29) becomes

∂tKij = −α
2
γkl∂k∂lγij + αγk(i∂

(3)
j) Γk + . . . , (6.37)

where (3)Γk ≡(3) Γkijγ
ij . The first term alone would be fine and would result in a

hyperbolic wave–equation. The second term destroys hyperbolicity.

... and of course, the equations are very complicated, and will require supercomputers
to solve...
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6.4.1 BSSN equations

(Baumgarte & Shapiro 1999, based on work by Nakamura et al 1987)
Promote (3)Γk to evolved variables, with equal standing to γij and Kij . Now the

second term in Eq. (6.37) has only first derivatives of evolved variables, and is no longer
important for the mathematical analysis. (There are some additional changes of variables,
and one ends up evolving about 20 variables.)

Choose very specific coordinate conditions (Γ–driver). These coordinate-conditions
were basically found by experimentation, but they work very well. The BH singularity
turns out to be separated by an infinitely long Einstein-rosen bridge, and so its effects are
mitigated.

constraint damping (similar to Generalized Harmonic, see next section)
Numerics: finite-differences, adaptive mesh refinement, and supercomputers

6.4.2 Generalized Harmonic coordinates

One evolves directly the space-time metric, and uses a specific coordinate choice to simplify
Einstein’s equations. Nice exposition in Lindblom et al, Classical and Quantum Grabity,
23 (2006) p. S447.

Let’s consider the vacuum Einstein’s equations, Rab = 0. The highest derivative terms
in the Ricci-tensor have the form:

0 = Rab = −1

2
gcd∂c∂dgab +∇(aΓb) + . . . (6.38)

The first term on the right hand side is nice (hyperbolic, well-posed, wave-equation). The
second term on the right hand side destroys hyperbolicity. To get rid of this second term,
choose coordinates such that Γb equals an a priori chosen function Hb:

Γb ≡ −Hb. (6.39)

Now the nasty second term turns into first derivatives of a known function.
Harmonic coordinates set Hb ≡ 0. This has been used since 1920’s to analyze Ein-

stein’s equations. “Generalized Harmonic Coordinates” allow for non-zero Hb (Friedrich,
1987).

Constraint damping: We have assumed that Γb ≡ −Hb to re-write the evolution
equations. However, the Γb are functions of the evolved variables gab, and due to numerical
errors, there is no guarantee that this relation continues to hold. One modifies the evolution
equations:

0 = Rab = −1

2
gcd∂c∂dgab −∇(aHb) + τ

[
t(a
(
Hb) + Γb)

)
− 1

2
gabt

c(Hc + Γc)

]
+ . . . , (6.40)

where τ > 0 is a free parameter. If Hb + Γb = 0, the square-bracket vanishes. In this case,
Eq. (6.40) reduces to the Einstein equations, and we solve indeed the problem of interest.

The interesting aspect arises when Hb + Γb becomes non-zero (for whatever reasons).
If Hb + Γb 6= 0, then one can show that for perturbations of Minkowski space,

∂t (Hb + Γb) ∼ −τ (Hb + Γb) . (6.41)
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This means, the constraint violations are exponentially suppressed on a time-scale τ .

Black hole excision: The interior of the BH is causally disconnected from the exte-
rior. Place an artifical boundary somewhat inside the BH, and excise the region inside.

Numerics: Frans Pretorius (Princeton) and Luis Lehner (Perimeter/U Guelph) use
finite differences, adaptive mesh refinement. The Caltech/Cornell/CITA group uses mul-
tidomain spectral methods.

6.5 Some Results of BBH simulations

6.5.1 BBH Kicks

Asymmetric mergers result in asymmetric emission of gravitational waves, resulting in a
change in linear momentum of the remnant BH.

RIGHT: BH-kicks for non-
spinning binaries, kicks of
100km/sec due to mass-ratio. From
Gonzalez et al, PRL 98 (2007)
p. 091101 (University of Jena,
Germany).
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For spinning binaries kicks up to 5000km/sec (!!) due to spins.

Campanelli et al, 2007. Orbital trajectories of a
BH-BH with spins initially tangent to the orbital
plane, and pointing in opposite directions. vkick ∼
4000km/sec.

Lousto & Zlochower, 2011: Spins having an
angle θ with the initial angular momentum.
Components of spins within orbital plane
anti-parallel. θ = π/2 corresponds to plot
on left.

6.5.2 Final Mass & Spin

Left: Rezzolla et al, ApJ 674 (2008), L29 (Albert Einstein Institute, Germany). Right:
Hemberger et al, PRD 88, 064014 (2013) arXiv:1305.5991
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6.5.3 Waveforms for gravitational wave detectors

These simulations need to
cover many orbits before
merger, and are therefore
much more costly than
shorter simulations inves-
tigating mergers. To the
right, one example from
Chu et al, arXiv:0909.1313
(Caltech/Cornell/CITA), for
an equal mass BBH with
antialigned spins

Below, a large exploration of BBH parameter space to date, led by CITA Postdoc
Abdul Mroue (Mroue et al, PRL 111, 241104 (2013), arXiv:1304.6077):
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6.6 BBH Open Challenges

• Explore parameter space. At least seven parameters: mass-ratio and spin-vectors
of each BH. Possibly eccentricity relevant. Note that 37 = 2000, and with each
simulation costing 10,000’s CPU-hours, one needs 1000’s of CPU’s for years...

• Near extremal spins

• Large mass-ratios, M1/M2 & 10. Computationally much more expensive.

• Eccentric binaries: Increase dimensionality of parameter space further.
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Chapter 7

Black hole quasi-normal modes

Immediately after the horizons of two black holes merge, one has one larger, very de-
formed black hole. This deformed black hole settles down into a quiescent Kerr black-hole.
At some point the deformations have decayed enough to allow a perturbative treatment
around the final Kerr black hole.

During this perturbative ringdown, the perturbations decompose into different modes
labeled by three integers, (l,m, n). By convention, the first two (l,m) represent the angular
shape of the perturbation-mode, in terms of spheroidal harmonics Y lm(θ, φ). The third
integer controls the radial shape of the pertubation-mode, with n = 0 being the most
important one, and n > 0 being ever more quickly damped (n counts the number of radial
zeros in the eigenmode).

Each mode exhibits a time-behavior which is oscillating and exponentially damped:

h ∝ exp {−t/τlmn} sin(ωlmnt+ φlmn) (7.1)

Let’s define a quality-factor Qlnm of the oscillations as

Qlmn = ωlmnτlmn/2. (7.2)

(We include the factor 1/2 for consistency with Figure 7.1.) The meaning of Q is as
follows: Within Q periods, ∆T = Q/ω, the amplitude of the quasi-normal mode decays
by a factor

e−∆T/τ = e−Q/(ωτ) = e−2. (7.3)

Therefore, we see that Qlmn/2 corresponds to the number of GW cycles per e-folding-time
of the decaying perturbations.

The modes are also a function of the remnant BH spin. Figure 7.1 plots the frequencies
of the modes, and their quality-factors as a function of BH spin. There are quite a few
important points to note:

1. As already mentioned the 220 mode is of highest importance for BBH mergers:
It is preferentially excited, because two black holes merging naturally represent a
quadrupole deformation. This is the top-most black solid curve in Fig. 7.1, on which
we henceforth focus.

2. Black holes are extremely strongly damped : There are only O(1) periods per e-fold
decay.
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Figure 7.1: Frequencies (left) and decay-times of quasi-normal mode per-
turbations of a Kerr black hole. The x-axis shows the dimensionless angular
momentum of the black hole, j = S/M2, and the y-axis shows frequency and
quality-factor for a variety of modes. The most important mode is the 2, 2, 0
mode, shown as the top-most solid line labeled l = 2. Figure from Berti,
Cardoso & Will, Physical Review D 73, p. 064030 (2006).

3. The frequency of the quasi-normal modes is mildly dependent on the spin, with the
(220) mode roughly doubling in frequency for an extremal Kerr black hole.

4. The quality-factor is a steeper function of spin: For highly spinning BH’s, the ring-
down is prolonged, and passes through several times more cyles per e-folding. In
fact, the quality factor diverges as the BH spin becomes extremal.

5. Mωlmn is a dimensionless frequency, i.e. it is a number without units (assuming
G = c = 1). Substituting back factors of G and c, as well as the solar-mass M�, we
find the physical frequency to be

flmn =
ωlmn
2π

=
1

2π

Mωlmn

M/M�
GM�
c3

= (Mωlmn)

(
M

M�

)−1

32kHz. (7.4)

As usual in vacuum GR, the frequency scales inversely to the mass. For a remnant
BH mass M ∼ 60M� (as for GW150914), and remnant spin j ∼ 0.7, we have for the
220 mode, fringdown ∼ 250Hz.

6. By BH uniqueness theorems, every single (lmn)-ringdown mode can depend only on
the black hole mass M and dimensionless spin j = S/M2. Therefore: (a) if one
knows already M and S, then measurement of even a single BH ringdown mode is a
test of GR. (b) if one does not know yet M and S, then measurement of two modes
provides a test of GR.
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7. Alternative theories of gravity often have identical BH solutions to GR. However, the
ringdown frequencies (which are determined by perturbations around the station-
ary solutions) tend to be different. As such, measurement of ringdown frequencies
constitutes an important part of testing general relativity using gravitational waves.
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Chapter 8

Compact binary coalescence:
Summary of qualitative features

We’ve now completed a pass through most important aspects of compact object binaries.
Let’s recap:

• With compact object, we refer to either black holes, or objects only a factor of a few
times larger than their Schwarzschild-radius, i.e. neutron stars.

• Such binaries end their inspiral when their separation is roughly comparable to the
inner-most stable circular orbit of a black hole of the same mass, i.e. at separation

r ∼ 6
Gm

c2
. (8.1)

Using Kepler’s third law, and the fact that the dominant GW emission is at twice
the orbital frequency Ω, we find a GW frequency near merger of

fGW,merger ∼
2Ω

2π
∼ 1

π

√
Gm

r3
∼ 1

π63/2

1

GM�/c3

(
m

M�

)−1

∼
(
m

M�

)−1

4kHz. (8.2)

Because of the assumptions, this estimate is only good to a factor of a few.

– For neutron stars, fGW,merger ∼kHz.

– Stellar mass black holes (m = 10..100M�), fGW,merger ∼ 40...400Hz

– Intermediate-mass black holes m ∼ 100..104M�, fGW,merger ∼ 0.4...40Hz

– Small super-massive black holes with m ∼ 106M�, fGW,merger ∼mHz

– Large super-massive black holes with m ∼ 109M�, fGW,merger ∼ µHz

These frequencies immediately dictate which instrument can observe each of these
systems: Ground-based GW detectors/space-based detectors (LISA)/pulsar-timing
arrays.

• The length of the observable inspiral depends on the frequency range [flow, fhigh] of
the detector. For LIGO, flow ∼ 20Hz and the merger-frequencies for stellar-mass
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compact-object binaries are within LIGO’s frequency band. For instance, the num-
ber of orbits of a inspiral is (to leading post-Newtonian order) given by Eq. (5.92):

N ≈ −Φ(xlow)

32π
=

1

64πν

(
Gmπflow

c3

)−5/3

∼ 3000

ν

(
flow

20Hz

m

M�

)−5/3

. (8.3)

In the first equality, we neglected Φ(x2), assuming that the end-frequency f2 �
flow. Binary Neutron stars, therefore, proceed through about 1000 orbits in LIGO’s
frequency band. Comparable mass (ν ≈ 1/4) BBH spend anywhere between ∼ 100
down to only a few inspiral-orbits in band, as the BBH mass varies from m = 10M�
to 100M�.

At fixed total mass, un-equal mass systems have a longer inspiral, owning to the
factor 1/ν. Moving the symmetric mass-ratio ν into the parenthesis, we find

N ∼ 3000

(
flow

20Hz

mν3/5

M�

)−5/3

. (8.4)

Therefore, the length of the inspiral depends only on the chirp-mass Mc = mν3/5 =
(m1m2)3/5/m1/5.
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Chapter 9

Gravitational Wave Detectors

Gravitational waves are being searched for in different frequency bands:

• f = 10Hz · · · kHz – ground-based interferometers (existing & successful detections)

• f ∼ mHz – space-based detectors (LISA – planned)

• f ∼ nHz (periods of ∼ years) – pulsar-timing arrays (ongoing searches for GW)

9.1 Ground-based GW interferometers

Because a GW passing through Earth stretches and squeezes space in alternating direc-
tions, the typical detection strategy employs kilometer-sized interferometers. The most
important one is LIGO, as shown in Fig. 9.1.

9.1.1 Existing and planned detectors

Interferometric GW detectors began operation in earnest around the year 2000, with
initial LIGO in the U.S., Virgo in Italy, TAMA300 in Japan and Geo in Germany. These
operators were improved until about 2010, and searched for gravitational waves at ever
increasing sensitivity. This first generation of gravitational wave detectors successfully
reached its goal of a sensitivity that makes GW detection plausible. Unfortunately, no
GWs were detected.

Starting around 2010, the LIGO detectors were shut down for a significant improvement
to the Advanced LIGO detectors, with the goal of a 10-fold sensitivity improvement.
Over the globe, the following second-generation GW detectors are in operation, or under
construction:

• The two LIGO detectors in the U.S. (already operating)

• Virgo in Italy (to come online in coming months)

• Kagra in Japan (∼ 2018)

• LIGO-India in India (& 2020)
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Figure 9.1: Schematic of the LIGO Interferometers and the noise curves
during the first Advanced LIGO observing run (O1).

9.1.2 Science Targets

Ground-based GW detectors are sensitive from frequencies f ∼ 10Hz to a few KhZ. This
sensitivity range determines their science targets:

• Inspiraling BBH binaries: Visible to a couple of Gpc.

• Inspiraling BH-NS binaries: Visible to several 100 Mpc.

• Inspiraling NS-NS binaries: Visible to ∼ 80Mpc (currently), ∼ 200Mpc at Advanced
LIGO design

• core-collapse supernovae. It is unclear how much GW’s are emitted, so it is unclear
how far these can be seen. Possibly only visible within the Milky Way; since there is
a super-nova only once every ∼ 100years in the Milky Way, it may therefore be quite
unlikely to be observed. However, if seen, entirely complementary information to
electro-magnetic observations of supernovae: GW’s generated by the matter flows
near the centre can escape unimpeded, and offer so a direct means to study the
central engine of core-collapse supernovae.

• Individual rotating Neutron stars with an asymmetry. These are transient sources
which are always active, albeit at much smaller GW amplitude. Current non-
detection translates into upper limits as of how elliptic known radio-pulsars can
maximally be.

• A stochastic background of gravitational waves. (upper limits are set)
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Figure 9.2: GW150914: Measured GW strain, and comparison to numerical
solutions of GR. Top: Detector measurement; reconstructed waveforms &
comparison with numerical simulations; residuals; bottom: time-frequency
plot of excess energy in both detectors.
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9.1.3 First GW discoveries

As you all know, LIGO made their first observation of gravitational waves in September,
2015. Two further GW events were observed later in 2015. Figure 9.2 summaries the dis-
covery measurement of Sep 14, 2015. It is a clear chirp-signal, as expected for a coalescing
compact object binary. The data are consistent in both detectors, and consistent with
direct numerical solutions of GR (see chapter 6).

9.1.4 Parameter estimation

LIGO estimates the parameters of the coalescing binary by comparing the observed grav-
itational waves with the predicted gravitational waveforms from post-Newtonian theory
combined with numerical simulations.

While not perfect, we can use our intuition from post-Newtonian theory (especially
HW3) to gain insights into what parameters LIGO can measure well, and what other
parameters not so well. Typically, we will find that there are correlations between different
measured quantities. Some of the most important measurements of GW150914 are shown
in Fig. 9.3. of the degeneracies:

• Masses m1 and m2 are reasonably well measured.

• Distance DL and binary orientation θJN are degenerate. If the binary is face-on or
face-off (i.e. θJN ≈ 0◦ or ≈ 180◦), then the binary must be at a large distance of
DL ≈ 500Mpc. If, in contrast, the binary is seen edge-on (θJN ≈ 90◦), then the
distance is smaller, DL ≈ 200Mpc. This particular degeneracy arises because the
GW emission is anisotropic. Specifically, for a Newtonian binary in the quadrupole-
approximation:

h+ = −1

2

4µr2Ω2

DL

(
1 + cos2 θJN

)
cos 2Ωt (9.1)

h× = −4µr2Ω2

DL
cos θJN sin 2Ωt. (9.2)

(9.3)

The important factors are the cos θJN terms, that encode the directional dependence
of the emitted gravitational waves. h+ is diminished by a factor of 2 for GW-emission
parallel to the orbital plane (θJN = 90◦), whereas h× entirely vanishes in this case.1

By the way, the sign-change of h× incdicates that face-off binaries with ΩJN > 90◦

are circularly polarized with the opposite sense of rotation than face-on binaries.

• Finally, the bottom panel of Fig. 9.3 summarizes the spin results. As you have
shown in HW3, spins enter the post-Newtonian inspiral waveforms at comparably
high order. And the first combination of spins that enters is a mass-weighted sum of
the spin-components aligned with the orbital angular momentum. There are a few

1 The sin(2Ωt), cos(2Ωt) terms merely encode the oscillatory nature of gravitational waves during the
inspiral.
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Figure 9.3: Parameter-estimation results for GW150914. Each of the four
panels shows in blue the probability density contours in 2-dimensional sub-
spaces of all parameters that characterize the binary. Top-Left: component
masses m1, m2. Top-right: Inclination θJN of the orbital plane relative
to the line-of-sight to the binary and distance DL to the binary. Bottom
left: Two spin parameters, one characterizing the spin-components parallel
to the orbital angular momentum (χeff), and one characterizing the spin-
components orthogonal to the orbital angular momentum (χp). Bottom-
right: Probability density of the spin-direction of both BH spins. (Figure
from https://arxiv.org/abs/1602.03840)
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ever so slightly different variants of this mass-weighted sum that appear at different
places in post-Newtonian theory. Fig. 9.3 considers

χeff ≡
c

G

(
~S1

m1m
+

~S2

m2m

)
· L̂. (9.4)

As is apparent from the bottom left panel of Fig. 9.3, this combination of spins is
measured to quite good accuracy: χeff = −0.06± 0.2. Hence we know that the sum
of the spin-components paralllel to L is near zero, but we have little information
about the individual spins!

Figure 9.4: Parameter-estimation of the BBH systems observed in the first
Advanced LIGO Science Run (O1). (Figure from https://arxiv.org/abs/

1606.04856)

Figure 9.4, finally, summarizes the three BBH detections of the first observing run of
Advanced LIGO, which ran from September 2015 to January 2016. We see that the three
detections are at different masses, with total mass ranging from 20 to 65 solar masses. As
the total mass becomes lower, ever more inspiral cycles are in band. In the inspiral the
waveforms are dominated by the value of the chirp mass,

Mc =
(m1m2)3/5

m1/5
, (9.5)

as you have shown in HW3, with other parameters (mass-ratio, spins) less important.
Therefore, at low total mass, the m1 −m2 contours become thinner and more elongated
along a Mc =const line, and the mass-ratio is less well measured.

LVT151012 is a weaker signal arriving from larger distance. It was so weak that it
cannot be confidently identified as a true gravitational wave. Rather, it only has a ∼ 80%
probability of being a real signal, and 20% probability of being a noise-artefact. Therefore,
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it is named ’LVT’ for LIGO-Virgo-trigger, rather than with a ’GW’ moniker that indicates
a confident detection.

The lower signal-to-noise ratio of LVT151012 leads to the larger confidence countours
in Fig. 9.4.

9.1.5 Testing GR

The first GW observations of coalescing BBH also allow to test GR in the genuinely
strong-field, highly dynamic regime. There are three types of tests in particular, which
are radically different from tests of GR available before.

• First, one can simply compare the measurement with the prediction of GR; as the
third row of panels of Fig. 9.2 demonstrates, the residual of such a comparsion is
consistent with noise. This is also confirmed with a more sophisticated analysis than
a mere plot.

• BBH systems allow to measure the BH masses and spins of the inspiraling black holes
during the inspiral. Furthermore, because GW150914 was so high total mass, the
ringdown had significant signal-to-noise ratio. Therefore, one could also measure
the quasi-normal-mode ringdown frequency and decay-rate (ω220 and τ220 in the
language of chapter 7). If GR holds, then GR predicts the ringdown properties
from the inspiral properties. However, to reach the ringdown, the system has to
pass through the genuinely non-linear, asymmetric, and dynamic merger regime.
If the evolution in this regime differs from GR, then the remnant properties will
almost certainly be different than those predicted by GR. The left panel of Fig. 9.3
demonstrates that the ringdown QNM frequencies are consistent with those expected
if the entire signal is perfectly modeled by GR.

• Speed of propagation of gravitational waves. General relativity predicts that grav-
itational waves propagate with the speed of light c, irrespective of their frequency.
This is codified by the dispersion relation

E2 = p2c2 (9.6)

for gravitational waves. If the graviton had a non-zero mass mg > 0, then one would
expect a dispersion relation like

E2 = p2c2 +m2
gc

4. (9.7)

The speed of propagation of a gravitational wave is vg = pc/E, so that

(vg
c

)2
=
p2c2

E2
≈ 1−

m2
gc

4

p2c2
= 1− h2c2

λ2
gE

2
, (9.8)

where in the second equality we have Taylor-expanded the denominator, and in the
last equality we substituted in the Compton-wavelength of the graviton,

λg =
h

mgc
. (9.9)
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Equation (9.8) indicates that high-frequency (large energy E) gravitational waves
would propagate faster than low-frequency waves if the graviton-mass is non-zero.
Therefore, the gravitational wave signal reaching Earth (as measured in the top-
panels of Fig. 9.2 would be distorted, because the high-frequency merger waveforms
would arrive earlier on Earth than in pure GR where vg = c for all frequencies.

The agreement with NR (which uses strictly vg = c) in Fig. 9.2 shows that such
dispersive effects must be quite small, with a change in travel-time to Earth δT �
0.01s. However, the travel-time is immense, T = DL/c ≈ 1.3 × 109yr∼ 4 × 1016s.
The combination of short duration of the GW signal (i.e. very small δT ) and the
immense distance to the source (i.e. very large T ), therefore immediately bounds
the propagation speed ∣∣∣vg

c
− 1
∣∣∣ . δT

T
∼ 10−19. (9.10)

The right panel of Fig.) 9.5 performs a more careful analysis in terms of the Compton
wavelength λg.

Figure 9.5: Tests of General Relativity using GW150914. Left: mea-
sured from the ringdown signal starting a certain time-offset after the
peak of the waveform. The thick black curve is the measurement if the
entire inspiral-merger-ringdown waveform is utilized. Right: Bound on
the Componton-wavelength of the graviton λg. The colored areas are ex-
cluded by pulsar-timing (“J0737-3039”), solar-system measurements, and by
GW150914. (Figures from https://arxiv.org/abs/1602.03841)

9.2 LISA

The Laser Interferometer Space Antenna is a space-based mission that consists of three
satellites on orbits such that the three satellites always form approximately an equilateral
triangle. This mission is led by the European Space Agency, for a planned launch around
2030.

A lot of information is available from the LISA website, ww.elisascience.org, most
notably the mission proposal https://www.elisascience.org/files/publications/

LISA_L3_20170120.pdf
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Figure 9.6: Depiction of the LISA orbits: The three space-craft trail Earth
and are on orbits that are slightly inclined and slightly eccentric such that the
triangular configuration rotates once around its axis as per orbit around the
sun. (Figure from https://www.elisascience.org/files/publications/

LISA_L3_20170120.pdf)

Figure 9.6 depicts the orbital configuration of the three satellites. The three satellites
will allow for three interferometers, utilizing the three different combinations of two sides.
The arm-length L = 2.5×106km sets the light-travel time, and that in turn sets the typical
frequency range for LISA:

f ∼ c

L
∼ 0.1Hz. (9.11)

Gravitational waves above this frequency oscillate multiple times per light-travel time, and
so their effect on the travel-time averages out. Therefore, the light-travel time indicates
roughly the upper end of LISA’s frequency range.

The complete proposed LISA senitivity curve is shown in Fig. 9.7. Also included in
this figure are the major science-targets of LISA:

• Supermassive BH-BH binaries with total mass of 105 · · · 107M�. Depending on their
total mass, such systems spend between days and a full year in the LISA frequency
band. Supermassive BH-BH mergers happen when the supermassive black holes at
the centres of galaxies merge, following the merger of their host galaxies. Tracing the
supermassive BH-BH mergers, LISA explores the hierarchical formation of galaxies
in the universe.

• Extreme mass ratio inspirals (EMRI), where a stellar mass object (neutron star
of black hole) inspirals into a supermassive black hole near the center of a galaxy.
Because of the very small symmetric mass-ratio ν, such systems spend O(1/ν) ∼
100′000 GW cycles in the LISA band. The orbits of the small objects in the EMRI
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are perturbed by galactic stars in the vicinity of the supermassive blak hole, and so
EMRIs are generally on eccentric orbits leading to very complex waveforms which
carry detailed information about the strong-field gravity around the supermassive
black hole, cf. Fig. 2.5.

• Short period binary stars in the Milky Way, especially binary white dwarfs. Such
systems have orbital periods of minutes. For such low-mass systems at such low
frequencies, the GW amplitudes are quite small, so the visibility is only the Milky
Way. Nevertheless, LISA will detect every such binary in the Milky Way.

• Finally, the breed of stellar mass BH-BH systems recently discovered by LIGO with
total masses ∼ 60M� will pass through the LISA band some time before they enter
the LIGO band. From Eq. (5.89), we find

dx

x5
=

64

5

c3ν

Gm
dt, (9.12)

−1

4
x−4 =

64

5

c3ν

Gm
(t− tmerger) , (9.13)

t− tmerger = − 5

256

Gm

c3ν

(
πGmfGW

c3

)−8/3

. (9.14)

In the second line, we chose the integration constant tmerger such that at merger where
x → ∞, the time t → tmerger. In the third line, we substituted in the definition

x =
(
GmΩ/c3

)2/3
, and used the fact that the GW-frequency is twice the orbital

frequency, i.e. fGW = πΩ. Substituting in m = 60M�, ν = 1/4 (equal mass), and
using a frequency fGW = 0.02Hz at the upper end of the LISA band-width, one finds

|t− tmerger| ≈ 2years. (9.15)

That means, a BH-BH merger that is visble in LIGO will start out in the LISA band
about two years earlier!
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Figure 9.7: Sensitivity-curve of LISA, overlaid with the most important
scientific targets. Shown are (1) Supermassive BH-BH binaries (labeled
“MBHB”) with total mass 107M�, 106M�, 105M�. (2) The five most im-
portant harmonics of an extreme mass ratio inspiral (EMRI) (3) Galactic
binaries (primarily WD-WD, but also NS-NS and BH-BH), and (4) LIGO-
type BH-BH systems at larger separation than in LIGO. (Figure from https:

//www.elisascience.org/files/publications/LISA_L3_20170120.pdf)
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